Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

Evaluation of Himeran Reservoir Sedimentation by Using HEC-HMS Software

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

By

Yousif Wathiq Ameen

BSc. Civil Engineering, 2014

Supervisor by

Prof. Dr. Thair H. Abdullah Al-Jubouri

Assist. Prof. Dr. Qassem H. Jalut

RAQ	1439
	RAQ

Acknowledgment

Foremost, I would like to express my sincere gratitude to my advisors DR. Thair H. Abdullah and Dr. Qassem H. Jalut for the continuous support of my MSc study and research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisors for my MSc study. I Like to thank our teachers in the Department of Civil Engineering for their effort throughout the duration of my studies. My thanks and gratitude to the Deanship of Engineering College for all facilities provided, Also, I should not forget the Ministry of Water Resources' thanks to the Center for Studies and Engineering Design for providing the required data. Last but not least, I would like to thank my family and my friends who supported me and gave me confidence during the period of my studies.

Evaluation of Himeran Reservoir Sedimentation by Using HEC-HMS Software

By

Yousif W. Ameen

Supervisor by

Co-supervisor by

Prof. Dr. Thair H. Abdullah AL-Jubouri Assist prof. Dr. Qassem H. Jalut

ABSTRACT

Hemrin dam is an important dam located on the course of the Divala river. The sediment problem has greatly effect on Hemrin dam and its reservoir. Simulation for sediment entering and deposition in Hemrin reservoir was done using Hydraulic Engineering Center-Hydrologic Modeling System (HEC-HMS 4.1 software). Several input data were used for simulation such as precipitation data for the basin, watershed characteristic, geometric boundary for Diyala river and Hemrin reservoir and water release from Hemrin reservoir. The calibration processes for the model was done by using field measurement data for water discharge from Diyala river and good agreement was reached. The adopted period for simulation was 34 years started from 1981 up to 2014 and the result obtained show that the average annual sediment discharge load to Hemrin reservoir is $(3.43 \times 10^6 \text{ ton})$ while the average annual sediment deposited is $(3.25 \times 10^6 \text{ ton})$, the results show that the peak sediment discharge load occurred in November 1984. The simulation suggest that about 49.5% of mass of sediment deposited as clay while the all sediment load out from reservoir as clay. While the silt formed 40.3% of mass of sediment deposited while the sand and gravel are 8.9% and 1.3% respectively. The results prove that there is a strong link between precipitation depth in the basin and sediment entering to Hemrin reservoir. The sensitivity analysis was done by using cover factor and soil erodibility factor for sub basins in the watershed and this processes show that these two factor have large effect on sediment entering and deposition in Hemrin reservoir.

TABLE OF CONTENT

SUBJECT	PAGE
Acknowledgment	Ι
Abstract	II
Table of content	III
List of tables	V
List of figures	VII
List of symbols	IX
Chapter I: Introduction	
1.1 General	1
1.2 Sedimentation in Reservoirs	2
1.3 Statement of problem	3
1.4 Objective	3
1.5 Methodology	3
1.6 HEC – HMS	3
1.7 Thesis Layout	4
Chapter II: Basic concept and literature review	
2.1 Introduction	5
2.2 Trap efficiency	5
2.3 Prediction methods of reservoir sedimentation	7
2.3.1 Empirical methods	7
2.3.2 Mathematical models for sedimentation	8
2.3.3 Physical surveying	15
2.4 Summary	16
Chapter III: Theoretical analysis and model development	
3.1 Introduction	17
3.2 Soil Conservation Service Unit Hydrograph Model	18
3.2.1 Basic concept and equation	18
3.3 Erosion methods	19
3.4 Fall velocity method	20
3.5 Muskingum – cunge model	21
3.6 Sediment transport in reach	22
3.6.1 Sediment transport potential method	23

3.6.2 Engelund-Hansen	23
3.6.3 sediment continuity	24
3.7 Reservoir modeling	27
3.8 Chen sediment trap method	28
3.9 Limitation	29
3.10 Topographic Factor Calculation	30
Chapter IV: Hemrin reservoir and catchment area for Diyala River as	
case study	
4.1 Description of Himeran Dam and Reservoir	31
4.2 Description of the basin	33
4.2.1 Sirwan Subbasin	34
4.2.2 Tanjero Subbasin	35
4.2.3 Zinkan Subbasin	35
4.2.4 Diwana Subbasin	36
4.2.5 Abbassan Subbasin	37
4.2.6 Qarato Subbasin	38
4.2.7 Al- wand Subbasin	39
4.2.8 Niarin Subbasin	40
4.2.9 Kurdarah Subbasin	41
4.2 Climatic characteristic of Diyala river basin	43
Chapter V: Result and discussion	
5.1 Introduction	45
5.2 Input data	45
5.2.1 Input data for Subbasin element	47
5.2.2 Input data for reach element	50
5.2.3 Input data for reservoir element	55
5.3 Model Calibration	59
5.4 Results	60
5.5 Sensitivity analysis	70
Chapter VI: Summary, Conclusion and Recommendation	
6.1 Summary	85
6.2 Conclusion	85
6.3 Recommendations	87
References	88

LIST OF TABLES

Table No.	Table title	Page No.
4.1	Diyala river Sub basins	34
4.2	Morphometric characteristic for Diyala river Subbasin	42
4.3	Some climate characteristic for Diyala basin obtain from	
	Khanaqin meteorological station	44
5.1	Total monthly rainfall (mm) for the basin	46
5.2	Area of each Subbasin in Diyala basin	47
5.3	Value of erodibility factor (K) based on soil type and percent of	
	organic matter content	48
5.4	Actual topographic data for the Sub basins in Diyala basin	49
5.5	Topographic factor for each Subbasin	49
5.6	The geometric characteristic of Diyala river that used as input	
	data	51
5.7	Cross section of Diyala river at reach1	51
5.8	Cross section of Diyala river at reach2	52
5.9	Cross section of Diyala river at reach3	52
5.10	Cross section of Diyala river at reach4	53
5.11	Cross section of Diyala river at reach5	53
5.12	Manning roughness coefficient for different channel bed	55
5.13	Average monthly outflow (m^3/s) from Derbendikan reservoir	56
5.14	Average monthly outflow (m ³ /s) from Hemrin reservoir	58
5.15	Total monthly sediment load(ton) entering to Himeran reservoir	
	from Diyala river	62
5.16	Total monthly sediment load(ton) entering to Himeran reservoir	
	from Niarin and Kurdarah Subbasin	63
5.17	Total annual sediment load entering to Hemrin reservoir	64
5.18	Accumulated sediment in Himeran reservoir	65
5.19	Results of sediment deposited in Hemrin reservoir	68
5.20	The plan of parameter change in sensitivity analysis	70
5.21	Total monthly sediment(ton) entering to Himeran reservoir with	
	larger value of cover factor (1)	72

5.22	Total monthly sediment(ton) entering to Himeran reservoir with	73
	smaller value of cover factor (0.6)	
5.23	Total monthly sediment(ton) entering to Himeran reservoir with	
	larger value of erodibility factor(0.7)	78
5.24	Total monthly sediment(ton) entering to Himeran reservoir with	
	smaller value of erodibility factor(0.3)	79

LIST OF FIGURES

Figure No.	Figure title	Page No.
1.1	Longitudinal profile of reservoir bed	2
2.1	Reservoir trap efficiency	6
2.2	Trap efficiency of reservoir	6
2.3	Borland's ratio curve	8
	Comparison of the total bed load deposition rate obtained	
2.4	with the three different bed load equations for hypothetical	
	reservoir	9
2.5	Schematic of the river - reservoir system	10
3.1	Simulation flow chart	17
3.2	ScS unite hydrograph	19
3.3	Schematic of the control volume used by HEC-HMS for	
	sediment calculation	25
2.4	The calculated entrainment coefficients for range of control	
3.4	volume length to depth ratio	26
4.1	Relationship of elevation and surface area for Himeran	
	reservoir modified after operation manual	32
4.2	Himeran reservoir	32
4.3	Diyala river basin	33
4.4	Location and shape of Sirwan Subbasin	34
4.5	Location and shape of Tanjero Subbasin	35
4.6	Location and shape of zinkan Subbasin	36
4.7	Location and shape of Diwana Subbasin	37
4.8	Location and shape of Abbassan Subbasin	38
4.9	Location and shape of Qarato Subbasin	39
4.10	Location and shape of Wand Subbasin	40
4.11	Location and shape of Niarin Subbasin	41
4.12	Location and shape of Kurdarah Subbasin	42
5.1	Total annual rainfall for the Diyala basin	47
5.2	Size distribution curve of sediment load in Diyala basin	50
5.3	Reach Schematic for Diyala river	54

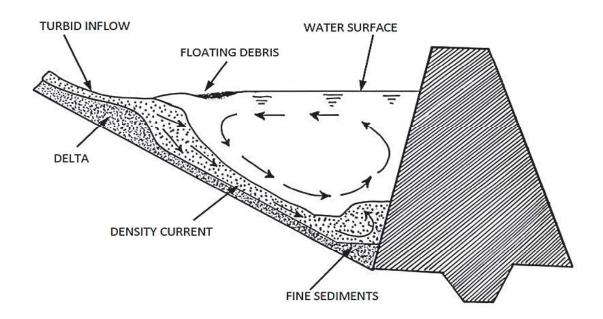
5.4	Bed gradation curve for Diyala river	55
5.5	Outflow from Derbendikan reservoir	57
5.5	Out flow from Himeran reservoir	57
5.7	Water discharge in Diyala river at reach 5	59
5.8	Compression between model and actual surface elevation in	
	Hemrin reservoir	60
5.9	Daily total sediment load entering to Himeran reservoir	61
5.10	Total annual sediment load entering to Himeran reservoir	64
5.11	Total sediment deposited in Himeran reservoir	65
5.12	Amount of clay deposited in Himeran reservoir	65
5.13	Amount of silt deposited in Himeran reservoir	66
5.14	Amount of sand deposited in Himeran reservoir	67
5.15	Amount of gravel deposited in Himeran reservoir	67
5.16	Daily sediment load out from Himeran reservoir	69
5.17	Daily sediment inflow to Himeran reservoir with different	
	value of cover factor	74
5.18	sediment deposited in Himeran reservoir with different value	
	cover factor	75
5.19	Daily sediment load out from Himeran reservoir with	
	different value of cover factor	76
5.20	Daily sediment inflow to Himeran reservoir with different	
	value of erodibility factor	80
5.21	Sediment deposited in Himeran reservoir with different	
	value of erodibility factor	81
5.22	Daily sediment load out from Himeran reservoir with	
	different value of Erodibility factor	82
5.23	Test size distribution curve for sediment load	83
5.24	Sediment deposited in Himeran reservoir with different size	
	distribution curve	84

List of symbols

Symbol	Definition	Dimension
А	watershed area	L^2
Ao	the area of reservoir	L^2
A_s	Surface area of reservoir	L^2
В	top width of the water surface	L
B_J	percentage of active layer composed of material grain class(j)	-
Ce	entrainment coefficient	-
C_{f}	cover and management factor	-
С	wave celerity	LT^{-1}
D	depth of water	L
d	particle diameter	L
d ₅₀	particle size of which 50% is smaller	L
gs	unit sediment transport capacity	MT^{-1}
Н	the reservoir depth at the dam	L
ho	depth to which the reservoir is completely filled with sediment	L
I _{avg}	average inflow during time interval	$L^{3}T^{-1}$
Κ	soil erodibility factor	-
L	length of control volume	L
LS	the topographic factor	-
М	channel width	L
n	number of grain classes	-
O_{avg}	average outflow during time interval	$L^{3}T^{-1}$
Р	the support practice factor	-
Q	in or out flow rate from reservoir	$L^{3}T^{-1}$
Qr	surface runoff volume	L^3
Q_s	transported sediment load	MT ⁻¹
q	water flow rate	$L^{2}T^{-1}$
q_{cr}	critical water flow rate	$L^{2}T^{-1}$
q_s	is bed load transport rate	$L^{2}T^{-1}$
q _{peak}	the peak runoff rate	$L^{2}T^{-1}$
So	Channel bed slope	-

S	specific gravity	-
S _d	sediment deposited in reservoir	М
\mathbf{s}_{i}	sediment inflow into the reservoir	MT ⁻¹
S _{sus}	suspended sediment in reservoir	MT^{-1}
Sout	sediment out from reservoir	MT ⁻¹
TE	Trap efficiency	-
T _C	total transport capacity	MT ⁻¹
T _P	the time of peak	Т
$T_{\rm J}$	the transport potential for each material grain class	MT ⁻¹
t_{lag}	the basin lag	Т
U_p	the unit hydrograph peak	$L^{2}T^{-1}$
V	average channel velocity	LT^{-1}
Vo	the sediment volume below new zero elevation of the dam	L^3
V_s	the sediment volume	L^3
V_{w}	water volume in reservoir	L^3
Δt	the excess precipitation duration	Т
ΔS	storage change	L^3
ω	particle fall velocity	LT^{-1}
V	kinematic viscosity	$L^{2}T^{-1}$
μ	hydraulic diffusivity	$L^{2}T^{-1}$
γ	unit weight of water	$ML^{-2}T^{-2}$
γ_s	unit weight of solid particles	$ML^{-2}T^{-2}$
$ au_o$	bed level shear stress	$ML^{-1}T^{-2}$
ŋ	channel elevation	L
λ_p	active layer porosity	ML ⁻³

CHAPTER ONE


INTRODUCTION

1.1 General

The sedimentation is result of erosion which occurs in watershed transported by with flow and deposited in the reservoir. Soil erosion outlined as the detachment of soil particles from soil mass. This procedure occurs because of some outside effect equivalent to wind, gravity and rainfall . The volume of soil eroded from the watershed depends on many factors that can summarized as fallow the characteristic of rainfall including amount and intensity, the type of soil in watershed ,land cover and topography , the size of soil particles and drainage networks characteristic such as size slop and shape (Yang, 2006). The transport of sediment means the movement of sediment particles. The basic mechanism responsible for the movement of particle is drag force exerted by water flow on individual grains (Henderson, 1966). The sediment particles usually have three modes of motion(rolling, saltating and suspended), the transport of particles by saltating and rolling is called bed load transport, while the suspended particles are transported as suspended load transport (Van Rijin, 1993). Deposition is the final stage of sedimentation process. When the river inter the reservoir the velocity of flow begins gradually to decrease and the solid particles will deposits . The volume of sediment that deposited in the reservoir depends on reservoirs trap efficiency which depends on particle size of sediment, the shape and size of reservoir and operation plan (Yang, 2006).

1.2 Sedimentation in Reservoirs

Sediment transport within the rivers and its accumulation in reservoirs has grown to be an essential challenge that as a rule must be considered. When water flows into the dam reservoir, it carries some amounts of sediments embedded within turbid inflow into the reservoir. These sediments will deposit along the bed of the dam reservoir as the water velocity is reduced. The longitudinal accumulation of sediments in a reservoir may be separated into three main zones depending on sediment characteristics, namely the zone of coarse sediments, delta, and fine sediments. As is conceptually illustrated in the Figure (1.1).

The longitudinal deposition along the bed profile and the settling patterns differ from one reservoir to another, as is affected by many factors such as geometrical shape of the reservoir, discharge conditions, flood events, size of sediment particles of the inflowing load, and operating conditions of the reservoir(Morris and Fan ,2010).

1.3 Statement of problem

Sediment is the principle problem which affects the useful life of reservoir, causing several problem such as reducing the storage capacity of reservoir, The sediment may deposit near the intake of hydro power and thus cause harm to hydropower system. The sediment accumulation will rise the bed elevation of reservoir and therefore loss flood control.

1.4 Objective

Evaluation of sedimentation in Himeran reservoir by simulating the sedimentation processes using HEC-HMS 4.1 software.

1.5 Methodology

- Collection of data from the study area
- Use HEC-HMS as model
- Model calibration and sensitivity analysis

1.6 HEC – HMS

HEC- HMS 4.1 is a computer program designed by US Army Corps of Engineers, the user for this program become able to do a simulation for precipitation – runoff process . One of the options in this model is sediment transport simulation which enable the user from routing the sediment in each element in the watershed including that the deposition in the reservoir(HEC-HMS user manual,2015).

1.7 Thesis Layout

Chapter one :- contain an introduction about reservoir sedimentation, the objective and methodology of the study and simple description for HEC-HMS 4.1 software.

- Chapter two:- is a literature review of investigation related to subject, important research focused on reservoir sedimentation and methods used for predicting reservoir sedimentation.
- Chapter three:- contain the theory, equation, assumptions and limitation used by the Hydrologic Engineering Center (HEC) for designing HEC-HMS 4.1 software.
- Chapter four:- is a description of the Diyala river basin and Himeran reservoir Which were used as case study.
- Chapter five:- show the model calibration, result obtained from simulation for sedimentation in Himeran reservoir and sensitivity analysis.
- Chapter six:- explain the conclusions that are reaches at from this study and some recommendations for future research work.