Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

"ADOPTION BUILDING INFORMATION MODELING BIM TECHNOLOGY TO COMPARE METHODS OF COMMUNICATION BETWEEN THE DESIGN AND IMPLEMENTATION ENTITIES IN CONSTRUCTION PROJECTS"

A Thesis Submitted to Council of College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

Zainab Anwar Abd Al–Kareem BSC . Civil Engineering , 2011

Supervisors by

Ass . Prof. Hafidh Ibrahim Naji Ass . Prof. Wadhah Amer Hatem

September, 2016 IRAQ Thul-Hijjah, 1437

Supervisors Certification

We certify that this thesis entitled "Adoption Building Information Modeling (BIM)Technology To Compare Methods Of Communication Between the Design and Implementation Entities In Construction Projects" presented by "Zainab Anwar Abd Al-Kareem" was prepared under our supervision in the Civil Engineering Department ,University of Diyala , in partial Fulfillment of the Requirement for Degree of Master of Science in Civil Engineering .

Signature:

Ass . Prof. Dr. Hafedh, I. Naji

Supervisor

Date: 28 / 3 / 2017

Signature:

Ass . Prof. Dr. Wadhah A. Hatem

Co- Supervisor

Date: 24/3/2017

In view of the available recommendation, we forward this thesis for debate by the Examining Committee.

Signature:

Name : Asst . Prof. Dr. Hafedh I. Naji

Title: Chairman of Civil Engineering Department

Address: University of Diyala

Date: 28/3/2017

Scientific Amendment

I certify that this thesis entitled "Adoption Building Information Modeling (BIM)Technology To Compare Methods Of Communication Between the Design and Implementation Entities In Construction Projects" presented by "Zainab Anwar Abd Al-Kareem" has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature:

Name: Asst. Prof. Dr. Ali Jabbar Kadhim

Title: Assistant Professor

Address: University of AL-Mustansiriyah - College Of Engineering

Date: 5 / 4/2017

Linguistic Amendment

I certify that this thesis entitled "Adoption Building Information Modeling (BIM) Technology To Compare Methods Of Communication Between The Design and Implementation Entities In Construction Projects "presented by "Zainab Anwar Abd Al-Kareem "has been corrected linguistically, therefore, it is suitable for debate by examining committee.

Signature:

Name: Inst. Muna Haseeb Hwayed

Title: Asst. Prof in English Language Department

Address: University Of Diyala - College of Education for Human Sciences

Date: 5,4 /April/ 2017

COMMITTEE DECISION

We certify that we have read the dissertation titled (Adoption Building Information Modeling (BIM) Technology to Compare Methods of Communication Between the Design and Implementation Entities in Construction Projects) and we have examined the student (Zainab Anwar Abd- Alkareem) in its content and what is related with it, and in our opinion it is adequate as a dissertation for the Degree of Master of Science in Civil Engineering.

Examination Committee	Signature
Assist. Prof . Dr.Hafedh I. Naji (Supervisor)	Jan 1
Assist. Prof Dr. Wadhah A. Hatem (Supervisor	
Assist. Prof Dr. Abass M. Abed (Member)	3386
Assist. Prof Dr .Abd-Al Rahman A. Ibrahim(M	(ember).All.L.
Prof Dr. Waleed M. khamas (Chairman) .WA	14

The dissertation was ratified at the Council of College of Engineering / University of Diyala

Signature: Alshi Monem A. Kurin

Name: Prof. Dr. Abdul Monem Abbas Karim

Dean of College Engineering / University of Diyala

Date: 4/4/2017

Dedication

To my father

To the women who always support me.

.....My mother.

To my brothers.

With my love and respect.

Eng. Zainab

Acknowledgments

I would like to express my thanks and gratitude to my supervisors, Dr. Wadhah Amer and Dr. Hafdh Ibrahem for their (great) help, support and guidance throughout the steps of the research.

I am truly grateful to Engineers Kellan Mohammed ,Mohamad Qassem and Noor A. Hassan to their effort that was done for me.

I would like to thank the Civil Engineering Department and engineering college staffs for the facilities provided to me.

I would like to thank all my friends and the volunteers who participated in my experimental work. Finally, I want to express my apology to anyone meight forget.

ABSTRACT

" COMPARING THE COMMUNICATION METHODS IN IRAQ CONSTRUCTION PROJECTS DURING THE IMPLLEMENTATION STAGE"

Construction projects distributed in many places, varity of work type, have multi disciplines these have big effect on communication management, therefore this research studies the ability to use advanced communicative tools such as computer mediated communication (CMC) instead of traditional communication face to face (FTF). Revit application which is based on BIM technology have been used and it helps in exchanging design information between the designer and the site engineer for rapidity in making decisions, solving problems ,reducing wasted time and reducing the expenses that are spent as a result of the use of FTF communication . The results which were concluded from this research are that communicative quantity in FTF was more than in CMC ,but it is indicating that communication in CMC might be more productive than communication in FTF.In addition, the working time in CMC was slightly higher than in FTF. This indicates that CMC was slightly more productive than FTF. Wasted time for FTF consistently is higher than wasted time in CMC and this is because FTF was easier than CMC in terms of social speech. To identify the degree of collaboration between users two methods were used so the the total number of exchanges CMC was higher than in FTF because most persons were having more interaction when they used CMC. Moreover, the cumulative productivity in CMC was higher than of FTF and this indicates that CMC communication provides agood environment for collaborative work which ,in turn ,it increases team, also researcher study relation between team productivity and communication parameters ,there is a strong correlation factor between team

productivity and total number of work related words in both FTF and CMC for each time interval and this relation was negative in FTF while positive in CMC for 16 experiments. For number of exchanges which consider is a measure of the degree of collaboration, the correlation was strong between productivity and number of exchange in both communication techniques. Finally team productivity was a negative relationship with wasted time and positive with working time.

TABLE OF CONTENTS

Declaration	
Acknowledgements	
Abstract	
Table of Contents	
List of Tables	
List of Figures	
Abbreviations and Symbols	
Chapter I:Introduction pag	ge
Introduction	1
Research Justifications	2
Research Objectives	2
Strengths & Limitations.	3
Outline of the Thesis.	4
Chapter II: Literature Review pag	ţe
2.1 introduction5	
2.2 Communication in Construction Industry6	
2.2.1 Definition of Communication	
2.2.2 Role of Effective Communication in Project Success	
2.2.3 Lines of Communication)
2.3 Collaboration in the Construction Industry	,
2.3.1 Definition of Collaboration in the Construction Industry	
2.3.2 Collaboration's Effect on Construction Project	
2.4 The Team	
2.4.1 Team in the Construction Industry 15	

2.4.2 Types of Teams in Construction	17
2.4.3 Benefit of Team	18
2.5 Virtual Team and Face To Face Teams	19
2.5.1What Is Virtual Team?	19
2.5.2 Computer-Mediated Communication (CMC) Teams	21
Versus Face To Face Teams	
2.6 Productivity	24
2.6.1 Team productivity	24
2.6.2.Effect Factors on Team Productivity	26
2.6.2.1.Commitment	26
2.6.2.2.Team Leadership	26
2.6.2.3. Team Composition	28
2.6.2.4.Team Experience	30
2.6.2.5.Communication	31
2.6.2.6.Team Familiarity	31
2.6.2.7.Team Member Emotions	33
2.6.2.8. Working Time and Wasting Time	34
2.6.3. Productivity Measurement	35
2.6.3.1. Work Sampling Technique	35
2.6.3 .2. Five - Minute Rating Technique	36
2.6.3 .3. Craftsman Questionnaire (CQ)	37
2.6.3 .4. Time-Lapse Photography or Video Recording	37
2.6.3 .5.Measuring Productivity Using Project Milestones	38
2.7 Building Information Model (BIM)	38
2.7.1 Origins of the BIM	38

2.7.2 Definitions of Building Information Models	39
2.7.3 Enhancing Communication in Construction Industry	40
Through BIM	
2.7.4 Main Application of BIM in the AEC Industry	43
2.7.5 The Barriers Implement BIM	44
2.7.6 Collaboration Software	46
Chapter III: Research Methodology	Page
3.1 Introduction	49
3.2.Research Methodology	50
3.3 Experiments, Requirements and Challenges	51
3.3.1 User Teams	52
3.3.2 The Model and Documents	54
3.3.3 The Tasks	56
3.3.4 Hardware and Software	59
3. 4 Procedure for Experiments	60
3.4.1 Recording the Experiments	62
3.4.2 The Transcription Extract	63
3.4.3 Analysis of the Results	65
3.4.4 Statistical Analysis of the Results	66
3.5 Worksharing in Revit	68
3.5.1 Enable Worksharing	68
3.5.2 Major Consideration in Choosing Revit	74
Chapter IV: Results and Disscusion	Page
4.1 Introduction	76
4.2 Total Number of Words	77

4.2.1 Total Words for User1 and User2 in FTF and CMC	79
4.2.2 Total Number of Work Related Words (TNWRWs)	81
4.2.3 Non-work Related Words(TNN-WRWs)	83
4.3 Working Time	85
4.4 Wasted Time	88
4.5 Undefined Time	90
4.6 The Number of Exchanges	91
4.7 Speech Rate	93
4.8 Productivity	94
4.9 Team Productivity	96
4.10The Relationship Between Teams' Productivity in FTF	98
CMC and Communication Parameters	
4.10.1 Team Productivity and the Total Number of	98
Work Related Words	
4.10.2 Team Productivity and the Number of Exchanges	101
4.10.3 Team Productivity and Working Time in FTF and CMC	103
4.10.4 Team Productivity and Wasted Time in FTF and CMC	105
Chapter V:Conclusions and Recommendations	page
5.1 Introduction	107
5.2 Summary of Conclusions	107
5.3 Recommendations of the Industry	109
5.4 Recommendation for future work	110
References	111
Appendex	

LIST OF TABLES

2.1	The Formalities Dimensions of Communication	12
2.2	Common criteria of virtual team	20
2.3	(CMC) and traditional teams	22
2.4	classifying physical teams versus (CMC) teams	22
3.1	Type of team according to level of expertise	53
3.2	Transcription extract	63
3.3	Frequency of positive estimates of the correlation	67
	coefficients*	
4.1	Statistical analysis of Total number of words	78
4.2	Statistical analysis of Number of words related work	81
4.3	Statistical Analysis of Non-Work Related Words	83
4.4	Statistical Analysis For Working Time	86
4.5	Statically Analysis For Wasting Time	88
4.6	Statically Analysis For the Number of Exchanges	92
4.9	Team Productivity and the Type of Teams in FTF and CMC	97
4.10	Averages of Team Productivity in FTF and CMC	98

LIST OF FIGURES

Figure .No	Figure Title	Page no.
2.1	Organizations that Communicate more effectively have more Successful Projects	10
2.2	Benefit of Team	18
2.3	Factors Influencing Team Familiarity and Those which Get Influenced by it	33
2.4	Doing BIM" Properly Involves Getting Process, Technology And Culture Right	40
2.5	The Interrelationship Of The Four Concepts That Form The Basis Of Human Action And Interaction	42
2.6	Challenges to BIM Adoption	45
2.7	Barriers of Using BIM	46
2.8	Collabration Working Using BIM software	47
3.1	Research Methodology	51
3.2	Culture Center Appendex model	55
3.3	Window Of Workset In Revit	56
3.4	Details Floor in Revit	56
3.5	Show Request License Between Users	58
3.6	Showing System Using in this Research	60
3.7	An FTF Experiment	61
3.8	An CMC Experiment	61
3.9	Merged Files in FTF	62
3.10	Merged Files in CMC	63
3.11	Worksharing Windows	68
3.12	Steps to Creat Local File	71
3.13	Create New Worksets	72
3.14	Adding Elements To a Workset	73
3.15	Borrowing or Workset Ownership	74
4.1	Total Number Of Words in FTF And CMC	79
4.2	Total Number Of Words Said By Users in FTF	79
4.3	Total Number Of Words Said By Users in CMC	79
4.4	The Total Number Of Work Related Words	82
4.5	Non-Work Related Words in FTF And CMC	89
4.6	Working Time in FTF And CMC	86
4.7	Working Time Spent by Users in FTF	87
4.8	Working Time Spent by Users in CMC	87
4.9	Waste Time in FTF and CMC	89
4.10	Wasted Time Spent By Users In FTF	90
4.11	Wasted Time Spent by Users in CMC	90
4.12	Undefined Time In FTF And CMC	91
4.13	Total Number Of Exchanges In FTF And CM C	93
4.14	Speech Rate For Users in FTF	94

4.15	Speech Rate For Users in CMC	94
4.16	Productivity and Cumulative Productivity In FTF and CMC	96
4.17	Team Productivity and Number Of Work Related Words in FTF	99
4.18	Team Productivity and Number Of Work Related Words In CMC	99
4.19	Percentages Of Work Related Words and Team Productivity in FTF And CMC	100
4.20	Team Productivity and Number Of Exchanges In FTF	101
4.21	Team Productivity and Number Of Exchanges In CMC	101
4.22	Team Productivity and The Number Of Exchanges in FTF And CMC	102
4.23	Team Productivity and Working Time in FTF	103
4.24	Team Productivity and Working Time in CMC	103
4.25	Team Productivity and Working Time in FTF And CMC	104
4.26	Team Productivity and Wasted Time in CMC	105
4.27	Team Productivity and Wasted Time in FTF	105
4.28	Team Productivity and Wasted Time in FTF And CMC	106

ABBREVIATIONS and SYMBOLS

AEC Architecture engineering and construction

BDS Building Description System

BIM Building Information Modeling

CMC Computer mediated communication

CSCW Computer support collaboration work

 \overline{D} The mean difference score

EI Emotional Intelligence

FTF Face to face meeting

ICT Information communication technology

NOE Number Of Exchanges

ROI Return-on-Investment

RFIs Request For Information

S_D standard deviation of the difference scores.

TNOWs Total Number of Words

TNWRWs Total Number of Work Related Words

TNN-WRWs Total Number of non Work Related words

VOIP Voice Over Internet Protocol

VT Virtual team

VR Virtual reality

WT Working Time

•

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Construction industry has been characterized by uncertainty, and adversarial attitudes for a long time because luck of expertise, professional skills, educational background, computer acquaintance, and working environment among the project participants. All these impede the information administration and communication of the project team. Also, the productive environment (construction work site) is often remotely managed by designers' office which has a big effect on the accomplishment of a complete design and construction. Which would lead to additional effort of information management and communication process between project manager and design teams, and also it leads to a difficult access to project information by project participants in construction sites (Arayici, et al ,2012).

For eliminating which obstacle, it is necessary to develop the collaboration and interaction between stackholders.

This research contributes in making a best understanding of the issues related to information flow management when using centralized platforms. It will permit us to demonstrate the degree of usefulness and practicality of BIM (Building Information Modeling) as technologies and processes which are considered the best solution for poor information management processes within the construction project network (Azouz et al., 2014). The research adopted resolving problem task which is related by arriving at the best solution when designers collaborate with site engineers through using two forms of communication models face to face

(FTF) and computer mediated communication (CMC). Autodesk Revit Architecture version 2015 has been used in this research which has many advantages to make people who are geographically distributed in different areas and sites collaborate.

1.2 Research Justifications

- Construction projects distributed in many places, varity of work type, have multi disciplines, therefore this research studies the ability to use computer mediated communication instead of traditional communication.
- This study is very important in Diyala governorate because of security issues and the difficulty of making traditional meetings between designers and site engineers.
- Inactive communication administration framework in building projects in Iraq.
- Poorly managed communication led to conflicts among parties, demotivated force, slowing down in the entire job, failure in work, rework and delay in making decisions.

1.3 Research Objectives

- Using BIM as a means of communication in CMC and compare it with FTF, using BIM will improve the control of the project during the implementation stage and reduce the travelling cost.
- Investigate the indirect cost of the project, maintaining the duration of the project constantly without delay, as well as maintaining the quality of the work during implementation.

• Measuring the amount of collaboration, team productivity in each method and illustrating the method which has been got a high score in productivity aspect.

1-4 Strengths & Limitations

- This study has several notable points of strength like:
- The research will measure the amount of the communication occurred between users in FTF and CMC. This amount is represented by the total number of words.
- The research will found out which method has more working time and wasted time.
- The research will Measure degree of collaboration between users in two methods which are represented by number of exchanges.
- The research will Measure productivity in each method and study the relationship between team productivity and many elements such as work related words, the number of exchanges, working time and wasted time and showing which method would give strong or weak relation with these elements.

As with all research, this study has many limitations such as:

- Experiments that have conducted among users in different directorates, but each experiment was done in one building in different rooms because of the difficulty of controlling the team by the researcher in two places which are far geographically distributed specially that teams are not familiar with Revit.
- The researcher can conduct 16 experiments only, because of the difficulty in obtaining volunteers who could not spend more than an hour

working with us and the difficult travelling with three laptops and two stands to install cameras.

• It was difficult to train people how work in Revit because some of them do not have any idea about using Revit so the researcher gave them a short course in Revit to make them use this software and this was very hard and costed more time.

1-5 Outline of the Thesis

Abstract of the contents of the next chapters is as follows: -

- > Chapter one contains introduction, research justifications, research objectives, strengths and limitations.
- Chapter two contains details about the literature review for this study and the important previous studies in this field.
- Chapter three includes the research methodology used in this study and illustrated the requirements needed for the experiments, illustrated context implementation of the experiments. Also ,it dealt with explaining what is needed in the experiments, and classification and analysis of the results. Finally, major consideration of using Revit in this research
- Chapter four contains results which have been obtained of conducting the two methods: the total number of work and non work related words which represented the communication quantity between users: working time, wasting time and undefined time in the two methods; number of exchanges which show which method that has a high degree of collaboration team productivity in each method and the relationship between the team productivity and many other elements such as work related words, number of exchanges, working time and wasted time and showing which method gave strong or weak relation with these elements.
- Chapter five includes conclusions which we got of the research and recommendations for future studies.