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Abstract 
 In this study,  PAni NFs and metal oxides nanostructures [tin oxide 

(SnO2) and copper oxide (CuO)] have successfully synthesized by using 

hydrothermal method and depositing PAni NFs, SnO2 and CuO and their 

composites on silicon and glass substrates by spin coating technique at room 

temperature with thickness of about 325 nm. The structural, surface morphological, 

optical, electrical, photoconductivity and  gas sensing properties have been 

investigated for Inorganic – Polyaniline  films. The XRD results showed that PAni 

films have crystalline nature,  SnO2 and PAni/SnO2 nanostructure composite   are 

polycrystalline in nature with tetragonal structure , CuO and PAni/CuO 

nanostructure composite are polycrystalline in nature with Monoclinic structure, 

The crystallite size is estimated  by Scherrer formula  and W-H analyses and it is 

found that it increases as the concentration ratio of SnO2 and CuO increasing. The 

FESEM images of Polyaniline clearly indicate that the polymer possesses 

nanofiber like structure, where's the SnO2 and CuO films have cauliflower like and 

regular shapes respectively. The surface morphology of composites are nanofiber 

caped with inorganic material which are SnO2 and CuO as core-shell structure. The 

optical properties show that the energy gap follows allowed direct electronic 

transition calculated using Tauc’s equation and it is noticed that the band gap value 

decreases as the SnO2, CuO ratios increases. PL showed that peaks intensity 

increases as the concentration  of SnO2 and CuO increases. The electrical 

properties include Resistance–Temperature Characteristic, D.C. electric 

conductivity and  Hall effect measurements. The resistance of the films decreases 

as the temperature increased which shows a semiconductor behavior and  

activation energies and electrical conductivity (σRT ) are decreases with increasing 



of addition of inorganic semiconductors into PAni NFs. The results of Hall 

coefficient showed p-type semiconductor behavior for all films except that for pure 

SnO2 films which is n-type. The built-in potential (Vbi) increases with increasing 

by addition of inorganic composites into polymer matrix. The photoconductivity 

properties, in current-voltage (I-V) characteristics, the value of ideality factor and 

tunneling factor increase with increasing by adding of inorganic semiconductors 

into polymer matrix, the responsivity, G%, D and D* increase with increases of 

SnO2 and CuO nanostructures ratio except NEP is decreases, and the current -time 

(I-t) characteristics investigate that the response had square pulse for UV-Vis light 

region that means fast response for all films. The sensitivity to H2S gas increased 

with increases of operating temperatures and SnO2 and CuO concentration. The 

maximum sensitivity to H2S gas was observed to nanocomposites PAni/CuO films 

at high  amount of CuO and  found to be 260 % at ( To= 200 oC ).  The response 

and recovery time increased with increase in operating temperature and SnO2 and 

CuO concentration and the nanocomposites PAni/CuO films at concentration 3mL 

from CuO  exhibits a fast response speed (0.753s) with recovery time (0.787s) at 

(30oC), while the slow response speed was observed for 7mL CuO (0.921s) with 

recovery time of (0.857s). 
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Chapter One                                    Introduction and Basic Concept 
 

 
1 

1.1 Introduction 

One goal of today’s technology is the miniaturization of the 

electronic, actuating, sensing, and optical devices and their components; 

hence, nanotechnology is an advanced technology that has received a lot of 

attention from the world of the science and industry for its ability to make 

use of the unique properties of nanosized materials. Nanotechnology is 

capable of manipulating and controlling material structures at the nano level 

(a nanometer equals to one millionth of a millimeter) and offering 

unprecedented functions and excellent material properties [1]. 

Nanotechnology can be defined as the ability to work near the molecular 

level, atom by atom, to create large structures with fundamentally new 

properties and functions. Nanotechnology can be described as the precision-

creation and precision control of atomic-scale matter [2]. It offers new 

design, characterization, production, and application of systems, devices 

and materials at the nanometer scale. It is an interesting and vibrant field of 

research. Their roots can be traced back to Feynman's famous lecture in 

1959, in which he suggested that for entities with nanoscopic dimensions 

new physical phenomena should arise [3]. The nanoscale dimension is 

important because quantum mechanical properties of electronics, photons, 

and atoms are evident at this scale. Its structures permit the control of 

fundamental properties of materials without changing the materials' 

chemical status. Nanostructures, such as nanophotonic devices, nanowires, 

carbon nanotubes, plasmonic devices, among others, are planned to be more 

powerful communication systems and quantum computers [4].  

Nanoscale structures are used to study a range of interesting effects 

that occur when electrons are confined to very small geometries. For 

example, the quantized electron wave states in a nanostructure are reflected 

in measurements of electron transport through the structure. Electron 

transport experiments have been used to investigate many different 
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nanostructures. As the scale of materials is reduced to nanometers, the 

tendency of surfaces to minimize their free energy may drive structural 

changes [5].  

1.2 The Physics of Low Dimensional Material 

Over the last few years, advances in solid state physics have been 

characterized by a change from bulk crystal to a very small at least one of 

their three dimensions. Semiconductor nanocrystals are the subject of a 

rapidly developing field. It can be defined as crystals with dimensions 

ranging from 1-100 nm; above this size, they are termed microcrystals. 

When the dimensions of a solid are reduced from a large size to the size of 

the characteristic lengths of electrons i.e. de Broglie wavelength λB, 

coherence length and localization length then the particles behave wave-like 

and the crystal size becomes smaller leading to the semiconductor energy 

levels to be more separated from each other and the effective band gap to 

increase, therefore new physical properties due to quantum effect is 

observed, such as: quantum conductance oscillations, quantum Hall effects, 

resonant tunneling single electron transport, etc. These properties are 

necessary to build nanostructure semiconductor heterojunction, super 

lattice, etc. [6]. 

Low dimensions materials are classified according to the number of 

dimensions in nanometer size into three types [7]: Quantum wells (2D), 

Quantum wires (1D), and Quantum dots (0D). 

1.3 Conducting polymers 

      The term “polymer” comes from “poly”, which means many, and “mer”, 

which means units. Conducting polymers are a prospective class of new 

materials that combine solubility, process ability and flexibility of plastics 

with electrical and optical properties of metals and semiconductors [8].  
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1.4 Conjugated Polymer 

A polymer chain is characterized by an alternation of saturated and 

unsaturated carbon-carbon bonds, leading to the presence of non-localized 

electrons {π–electrons} [9]. The conjugated structure with alternating single 

and double bonds or conjugated segment coupled with atoms providing P-

orbital for a continues orbital overlap seem to be necessary for polymers to 

become electrically conducting. This is due to the conjugated structure not 

only provides a continues conduction path through the P-orbital overlapping 

along the polymer backbone but also facilitates the generation of charge 

carriers by either partial oxidation (p-doping) or partial reduction (n-doping) 

[10,11]. For the last three decades, a large effort has been carried out on the 

development of conducting polymers such as Polythiophene (PT), 

Polypyrrole (PPy), polyphenylene (PP), polyphenylene vinylene (PPV), 

polyasulfone (PS), and polyaniline (PAni) [12,13]. Figure (1.1) shows the 

chemical structural formula of some commonly encountered conjugated 

polymers [14]. 

 

 

 

 

Figure 1.1: Intrinsically conducting polymers [14]. 

 These polymers because of their good electrical and optical 

properties have been applied in a really impressive application range in 

different fields such as energy storage electromagnetic interference 

shielding [15], light emitting diodes and photovoltaic devices, field effect 

transistors, plastic lasers, batteries, corrosion protection and chemical and 

biological sensors [16, 17]. 
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1.5 Polyaniline (PAni) 

 Polyaniline (C6H7N) has been known for more than a century in its 

“aniline black” form. Among the conducting polymers, polyaniline is the 

most promising polymer due to its low cost, chemical stability [18], 

controllable electrical conductivity, excellent environmental stability, ease 

to synthesize through chemical or electrochemical processes and have many 

interesting characteristics for sensing including their high sensitivity and 

short response time. PAni is represented by the general following formula 

and structure, where B denotes a benzoid reduced unit and Q is aquinoid 

oxidized unit [19] as shown in Figure (1.2) 

 

Figure 1.2: Structure of the polyaniline chain [20]. 

PAni is a typical phenylene-base polymer having a chemically 

flexible -NH – group in the polymer chain flanked on either side by a 

phenylene ring. The protonation, deprotonation and various other physico-

chemical properties of PAni can be traced to the presence of the –NH- 

group [21]. PAni exists in various oxidation states characterized by the ratio 

of amine to imine nitrogen atoms [22]. When y = 1, the polymer is in the 

fully reduced leucoemeraldine (LE) state and is found to be insulating and 

yellow. The half oxidized polymer (y=0.5) is called emeraldine base (EB) 

and is insulating and blue. The only conducting state of PAni is the green 

colored emeraldine salt (ES), which is protonated form of EB [23]. Finally, 

pernigraniline base (PN) is the fully oxidized form of PAni (Y= 0) and is 
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insulating and purple. All these oxidation states of PAni are shown in Figure 

(1.3) [24]. 

 

Figure 1.3: Different oxidation states of PAni, leucoemeraldine (LE), emeraldine 
base (EB), emeraldine salt (ES) and pernigraniline (PN) [24]. 

The ability of PAni to exist in various forms via acid/base treatment 

and oxidation /reduction, either chemically or electrochemically, has made 

PAni the most tunable member of the conducting polymer. PAni was found 

in wide variety of applications in different fields [25]. However, PAni has a 

rigid backbone originating from an extended conjugated double bond [26]. 

The rigid structure of PAni restricts its common usage and results in the 

insolubility, infusibility and incompatibility of this material with common 

polymers. This necessitates the modification of the structure of PAni. 

Therefore, during the past decade researchers have directed their attention to 

modify PAni structure and to overcome the difficulties associated with the 

use of PAni by using different approaches, for example, the utilization of a 

soluble precursor method, in which a process able precursor polymer is first 

prepared in an appropriate form and then chemically converted into the final 

conducting polymer [27]. Another approach is the formation of conductive 

blends/composites [28] or the formation of PAni filled interpenetrating 

polymer networks. Efforts have been made to improve the properties of 
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PAni through the post treatment of PAni such as sulfonation or 

incorporation of N-alkyl sulfonic acid pendant group (the use of functional 

dopants and the design of self-doping polymer) [29]. Extensive studies on 

the polymerization of aniline (Ani) derivatives and/or the polymerization of 

Ani in the presence of another monomer (copolymerization) have also been 

carried out frequently in order to improve the properties of PAni. In recent 

years, due to the development of nanotechnology, PAni has been employed 

for studying nano composite materials in order to get new desired properties 

for practical application [30]. 

1.5.1 Different oxidation states of PAni  

Unlike other known electro conducting polymers, polyaniline can 

exist, depending on degree of oxidation, in different forms known as: 

leuoemeraldine, emeraldine and perningraniline. Leuoemeraldine base 

refers to fully reduced form; emeraldine base is half-oxidized, while 

perningraniline base is completely oxidized form of polyaniline. The only 

conducting form of polyaniline is emeraldine salt, obtained by doping or 

protonation of emeraldine base [31, 32]. The unique feature of mentioned 

polyaniline forms is ease of its mutual conversions by both chemical and 

electrochemical reactions as it can be seen in Figure (1.4) [33]. Apart from 

the changes in oxidation levels, all the transitions among polyaniline forms 

are manifested by color and conductivity changes [33]. The conducting 

protonated emeraldine in the form of green emeraldine salt, obtained as a 

product of electrochemical polymerization of aniline in acidic electrolytes, 

can be easily transformed by further oxidation to fully oxidized dark blue 

perningraniline salt, which can be treated by alkali to form violet 

perningraniline. Emeraldine salt can also be reduced to transparent 

leuoemeraldine, or can be transformed by alkali to blue non conducting 

emeraldine. The two blue forms of polyaniline, perningraniline salt and 
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emeraldine have different shades of blue [33]. Both, reduction of 

emeraldine salt to leuoemeraldine and oxidation to perningraniline states are 

followed by decrease in conductivity [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Different forms of polyaniline [33]. 

1.5.2 Polyaniline Conductivity 

The mechanism of polyaniline conductivity differs from other electro 

conducting polymers, owing to the fact that nitrogen atom is involved in the 

formation of radical cation; unlike most of the electro conducting polymers 

whose radical cation is formed at carbon. On the other hand, nitrogen is also 

involved in the conjugated double bonds system. Therefore, electrical 

conductivity of polyaniline is dependent both on the oxidation and 

protonation degrees [35]. As mentioned before, polyaniline is characterized 

by existence of various oxidation forms. Polyaniline in the form of 

emeraldine base can be doped (protonated) to conducting form of 

emeraldine salt. Emeraldine base, half oxidized form, is consisted of equal 

amount of amine (-NH-) and imine (=NH-) sites. Imine sites are subjected 
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to protonation to form bipolaron or dication (emeraldine salt form). 

Bipolaron is further dissociated by injection of two electrons both from 

electron pairs of two imine nitrogen, into quinoid imine ring, and the third 

double bond of benzenoid ring is formed [34]. Unpaired electrons at 

nitrogen atoms are cation radicals, but essentially they represent polarons. 

Figure (1.5) represents the polaron lattice, responsible for high conductivity 

of polyaniline in the form of emeraldine salt formed by redistribution of 

polarons along polymer chain [35]. 

Although both bipolaron and polaron theoretical models of 

emeraldine salt conductivity were proposed [36], it was lately confirmed 

that, beside from the fact that few of spineless bipolarons exist in 

polyaniline, formation of polarons as charge carriers explained high 

conductivity of polyaniline. Unique property of polyaniline is conductivity 

dependence on the doping (proton) level [35].  

The maximum conductivity of polyaniline is achieved at doping degree of 

50%, which corresponds to polyaniline in the form of emeraldine salt [37]. 

For higher doping degrees some of the amine sites are protonated, while 

lower doping degrees, i.e. some of the imine sites, were left un protonated 

[35], explaining why, in the light of the polaron conductivity model, 

reduction of emeraldine salt to leuoemeraldine and oxidation to 

perningraniline states decrease the conductivity. The order of conductivity 

magnitude varies from 10-2 S cm-1 for un doped emeraldine, up to 103 S cm-1 

for doped emeraldine salt [38]. 

Beside the fact that doping degree has the pronounced effect on the 

conductivity, other factors such as: moisture amount, morphology, 

temperature etc. were also found to have influence on the polyaniline 

conductivity[39, 40]. 
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Figure 1.5: Schematic presentation of conductivity for polyaniline [35]. 

1.6 Applications of conducting polymers 

Basic research and assessment of possible applications of conducting 

polymers all over the world show that this area is interdisciplinary in nature. 

Variety of technology oriented applications of conducting polymers 

includes electronics, optoelectronics, solar cells, semiconductors, laser, 

energy storage and super capacitors fields [41]. Some of these applications 

are as follows: Conducting organic molecular electronic materials have 

attracted much attention because of their many projected applications in 

solar cells, light weight batteries, electrochromic devices, sensors and 

molecular electronic devices. Polymeric heterojunctions and solar cells have 

been fabricated using PPy on silicon via electrochemical methods. 

Conducting polymers such as polyacetylene, PAni, PPy, Polythiophene, 

polyindole, etc. have been emerged as electrode materials in rechargeable 
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batteries. PPy films are applied in neurotransmitter as a drug release system 

into the brain. Conducting polymers have been used to fabricate diodes, 

capacitors, field-effect transistors (FET) and printed circuit boards (PCBs) 

in the field of electronics and photonics. PAni is being used as anti-static 

coating material for electronic storage devices, electronic boards, sensors, 

appliances etc. Biosensors have found promising applications in various 

fields such as biotechnology, food and agriculture product processing, 

health care, medicine and pollution monitoring [42].  

1.7 Hybrids of conducting polymers 

1.7.1 Introduction of Hybrids 

Organic-inorganic hybrid composite (OIHC) materials are defined as 

“the solid materials’ composites with organic and inorganic components 

intimately mixed where at least one of the components domains has a 

dimension ranging from few angstroms to several nanometres”. Hybrid 

materials are defined as “mixtures of two or more materials with new 

properties created by new electron orbitals formed between such materials. 

Yamada et al. defined hybrid materials as “mixtures of two or more 

materials with newly formed chemical bonds” [43,44]. Hybrid materials 

play a major role in the development of advanced functional materials. 

Inorganic materials have good mechanical and thermal stability as well as 

optical properties; however they are hard, and brittle. Organic 

polymers/oligomers are flexible and generally suffer from instability to heat 

and tendency of natural degradation upon aging. Nevertheless, upon 

forming hybrid material with inorganic component, the organic moiety 

would provide flexibility, toughness, hydrophobicity and new electronic 

and/or optical properties. In principle, modification of the kind and 

proportions of the constituents allows an intentional tailoring of properties 

evolving from organic and inorganic materials [45]. Thus OIHC materials 
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could have desired and new features which may not be present in individual 

organic and inorganic components [46]. 

1.7.2 Classification of hybrid materials 

Hybrid materials are classified into Class I and Class II based on the 

criteria of their chemical nature. In Class I hybrid materials, organic and 

inorganic components are dispersed and held together only by weak forces 

such as van der Waals interactions. In Class II hybrid materials, the organic 

and inorganic moieties are linked through strong bonds such as covalent 

bonds [47]. The hybrid and their related materials can be categorized into 

four types as follows [44]: 

1. Composites: Mixture of materials consisting of matrix constituents at 

micrometer to millimeter level dispersion. 

2. Nanocomposites: Mixture of similar kinds of materials at submicron and 

nano level. 

3. Hybrids: Composites consisting of two constituents at the nanometer or 

molecular level. 

4. Nanohybrids: Mixture of different materials with chemical bonds 

between their different materials at atomic or molecular level. 

Classification of materials on the basis of different scale levels as in 

Figure (1.6) [48]. 

Figure 1.6: Classification of materials at different scale levels [48]. 
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1.7.3 Factors influencing properties of hybrid materials 

The properties of a composite product depend not only on the 

properties of the individual components, but also on factors such as the 

phase’s size, shape and interfacial properties [49]. In fact, the inner surfaces 

predominantly play a role in deciding the properties of these hybrid 

materials. If the dimensions of one or both phases involved in the composite 

material are reduced down to the nanometer scale or even the molecular 

level, a synergic combination of both the constituents is possible. Properties 

of such nanocomposites will be different from that of classical composites, 

since many properties correlate with the phase dimension. Figure (1.7) 

depicts composites and hybrids with dimension and phases. Mixing the 

constituents at the microscopic scale leads to a more homogeneous material. 

The characteristics of this material lie either between the two original 

phases or even in newer properties [43]. 

 

Figure 1.7: Composites and hybrids with phases[44] 
 

1.7.4 Synthesis of hybrid materials 

There are few methods commonly used for the synthesis of hybrid 

materials [50]. These methods are: 

1. Hydrothermal synthesis   
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2. Sol-gel synthesis 

3. Encapsulation 

4. Impregnation etc. 

Hydrothermal method has been employed to grow organic, inorganic 

and organic –inorganic nanostructures. The hydrothermal technique is one 

of the most important methods for advanced materials processing, 

particularly owing to its advantages in the processing of nanostructured 

materials with a control over size and morphology properties for a wide 

variety of technological applications such as electronics, optoelectronics, 

catalysis, ceramics, magnetic data storage, biomedical, biophotonics, etc. 

The hydrothermal technique not only helps in processing mono dispersed 

and highly homogeneous nanoparticles, but also acts as one of the most 

attractive techniques for processing nano-hybrid and nanocomposite 

materials. Hydrothermal processing can be defined as any heterogeneous 

reaction in the presence of aqueous solvents or mineralizers under high 

pressure in a closed system and temperature conditions to dissolve and 

recrystallize (recover) materials that are relatively insoluble under ordinary 

conditions. Definition of the word hydrothermal has undergone several 

changes from the original Greek meaning of the words ‘hydros’ meaning 

water and ‘thermos’ meaning heat [51] 

Sol-gel method is simple, low cost and yields amorphous 

nanocomposite hybrid materials. Hydrolysis of organically modified metal 

alkoxides/metal halides with/without simple metallic alkoxides in 

presence/absence of a specific cross linking agent yields the hybrid 

materials. Interactions such as hydrogen bonds, π - π interactions, van der 

Waals forces etc. are found between organic and inorganic components in 

the hybrid materials. These materials exhibit infinite microstructures and are 

easily shaped as films or bulks. They are generally poly dispersed in size 
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and locally heterogeneous in chemical composition. 

In encapsulation technique, organic components get trapped during 

hydrolysis and condensation reactions of metal alkoxides and/or 

organosilanes. Organic molecules, oligomers, macromonomers and bio-

components can be easily incorporated into metal oxide-based networks. 

This method provides heterogeneity to the organic components and thus 

increases life time and reuse of such precious organic components.  

In impregnation method, organic components are introduced inside 

the porous network. Both encapsulation and impregnation methods have 

been extensively developed either by inorganic sol-gel chemists or by 

polymer chemists. Inorganic structures like silica, titania (TiO2) and other 

metal oxides can function as host matrix. These amorphous composites with 

the control of their microstructure, exhibit a wide variety of mechanical, 

optical, electrical, ionic, sensor, catalytic properties [52]. 

1.7.5 Applications of hybrid materials 

Hybridization of conducting polymers with inorganic materials has 

been found to improve the inherent properties of both organic and inorganic 

components. Thus,  they open promising applications in many areas: optics, 

electronics, ionics, mechanics, energy, environment, biology and medicine. 

They are finding very high position in photovoltaic and fuel cells, photo 

catalysts, new catalysts, chemical/biomedical sensors, smart micro-

electronic, micro-optical and photonic components etc. The practical 

applications of hybrid materials are many and few are listed below [53, 54]: 

a) Decorative coatings by making use of organic dyes in hybrid coatings. 

b) Scratch resistant coatings with hydrophobic or antifogging properties. 

c) Electronic and optoelectronic applications like light emitting diodes,       
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photodiodes, solar cells, gas sensors and field effect transistors. 

d) Fire retardant materials for building construction industries. 

e) Filling materials in dental treatment. 

f) Electrolyte materials in solid state lithium batteries or super capacitors. 

g) Antistatic / antireflection / anti corrosion coatings. 

h) Porous hybrid materials for adsorption and catalytic applications. 

1.8 Tin Oxides 

 Tin oxide (SnO2) is a tetragonal rutile structure with lattice 

parameters a=b = 4.737 Å and c = 3.826 Å [55]. The unit cell contains two 

tin and four oxygen atoms. Each tin atom is bounded to six oxygen atoms at 

the corners of a regular octahedron, and every oxygen atom is surrounded 

by three tin atoms at the corners of an equilateral triangle as shown in figure 

(1.8) [56].  

 

 

 

 

 

 

 

Figure 1.8: The lattice structure of SnO2
 [56]. 

  The SnO2 films are n-type semiconductors with a direct band gap of 

about (3.6- 4.3) eV. Deposition technique has strong effect on the thin film 

form and its structure, so it may be formed as polycrystalline or amorphous. 

SnO2 semiconducting transparent thin films have various appealing features 
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for technical applications in solar energy conversion, flat panel displays, 

electrochromic devices, invisible security circuits, LEDs, gas sensing, etc. 

Hence large area SnO2 films on cheap and easily available substrates are of 

considerable interest for the formation of most of the photonic structures 

[57]. Table (1.1) shows the properties of SnO2. 

Table 1.1: The properties of SnO2 [56]. 

 

 

 

 

 

 

 

 

 

 

 

1.9 Copper oxide 

Copper oxide has types of polymorphism, namely, cuprous oxide 

(Cu2O) and cupric oxide (CuO). These oxides are the two most important 

stoichiometric compounds in the Cu-O system. Both oxides are intrinsic p-

type semiconductor with relatively small band gaps and show many 

attractive properties that can be utilized in diversity on applications. The 

potential applications of copper oxides include solar cells [58] Li-ion 

battery where they have been used as negative electrode material, 

superconductor, magnetic storage, gas sensors and photo-conductive 

Lattice constants a=b= 4.737 (Å),  c= 3.826   (Å) 

Density 6.95 (g / cm3) 

Melting point 1630  (°C) 

Appearance White powder 

Crystal structure Rutile (tetragonal) 

Molecular weight 150.69 (g/mol) 

Type of conductivity n-type 
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systems [59].  

Cupric oxide (CuO) is an intrinsic p- type semiconductor with a band 

gap in the range of (1.2 -1.58) eV. The CuO has a C2/c monoclinic crystal 

structure as shown in Figure (1.9)  [60]. The unit cell of CuO comprises 

Cu+2 ions which are coordinated by four O-2 ions in an approximately square 

planar configuration. The abundance of its source material (Cu) together 

with other features such as low cost production, good thermal stability, and 

electrochemical properties make CuO a promising material in various 

applications. Furthermore, the iconicity of the Cu-O bands increases when 

the size of the material approached the nanodomain. This property 

combined with relatively large aspect ratio of CuO nanomaterials that is 

very attractive for applications such as gas sensing and catalyst for 

degradation of hazardous chemicals. Some of the important properties of 

CuO bulk material are given in Table (1.2). 

 

Figure 1.9: The lattice structure of CuO [61]. 
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              Table 1.2: The properties of CuO [62]. 

 

 

 

 

 

 

 

 

 

1.10 Thin Films   

The term "Thin Films" is used to describe a layer or several layers of 

atoms of a certain substance whose thickness ranges between (10 nm) and 

less than 1μm (1000 nm) [63]. Thin films technique is one of the most 

recent fully grown technologies that greatly contribute to develop the study 

of semiconductors and metals by giving a clear indication of their chemical 

and physical properties. The properties of thin films are usually different 

from those of the bulk because of the two dimensions nature of thin films. 

In bulk “three dimensions” the particles are under the influence of forces at 

all directions, while in thin films the forces act upon the particles at the 

surface only [64]. Thin films are first made by (Buser & Grove) in 1852 by 

using (Chemical Reaction) and later in 1857; the scientist (Farady) obtained 

a thin metal film by means of (Thermal Evaporation) [65]. Spray pyrolysis 

was first used commercially in 1947 as in U.S. patents registered for (H. A. 

McMaster and W. O. Lytle) to deposit conductive oxide films on heated 

glass substrate [66 , 67]. The film layer is deposited on certain plates chosen 

according to the nature of the study or the scientific need. Such plates could 

Lattice constants a = 0.468, b= 0.342 ,c= 
0.513  (nm)  

Density 6.31 (g / cm3) 

Melting point 1975  (°C) 

Crystal structure Monoclinic  

Appearance  Black Powder 

Molar mass 79.545 g/mol 

Type of conductivity p-type 
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be glass slides, silicon wafers, aluminum, quartz and others [63].  

There are already so many applications of thin films such as the 

electronic and optical applications. The applications of thin films in 

electronics have been grown steadily in importance during the last decades, 

because of their use in the electronic resistances, capacitances, transistors, 

integral circuits for digital computers and other electronic equipments. Thin 

films are also particularly important for their use in great number of optical 

fields such as the manufacturing of ordinary and thermal mirrors, mirrors 

for high reflectance, semitransparent reflection coating which are used in 

optical devices such as filters in solar cells, and non-absorbing materials 

which are used for interference phenomena [67]. 

1.11 Thin Films Deposition Techniques 

Thin films deposition techniques can be divided essentially into two 

main groups, namely, physical and chemical techniques [68, 69]. These 

techniques are shown in Figure (1.10).   

1.11.1 Spin Coating Technique  

      Spin coating is the most widely used deposition chemical technique for 

the development of organic or in organic sensing so far. Highly 

reproducible as well as very homogenous films can be deposited by this 

technique. Two forces are acting on the solution during spin coating; the 

adhesive forces at the solution substrate interface and the centrifugal forces 

resulting from the high-speed rotation. These two competing forces will 

result in a strong shearing action at the interface which causes the solution 

to form a thin film with controllable thickness, depending on angular 

velocity, solution concentration and viscosity [70]. To get homogeneous 

films, several different factors are important and have to be considered such 

as evaporation rate of the solvent, viscosity of the fluid, concentration of the 
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solution, angular velocity (rotating speed) and spinning time. 

Figure 1.10: Classification of thin film deposition techniques [69]. 
 

1.12 Previous Studies   

In (2004), Bubb et al. deposited conducting polyaniline thin films by 

a laser-based vaporization technique. The films have been characterized by 
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infrared spectroscopy, UV-Vis spectroscopy, four-point conductivity 

measurements, thermo gravimetric analysis, and fluorescence 

measurements. In addition, the films have been characterized with respect to 

their photoconductive response to 532nm laser light. It is found that the 

films exhibit persistent photoconductivity and it is proposed that defect base 

sequences may be responsible for the charge localization that results in such 

a photoconductive response [71]. 

In (2007), Geng et al. prepared a polyaniline (PAni)/SnO2 hybrid 

material by a hydrothermal method and the XRD pattern suggested that 

PAni did not modify the crystal structure of SnO2, but SnO2 affected the 

crystallization of PAni to some extent. The gas sensitivity of the PAni/SnO2 

hybrid was also studied to ethanol and acetone at operation temperatures of 

30, 60 and 90 oC. It was found that the PAni/SnO2 hybrid material had gas 

sensitivity only when operated at 60 and 90 oC, and it showed a linear 

relationship between the responses and the concentrations of ethanol and 

acetone at 90 oC [72]. 

In (2010), Abdolahi et al. prepared chemically polyaniline 

nanofibers by an interfacial polymerization. Ammonium persulfate, 

hydrochloric acid and chloroform were used as oxidant, dopant and organic 

solvent respectively. FESEM results show that polyaniline has nanofiber 

morphology. XRD results show the crystalline properties of polyaniline 

nanofiber, and FTIR results confirmed the formation of polyaniline in 

different monomer/oxidant molar ratios [73].  

In (2013), Sharma et al. fabricated ultrasonicated polyaniline (PAni) 

and tin oxide (SnO2) composite nanofibers using electro spinning technique 

for hydrogen gas sensing application. The morphology of non-woven 

nanofibres with highly porous and agglomerated structure of diameter 

around 300-500 nm was confirmed by SEM image. FTIR and UV-Vis 
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spectra revealed the possible incorporation of SnO2 in PAni and confirmed 

the uniform attachment of PAni on the surface of SnO2 nanostructures. 

XRD pattern showed the presence of tetragonal SnO2 and the crystalline 

structure of SnO2 was not affected with the incorporation of PAni. The as-

prepared nanofibers of PAni/SnO2 nanocomposite showed improved 

hydrogen sensing properties at very low temperature as compared to that of 

pristine SnO2 nanofibers [74]. 

In (2013), Jundale et al. prepared polyaniline (PAni) nanofibers 

reinforced with copper oxide (CuO) nanoparticles (NPs). The films were 

deposited on glass substrates by using spin coating technique. Polyaniline 

(PAni) have been synthesized by chemical oxidative polymerization method 

with monomer aniline in presence of (NH4)2S2O8 as an oxidant at 0 oC. The 

copper oxide (CuO) nanoparticles were synthesized by sol–gel method. 

Structural analysis showed that the crystal structure of CuO is not disturbed 

in the PAni–CuO hybrid nanocomposite. Surface morphology study shows 

the uniform distribution of CuO nanoparticles in PAni matrix. FTIR and 

UV–Vis studies confirm the presence of polyaniline in emeraldine base 

form in the composites and suggest incorporation of CuO in polymer. Two 

probe electrical resistivity measurements of nanocomposites (NCs) film 

revealed that the resistivity of PAni increases with increasing content of 

CuO NPs [75]. 

In (2013), Babu1 et al. synthesized conductive polyaniline  by 

doping with inorganic and organic acids, namely Hydrochloric acid (HCl) 

and ±10-camphor sulfonic acid (CSA). The direct current (DC) 

conductivities (σDC) were found to be about 9.5 × 10-8, 1.8, and 95.8 S/cm 

for PAni base, PAni (HCl) and PAni (CSA), respectively. σDC was measured 

down to a temperature of ~100 K and the apparent change in the activation 

energies were found to be 98.16, 74.40, and 57.24 meV for PAni base, PAni 
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(HCl) and PAni (CSA) respectively. σDC was less temperature dependent 

near room temperature, further decrease in temperature the σDC was strongly 

dependent. Photoluminescence (PL) peaks at 322.5, 581.4 and 644.2 nm 

were observed. [76]. 

In (2014), Bari et al. prepared nanocrystalline SnO2 thin films using 

sol-gel dip coating technique. The starting precursor was used as tin 

chloride dihydrate (SnCl2.2H2O), ethanol and glycerin. The prepared thin 

films showed good selectivity to H2 gas against LPG, CO2, CO, NH3, 

C2H5OH, Cl2 and H2S gases. It was found that the nanocrystalline SnO2 thin 

films gives maximum H2 gas response (S= 360) at 75 oC. The H2 sensor 

showed fast speed of response (TResponse=2s) and quick recover (TRecover= 8 

s). The conductivity of each sample was observed to be increasing with an 

increase in temperature range between 50 oC and 150 oC in steps of 25 oC 

[77]. 

In (2014), Ate et al. synthesized CuO nanowires by thermal oxidation 

method. Ultrafast with high-performance CuO nanowires UV/IR 

photodetectors was fabricated using CuO nanowires photodetector with 

platinum (Pt) contact electrodes and its optoelectronic properties were 

examined. The results of the UV/IR photodetector exhibited a high 

sensitivity to UV 390 nm, Blue 410 nm ultraviolet light and 850 nm, 940 

nm infrared light. The response and recovery time were also fast [78]. 

In (2015), Zhu et al. synthesized three new polyaniline (PAni) 

micro/nanostructures featuring square nanosheets, microspheres and micro 

disks via hydrothermal method. Uniform sizes and thickness of highly 

crystalline PAni square structural nanosheets could be tuned by the 

oxidative polymerization in the presence of cetyltrimethylammonium 

bromide (CTAB) as a template. Mechanistic studies indicate that 

concentrations of aniline and CTAB, reaction temperature and time had 
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great influence on the morphology of PAni polymers. Particularly, CTAB 

was essential to determine the morphology of synthetic PAni. In aqueous 

solution at extremely high temperature and pressure, CTAB provided 

various self-assembly of micelles, such as spherical micelle, planar bilayer, 

and lamellar phase, in which corresponding micro/nanostructures were 

formed. This hydrothermal fabrication gave an excellent example for the 

preparation of well-defined two-dimensional PAni micro/nanomaterials and 

potentially for other synthetic polymers [79]. 

In (2015), Thenmozhi et al. synthesized SnO2 nanoparticles by 

microwave assisted solution method using SnCl2·2H2O as a precursor. 

Polyaniline doped tin oxide (PAni/ SnO2) nanoparticles were prepared by an 

in situe polymerization of aniline in the presence of as-synthesized SnO2 

nanoparticles. The X-ray analysis showed that the obtained nanoparticles 

were SnO2 and its crystallite size was in the range of 10-21 nm and for PAni 

doped SnO2 nanoparticles, SEM micrographs indicated the presence of tin 

oxide nanoparticles in the PAni matrix [80]. 

In (2015), Sharma et al. synthesized and characterized polyaniline 

and aluminum doped tin oxide (SnO2:Al/PAni) nanofibers for hydrogen gas 

sensing application. SnO2:Al/PAni composite nanofibers had been 

fabricated via electrospinning technique and subsequent calcination 

procedure. SEM revealed the nanofibers with the diameter around 200-300 

nm formed a non-woven material with highly porous and agglomerated 

structure. FTIR and UV-Vis spectra revealed the possible incorporation of 

SnO2:Al in PAni and confirmed the uniform attachment of PAni on the 

surface of SnO2:Al nanostructures. XRD showed peak broadening and the 

peak positions shift from standard values, indicating presence of aluminum 

doped tin oxide in nanoparticles form in the polyaniline (PAni) matrix. On 

exposure to hydrogen gas (1000 ppm), it was found that the nanofibers of 
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SnO2:Al/PAni composite showed high sensitivity at 48 oC with relatively 

faster response/recovery as compared to pure SnO2 and Al doped SnO2 

nanofibers [81]. 

In (2015), Tomar et al. prepared polyaniline (PAni) doped SnO2 thin 

films sensors by chemical route and studied their properties towards the 

trace level detection of NO2 gas. A good correlation had been identified 

between the microstructural and gas sensing properties of these prepared 

sensors. Out of those films, 1% PAni doped SnO2 sensor showed high 

sensitivity towards NO2 gas along with a sensitivity of 3.01×102 at 40 oC for 

10 ppm of gas. On exposure to NO2 gas, resistance of all sensors increased 

to a large extent, even greater than three orders of magnitude. These 

changes in resistance upon removal of NO2 gas were found to be reversible 

in nature and the prepared composite film sensors showed good sensitivity 

with relatively faster response/recovery speeds [82]. 

In (2014), Murugan et al. prepared polyaniline-SnO2 (PAni-SnO2) 

hybrid materials with varied SnO2 content by chemical oxidative 

polymerization method. The prepared materials were characterized by 

FTIR, XRD and SEM analyses. Sensitivity of the materials towards toluene 

was measured at room temperature from their conductivity change. The 

PAni-SnO2 composite with 40 wt. % SnO2 exhibited highest sensitivity. In 

situ synthesis enhanced the sensitivity of the materials over their physical 

mixture. This might be due to the formation of higher number of p-n 

heterojunctions during in situe synthesis [83]. 

In (2015), Ashokan et al. polyaniline was synthesized by chemical 

oxidized method and preparation of CuO nanoparticles using ethanol 

solvents by sol-gel route. The prepared composite samples are equal ratio of 

PANI/CuO (1:1) were dissolved in m-cresol solvent and were coated on 

glass substrate by nebulizer spray pyrolysis technique at different 
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temperature (100˚C, 150˚C and 200˚C).  XRD study confirms the crystalline 

nature of CuO peaks and shows the CuO interaction with PAni structure. 

The SEM study shows glouber and granular particles on the surface of 

PAni/CuO films. FTIR spectrum reveals that the intensity of peak is 

increased with the increasing temperature of the sample [84].  

In (2015), Nadaf and Venkatesh. synthesized PAni-CuO 

nanocomposites by oxidative polymerization. The XRD pattern shows that 

the crystallization process changes with different weight percentage CuO. 

The degree of crystallinity increased in PAni-CuO nanocomposites with 

increase in weight percentage of CuO nanoparticles and clearly indicated 

the homogeneous distributions of nanoparticles in the polymer matrix. 

Morphology analysis of all the samples was done with help of SEM images 

[85]. 

In (2016), Bhagwat et al. synthesized (PAni) nanofibers by a facile 

rapid oxidative polymerization of aniline hydrochloride and ammonium 

persulfate at high temperature (60 oC). The XRD analysis ascertained the 

formation of PAni with nanocrystalline nature which showed three sharp 

peaks at 2 = 15.14o, 19.36o, 24.48o, which corresponds to (011), (020) and 

(200) crystal planes of PAni, and average crystallite size 30 nm. FTIR 

pattern confirmed the formation of PAni. SEM analysis had revealed 

homogeneous fibrous morphology of PAni nanofibers, a well formed mesh 

of interconnected and entangled PAni nanofibers over the scanned area. The 

UV-Vis spectroscopic analysis showed three major absorption peaks at 

256.73, 361.17 and 480.95 nm which confirmed the PAni formation with 

conducting state [86]. 

In (2016), Talegaonkar and Patil. prepared nanocomposites of 

PAni-SnO2 with three different molar concentrations of SnO2 using in situe 

oxidative polymerization of aniline in presence of SnO2. UV-Visible 
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spectroscopy of prepared samples of PAni-SnO2 revealed emraldine salt 

phase of polyaniline. XRD patterns reflect the nano crystallite size of PAni-

SnO2 composite. Transmission electron microscopic study confirms the 

nano-sized of prepared composite samples. Scanning Electron Microscopy 

of nanocomposite showed change in surface morphology with the variation 

in concentration of SnO2. PAni-SnO2 (0.25 M) nanocomposite exhibit a 

response to CO2 at quit higher temperature. The effects of surface 

microstructure with variation in SnO2 concentrations and surface activation 

with CuO on the sensor response, selectivity, recovery and long term 

durability of the sensor in the presence of NH3 and other gases were studied 

and discussed. SnO2 loaded PAni was outstanding in promoting the NH3 gas 

sensing performance of the material. CuO as an activator in PAni-SnO2 

enhanced ammonia sensing performance of the prepared sensor samples at 

room temperature [87]. 

In (2016) Nadaf et al. synthesized Tin Oxide (SnO2) nanoparticles by 

co-precipitation method. Aniline was polymerized in the suspension of 

SnO2. Ammonium per sulphate was used as oxidizing reagent to form 

organic-inorganic nanocomposite materials. By this way SnO2 nanoparticles 

were embedded in PAni matrix. SEM images revealed that the as-

synthesized powders contained spherical particles and SnO2 was uniformly 

mixed within PAni matrix. As-synthesized PAni – SnO2 nanocomposites 

had been tested for gas sensing applications [88]. 

In (2016), Talwar. synthesized PAni-SnO2 nanocomposites through 

chemical polymerization method. PAni-SnO2 nanocomposites were 

explored for ammonia gas sensing at room temperature. These composites 

exhibited excellent sensor response for ammonia gas, where optimum 

sensor response was observed with the PAni-SnO2 composite having 20 wt. 

% SnO2 [89]. 
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In (2017), Sathiya et al. synthesize copper oxide nanoparticles from 

various concentrations of CuCl2.2H2O (0.1 M - 0.5 M) precursors by using 

microwave assisted co-precipitation method. Both CuO and Cu2O phases 

were observed from X-ray diffraction (XRD). The particle size of 43 to 27 

nm determined from XRD data using Scherrer’s formula was in good 

relation . The existence of reasonably uniform size and shape was clear 

from SEM. The band gap was determined from the UV-Vis absorption 

peaks. These results were also related to electrical conductivity at low 

temperatures which illustrate different types of conduction mechanisms. 

The samples showed semiconducting behavior with improved electrical 

conductivity. Finally, the material was proposed to have applications in 

designing gas sensors and also in regulating electrical conductivity in drug 

delivery systems [90]. 

In (2017),  Souzaa  et al.  prepared  a hybrid nanocomposite based on 

a polymer matrix constituted of Polyaniline Emeraldine-salt form  (PAni-

ES) reinforced by copper oxide II (CuO) particles by polymerization 

method. XRD technique allowed the visualization of the polymer  

amorphization in the nanocomposite form, suggesting an interaction 

between both phases. The FTIR spectra confirmed this molecular 

interaction due to the blue shift of the characteristic  absorption peaks of 

PANI-ES in the nanocomposite form. SEM images revealed that the 

polymer  nanofiber morphology was no longer observed in the 

nanocomposite. The CuO spherical particles  are randomly dispersed in the 

polymer matrix. The electrical conductivity showed an increase of 60% in 

the nanocomposite material [91]. 

In (2018), Esmaeeli et al. copper oxide- polyaniline nanofiber 

modified fluorine doped tin oxide (CuO/ PAni NFs/FTO) electrode is 

introduced as a non-enzymatic glucose sensor. PAni NFs were polymerized 
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by a chemical method and through a cellulose ester membrane. These fibers 

were dip coated on FTO and then CuO particles were deposited on PAni 

NFs by the electrode position method (CuO/ PAni NFs). The SEM image of 

Polyaniline clearly indicates that the polymer possesses nanofiber like 

structure According to the XRD pattern of PAni NFs , a broad peak at 2θ  

20° is related to the amorphous structure of PAni and the peaks at 26, 37, 

42, 51, 61 and 66° are related to (110), (111), (200), (211), (220) and (310) 

miller indices of CuO crystal [92].  

1.13 Objectives of the study  

1- Synthesis of polyaniline and metal oxides (tin oxide (SnO2) and copper 

oxide (CuO)) nanostructures by using hydrothermal technique.  

2- Preparation of PAni, SnO2 and CuO thin films, and their  composites with  

SnO2 and CuO thin films by spin coating technique. 

3- Study of the mixing effect on structure, optical and electrical properties 

of Inorganic – Polyaniline. 

4- Evaluation of the use of PAni, SnO2 and CuO, nanostructure composites 

of  PAni/SnO2 and PAni/CuO thin films in some optoelectronic applications 

such as photoconductive detector and gas sensing. 


