Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

ULTIMATE SHAFT RESISTANCE OF TENSION PILE IN GYPSEOUS SOILS

A Thesis Submitted to the Council of College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

By

Heba Qasim Hussain

Supervised by

Assist. Prof. Dr. Safa Hussain Abid-Awn

March,2018

IRAQ

Jumaada-ul-Akhir,1439

COMMITTEE DECISION

We certify that we have read the thesis entitled (Ultimate Shaft Resistance of Tension Pile in Gypseous Soils) and we have examined the student (Heba Qasim Hussain) in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

Examination Committee	Signature
Assist. Prof.Dr. Safa H. Abid-Awn, (Supervisor)	
Assist. Prof.Dr. Waad A. Zakaria, (Member)	
Assist. Prof.Dr. Jasim M. Abbas (Member)	••••
Assist. Prof.Dr. Mahmood R. Mahmood (Chairma	an)
Assist. Prof.Dr. Hafedh Ibrahim Naji,(Head of l	Department)
The thesis was ratified at the Council of College of Engin	eering /

University of Diyala.

Signature..... Name: Prof.Dr. Abdul Monem Abbas Karim Dean of College Engineering / University of Diyala

Date:

Scientific Amendment

I certify that this thesis entitled "Ultimate Shaft Resistance of Tension Pile in Gypseous Soils" presented by "**Heba Qasim Hussain**" has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature.....

Name: Assist prof.Dr. Mahdi Obaid Karkush Address: College of Engineering / University of Baghdad Date:

linguistic Amendment

I certify that this thesis entitled "Ultimate Shaft Resistance of Tension Pile in Gypseous Soils" presented by **"Heba Qasim Hussain"** has been corrected linguistically, therefore, it is suitable for debate by examining committee.

Signature.....

Name: Assist. Prof. Dr. Ayad Hameed Mahmood Address: University of Diyala / College of Education for Human Science Date:

Dedication

To my father, who put me in the correct road To my mother, the light of my eyes To whose love flows in my veins, and my heart remembers them, the air that I breathe...my brothers and sister To our honored teachers and professors who taught me letters of gold and words of jewel of the utmost and sweetest sentences in the whole knowledge. Who reworded me their knowledge simply and from their thoughts made a lighthouse which guides me through the knowledge and success path.

Acknowledgments

First, thanks are to *Allah* for all things which led me into the light during the critical time.

I would like to express my thanks and gratitude to the deanship of College of Engineering and to the Civil Engineering Department at Diyala University.

I would also like to express my thanks to my supervisor *Assist. Prof. Dr. Safa Hussain Abid-Awn* for supervising this thesis.

I would also like to express my thanks and gratitude to *Dr*. *Hassan Obaid* and *Mr. Abdullah Mohammed* for their help in carrying this study.

Very special thanks are due to Mr. *Qasim Ibrahim* for his help and support in the laboratory works.

Ultimate Shaft Resistance of Tension Pile in Gypseous Soils

By Heba Qasim Hussain Supervisor By Assist. Prof. Dr. Safa Hussain Abid-Awn ABSTRACT

Deep foundation such as piles adopt in case of weak soil or when type of soil in the site not capable to resists the external loadings from superstructure or collapsible soil. Types of external loads that the pile can sustain such as compression, tension or lateral load reflects on the design of pile and on the real behavior of soil-structure interaction. Many piles designed to resists compression loads only but in specific places such piles subjected to tension load due to lateral external loads such as wind or earthquake loadings. Another place that the piles subjected to tensile load is in case of the piles distributed under the towers, in this case not only sustain loads but also make the towers more stable.

Many researchers investigated the behavior of piles embedded in sand or clay and subjected to axial and lateral loads, but little studies concerned on the behavior of pile in collapsible soils such as gypseous soil. This type of soil has capable to support the external load from superstructure in case of dry condition due to the existence of gypsum which strengthens the soil structure. Many problems appear when water flows through its particles due to the dissolution of gypsum inside the soil skeleton. This dissolution leads to form cavities in the soil structure and this causes many problems such as settlement, tilting, etc. for the structures.

The present study concerned on the behavior of shaft resistance of tension pile in gypseous soils in both dry and soaking conditions to examine the effect of presence of water in the gypseous soil on the ultimate shaft resistance of pile. Many parameters are taken into account such as amount

Ι

of gypsum content (30%, 46%, and 66%), the slenderness ratio of pile L/D (10, 15, 20, and 25), pile type (steel solid pile with circular and square cross sections, steel pipe piles with open and closed ends, H-pile, timber pile, and concrete pile), pile diameter (1cm, 1.5cm, and 2cm). Also the pile shape (circular, square, and rectangular) and effect of time (2hr, 4hr, 1day and 7day after installation of pile). The test results reveals and showed that the shaft resistance of pile increases with the increase of gypsum content. When the gypsum content increases from 30% to 46%, the increase in the shaft resistance about 18%, and when the gypsum content increases from 46% to 66%, the shaft resistance increased about 35%, at the dry condition. In the soaking case, the shaft resistance of pile in gypseous soil with 66% gypsum content is found to be greater than that of others soils of 46% and 30% by about, 40% and 77% respectively. The increase in the slenderness ratio of the pile (L/D) from 20 to 25 leads to increase in the ultimate shaft resistance of pile about 70% and 84% in dry and soaking conditions respectively. The shaft resistance of steel solid pile with circular section was more than that of other types of pile. The increase of pile diameter from 1.5cm to 2cm in dry case leads to the decrease in the ultimate shaft resistance reaches 25%. While in the soaking case, when the pile diameter increases from 1.5cm to 2cm, the increase in the shaft resistance reaches 71%. In addition, the results shows that the ultimate shaft resistance of pile with rectangular section is more than that for piles with square and circular sections about 39% and 63% respectively in a dry condition, and about 29% and 39% respectively in soaking condition. The increase of time between the installation of pile and its test leads to decrease in the pile shaft resistance in both dry and soaking cases. When time increases from 2hr to 4hr, the decreases in the resistance reaches 39% in a dry case, and 51% in a soaking case.

TABLE OF CONTENTS

Article	Subject	Page
ABSTRACT	· · · · · ·	Ι
CONTENTS		III
LIST OF		V
FIGURES		v
		VIII
LIST OF PLATES		
LIST OF TABLES		IX
LIST OF		Х
SYMBOLS		
LIST OF		XI
ABBREVIATION		
CHAPTER ONE	INTRODUCTION	
1.1	General	1
1.2	Problems of Gypseous Soils	2
1.3	Purpose of Study	3
1.4	Thesis Layout	4
CHAPTER TWO 2.1	LITERATURE REVIEW General	5
2.1	Uses of Piles	5
2.2	Types of Piles	6
2.3	Methods of Piles Installation	0 7
2.5	Steel Piles	9
2.6	Timber Piles	11
2.7	Concrete Piles	13
2.8	Tension Piles	14
2.9	Pile Capacity	23
2.9.1	Methods of Estimating Shaft Resistance	25
2.10	Gypseous Soils	31
2.10.1	Definition, Distribution and General Properties	31
2.10.2	The Collapsibility of Gypseous Soils	37
2.10.3	Behavior of Gypseous Soil upon Soaking by Water	40
2.10.4	Remedies of Gypseous Soil	42
2.11	Previous Studies of Piles in Gypseous Soil in Case of	43
	Compression Load	73
CHAPTER	EXPERIMENTAL WORK	
THREE		
3.1	Introduction	48
3.2	The Testing Program	48
3.3	Materials Used	51
3.3.1	Soil	51
3.3.1.1	Physical Tests	51
3.3.1.1.1	Distribution of Particle Size	51
3.3.1.1.2	Water Content	52
3.3.1.1.3	Specific Gravity	54
3.3.1.1.4	Atterberg Limits	54
3.3.1.1.5	Direct Shear Test	54
3.3.1.2	Chemical Tests	58

P		
3.3.1.3	Determination of Gypsum Content by Using the	59
2214	Dehydration Method	50
3.3.1.4	Engineering Tests	59 50
3.3.1.4.1	Collapse Test	59
3.3.1.5	Compaction Test	61
3.3.2	Types of Piles Used in the Study	63
3.3.2.1	Boundary Conditions Consideration for Model Tests	65
3.3.3	Laboratory Model Setup	66
	Steel Container	66
23	Steel Frame	67
	Hydraulic Compression and Manual Tension Jacks	68
4	Electronic Loading Cells	69 70
5	Digital Indicator	70
6	Holder	71
7	Compacter	72
3.4	Soil Preparation for Model Tests	73
3.5	Test Procedure	73
3.6	Failure Consideration for Model Tests	75
3.7	Repeatability of Tests	77
CHAPTER FOUR	RESULTS AND DISCUSSION	
4.1	General	78
4.2	Tests of Gypseous Soils	79
4.2.1	Physical Tests	79
4.2.1.1	Distribution of Grain Size	79
4.2.1.2	Water Content	79
4.2.1.3	Specific Gravity	79
4.2.1.4	Atterberg Limits	79
4.2.1.5	Direct Shear Tests	79
4.2.2	Chemical Tests	80
4.2.3	Engineering Tests	80
4.2.3.1	Collapse Tests	80
4.2.4	Compaction Tests	81
4.3	Results of Laboratory Model Tests	81
4.3.1	Effect of Gypsum Content on Shaft Resistance of Pile	81
4.3.2	Effect of Slenderness Ratio (L/D) on Shaft Resistance of	
	Pile	85
4.3.3	Effect of Diameter of Pile on Shaft Resistance of it	91
4.3.4	Effect of Pile Type on Shaft Resistance of Pile	94
4.3.5	Effect of Pile Cross Section on Shaft Resistance of it	102
4.3.6	Effect of Time on the Shaft Resistance	102
CHAPTER FIVE	CONCLUSIONS AND	100
	RECOMMENDATIONS	
5.1		110
1 - * *	General	
5.2	General Conclusions	112 112
5.2 5.3	Conclusions	112
5.2 5.3		

LIST OF FIGURES

Figure No.	Figure Title	Page
2.1	Failure mode of tension pile (after Chattopadhyay and Pise,	16
2.2	1986) D_{1}^{2} (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
2.2	Distribution of gypsum in the world (after FAO 1990)	32
2.3	The structure of gypsum, (after Abbas, 1995)	34
2.4	Distribution of gypsum in Iraq (after Buringh, 1960)	37
2.5	Time-S/B% relationships (Zakaria, 2013)	45
2.6	Compression load- settlement relationship of pile embedded in gypseous soil in un-soaked case (Al-Busoda and Al- Rubaye, 2015)	45
2.7	Compression load- settlement relationship of pile embedded in gypseous soil in soaked case (Al-Busoda and Al-Rubaye, 2015)	46
2.8	Compression load- settlement relationship for raft, single pile and single piled raft in dry case (Abd-ullah, 2015)	46
2.9	Compression load- settlement relationship for raft, single pile and single piles raft in soaking case (Abd-ullah, 2015)	47
3.1	The flowchart for the testing program	50
3.2	Distribution of grain size curves for S_1 (soil in dry sieve test and after washing by kerosene)	53
3.3	Distribution of grain size curves for S_2 (soil in dry sieve test and after washing by kerosene)	53
3.4	Distribution of grain size curves for S_3 (soil in dry sieve test and after washing by kerosene)	54
3.5	Results of the direct shear test conducted on S_1 in both dry and soaking by water for 24 hours	55
3.6	Results of the direct shear test conducted on S_2 in both dry and soaking by water for 24 hours	55
3.7	Results of the direct shear test conducted on S_3 in both dry and soaking by water for 24 hours	56
3.8	The void ratio-vertical stress relationship of S_1 by single odometer test	60
3.9	The void ratio-vertical stress relationship of S_2 by single odometer test	61
3.10	The void ratio-vertical stress relationship of S_3 by single odometer test	61
3.11	Dry unit weight- W.C% relationship for S_1	62
3.12	Dry unit weight- W.C% relationship for S_2	63
3.13	Dry unit weight- W.C% relationship for S_3	63
3.14	f_s -S/D relationships for dry tests	77
3.15	f_s -S/D relationships for soaking tests	77
4.1	f_{s-} S/D relationship of steel tension pile (D=2cm, L/D=10) in S ₁ for both dry and soaking tests	82
4.2	f_{s-} S/D relationship of steel tension pile (D=2cm, L/D=10) in S ₂ for both dry and soaking tests	83
4.3	f_{s} - S/D relationship of steel tension pile (D=2cm, L/D=10) in S ₃ for both dry and soaking tests	83
4.4	f_s ult G.C% relationships of steel tension pile (D=2cm, L/D=10) for both dry and soaking tests	85

4.5	f_{s} - S/D relationship of steel tension pile (D=1cm, L/D=10) in S ₃ for both dry and soaking tests	86
4.6	f_{s-} S/D relationship of steel tension pile (D=1cm, L/D=15) in	87
1.0	S ₃ for both dry and soaking tests	07
4.7	f_{s-} S/D relationship of steel tension pile (D=1cm, L/D=20) in S ₃ for both dry and soaking tests	88
4.0	f_{s} - S/D relationship of steel tension pile (D=1cm, L/D=25) in	00
4.8	S ₃ for both dry and soaking tests	89
4.9	$f_{s \text{ ult.}}$ - L/D relationship for both dry and soaking tests	90
4.10	f_{s-} S/D relationship for steel tension pile (D=2cm, L/D=10) in	91
	S_3 for both dry and soaking tests f S/D relationship for steal tension pile (D=1 5 cm L/D=12 2)	
4.11	f_s -S/D relationship for steel tension pile (D=1.5cm, L/D=13.3) in S ₃ for both dry and soaking tests	92
4.12	f_s - S/D relationship for steel tension pile (D=1cm, L/D=20) in	
	S_3 for both dry and soaking tests	93
4.13	$f_{s \text{ ult.}}$ - pile diameter (D) relationship for steel tension piles in	94
	both dry and soaking tests	74
4.14	f_s - S/D relationship for steel solid with circular cross section (D=2cm, L/D=10) in S ₃ for both dry and soaking tests	95
4.15	f_{s} - S/D relationship for steel solid with square cross section	96
	(D=2cm, L/D=10) in S_3 for both dry and soaking tests	90
4.16	f_s - S/D relationship for circular concrete pile (D=2cm,	97
4 17	L/D=10) in S ₃ for both dry and soaking tests	
4.17	f_{s} - S/D relationship for steel H-pile (B=2cm, L/D=10) in S ₃ for both dry and soaking tests	98
4.18	f_{s-} S/D relationship for timber pile (D=2cm, L/D=10) in S ₃ for	
	both dry and soaking tests	98
4.19	f_{s-} S/D relationship for steel pipe pile (closed end, D=2cm,	99
4.20	L/D=10) in S ₃ for both dry and soaking tests	
4.20	f_s - S/D relationship for steel pipe pile (open end, D=2cm, L/D=10) in S ₃ for both dry and soaking tests	100
4.21	f_s -S/D relationships for different types of pile at dry case	101
4.22	f_s -S/D relationships for different types of pile at soaking case	101
4.23	f_s -S/D relationships for different types of pile at southing case f_s -S/D relationship for steel pipe pile (closed end, D=2cm,	
	L/D=10) in S ₃ for both dry and soaking tests	102
4.24	f_{s} - S/D relationship for steel tubular pile with square cross	100
	section (D=1.57cm, L/D=12.7) in S ₃ for both dry and soaking tests	103
4.25	f_{s} - S/D relationship for steel tubular pile with rectangular cross	
	section (2.14X1cm, L/D=20) in S_3 for both dry and soaking	104
	tests	
4.26	f_s - S/D relation for all shapes of cross section in dry case	105
4.27	f_s - S/D relation for all shapes of cross section in soaking case	105
4.28	f_s -S/D relationship after 2hr from installation of steel tension pile (D=1cm, L/D=20) in S ₃ for both dry and soaking cases	106
4.29	f_s -S/D relationship after 4hr from installation of steel tension	107
	pile (D=1cm, L/D=20) in S ₃ for both dry and soaking cases	107
4.30	f_s -S/D relationship after 1 day from installation for steel	
	tension pile (D=1cm, L/D=20) in S_3 for both dry and soaking	107
4.31	cases <i>f_s</i> -S/D relationship after 7day from installation of steel tension	108
T.J.1	J_{3} 5.2 relationship after (day from instantation of steel tension	100

	pile (D=1cm, L/D=20) in S ₃ for both dry and soaking cases	
4.32	f_s -S/D relationships for dry tests	109
4.33	f_s -S/D relationships for soaking tests	110

LIST OF PLATES

Plate No.	Plate Title	Page
1.1	Structural failures of buildings which are constructed on	3
	gypseous soil (after Abid-Awn, 2010)	5
1.2	Failures of building constructed on gypseous soils: (a) wall	
	cracks in Dijla Hospital in Tikrit; (b) failure of building in Al-	3
	Ramadi city (after Tawfeeq, 2009)	
2.1	Driven piles; (a)driven by drop weight, (b)driven by jacking,	8
	(after Deeks, et al. 2005)	0
2.2	Some types of steel piles; (a): I-section pile, and (b): pipe	11
	piles.	11
2.3	Timber piles: (a) driven timber piles, (b) failure of driven	13
	timber pile	
2.4	Types of concrete piles; (a) cast-in-situ pile, (b) pre-cast pile	14
3.1	Location of three position of gypseous soils used in this study	51
	which brought from Salah Al-Deen governorate in Iraq	
3.2	Types of piles used in this study	65
3.3	Steps of manufacturing laboratory model	67
3.4	The laboratory model used in the study	68
3.5	Types of jacks used in the present study: (a)hydraulic jack	
	used in the study for piles installation, (b)screw jack used in	69
	the study for pullout tests	-
3.6	Compression load cell used in the study for pile installation	70
3.7	Tension load cell used in the study for pullout pile	70
3.8	Digital indicator and accessories used for displacement	71
	control test performed in the study	
3.9	Manufactured holder	72
3.10	Electrical compacter used for density control for soil inside	72
2.11	laboratory model	
3.11	The test procedure for the dry test; (a) preparation of the steel	
	model, (b) leveled of the surface of each layer of soil, (c)	76
	compaction of soil, (d) placing of holder, (e) process of pile	
	installation, (f) tension test of pile	

LIST OF TABLES

Table No.	Table Title	Page
(2.1)	Pile Classification	6
(2.2)	Classification of Gypsiferous Soil (Barazanji, 1973)	36
(2.3)	Degree of Collapse by Two Methods (Al-Lamy, 2008)	38
(3.1)	The Properties of S_1	56
(3.2)	The Properties of S_2	57
(3.3)	The Properties of S ₃	57
(3.4)	The Chemical Composition of S ₁	58
(3.5)	The Chemical Composition of S ₂	58
(3.6)	The Chemical Composition of S ₃	58
(3.7)	The Properties of Piles Used	64
(4.1)	Symbols Used in this Study	78
(4.2)	Values of Gypsum Content with $f_{s \text{ ult.}}$ for both Dry and Soaking Tests	84
(4.3)	Values of L/D with $f_{s \text{ ult.}}$ for both Dry and Soaking Tests	90
(4.4)	Values of D with $f_{s \text{ ult.}}$ for both Dry and Soaking Tests	94
(4.5)	$f_{s ult.}$ for Each Pile Type at Dry and Soaking Cases	100
(4.6)	$f_{s ult.}$ for Each Cross Section of Piles at Dry and Soaking Cases	105
(4.7)	<i>f_{s ult.}</i> for Each Rest Time	108

LIST OF SYMBOLS

Symbol	Total Name
С	Cohesion of soil
С.Р.%	Collapse potential of gypseous soil
C_C	Coefficient of curvature
C_U	Coefficient of uniformity
D	Diameter of pile
D_{50}	Mean size of soil particles
D_{10}	Grain size at 10% passing
D_{30}	Grain size at 30% passing
D_{60}	Grain size at 60% passing
D_r	Relative density of soil
e	Void ratio
f_s	Unit shaft resistance
fs ult	Ultimate unit shaft resistance
<i>G.C%</i>	Gypsum content of soil%
Gs	Specific gravity
H	H-pile
K	Coefficient of lateral earth pressure
L	Embedded length of pile
L/D	Slenderness ratio of pile
Ρα	Ultimate pullout resistance of inclined pile
Po	Net ultimate pullout resistance of vertical pile
q_c	Cone penetration resistance
q_s	Side resistance of cone
Q_b	End bearing resistance
Q_s S	Shaft resistance
S	Upward displacement of pile
S_{I}	Soil one with 30% gypsum content
S_2	Soil two with 46% gypsum content
S_3	Soil three with 66% gypsum content
S/D	Upward displacement of pile related to its diameter
t	Thickness of pile wall
W.C%	Water content of soil
Ø.	Batter angle of pile
δ_{cs}	Interface friction angle between pile and soil at critical state
δ	Interface friction angle between pile and soil
Ø	Angle of internal friction of soil
Yd	Dry unit weight of soil

LIST OF ABBREVIATIONS

Abbreviation	Total Name
API	American Petroleum Institute
ASTM	American Society for Testing and Materials
СРТ	Cone Penetration Test
SPT	Standard Penetration Test
USCS	Unified Soil Classification System

Chapter One

Introduction

CHAPTER ONE INTRODUCTION

1.1 General

One of the essential issues that the civil engineer should focus on is the type of soil, especially when such soil is one of the collapsible soils. Clemence and Finbarr (1981) distinction collapsible soils as any unsaturated soil that goes through large loss of volume and a radical rearrangement of particles upon wetting with or without extra loads.

Gypseous soil is considered a type of serious collapsible soils. Gypseous soils cover many regions of the world such as China, India, Australia, and Europe. They are also found in many Arab countries such as Bahrain, Iraq, Algeria, Syria, and Jordon. In Iraq it covers about 31.7% of the surface area with different gypsum content ranging from 10-70% according to (Ismail, 1994).

Gypseous soils are very strong to carry the structures loads when found on it. Problems occur in the structures constructed on that soil such as settlement, fissures, and tilting of the structures when wetted by water. The main cause for the mentioned problems was the dissolution of the gypsum content that related between the soil particles due to the presence of water. This dissolution led to cause sudden collapse, immediate settlement, and decrease in the strength of soil under the foundation of structures. Water can reach the soil particles either from the top such as rainfall, overflow, etc. or from the bottom through the rise in the level of the ground water (Noor, et al., 2013).

Many solutions were proposed to reduce the damages occurs for the structures constructed on/in gypseous soils like the improvement of the soil properties via using physical treatment, chemical treatment, or by using pile foundation. Up to date, a number of studies used piles to support structures constructed on collapsible soils to control settlement after the process of inundation for collapsible soils (Grigorian, 1997). The study of the behavior of tension piles in gypseous soil until now is limited and this point need to many studies. Therefore, this study focuses on this point.

1.2 Problems of Gypseous Soils

Many problems face the structures constructed on gypseous soils. That problem occurs in buildings like, Tikrit training center, Samarra tourist hotel, and Karbala elevated water tank this problem which occurs due to the soil collapse (Nashat, 1990; Razouki et al., 1994; Al-Mufty, 1997). On the other hand, many problems which occur beneath the foundation of the Mosul dam due to the cavities formed because of the gypsum dissolution (Nashat, 1990). In addition, problems occur in the roads of Samarra and Tikrit which were constructed on gypseous soils. Al-Neami (2000) revealed that at the College of Air Force, in its run ways, many cracks were noticed. Cracks and excessive settlement problems were also found in Al-Anbar University, Habbaniyah Tourist Village, and in the houses found in the Al-Ramadi city (Tawfeeq, 2009).

Hospitals of Tikrit, Balad, and Dijla also suffered from many problems due to the process of gypsum dissolution. Plate (1.1) explains failure of building constructed on gypseous soil, and plate (1.2) explains the failure of building constructed on gypseous soil in Iraq.

Plate 1.1 Structural failures of buildings which are constructed on gypseous soil (after Abid-Awn, 2010)

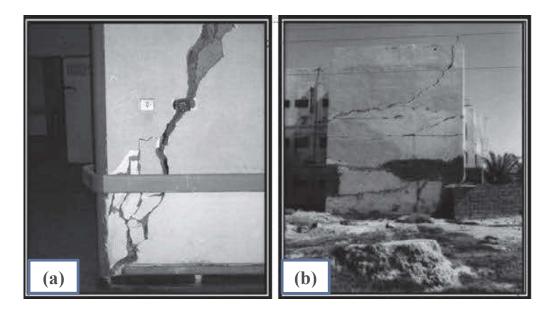


Plate 1.2 Failures of building constructed on gypseous soils: (a) wall cracks in Dijla Hospital in Tikrit; (b) failure of building in Al-Ramadi city (after Tawfeeq, 2009)

1.3 Purpose of Study

The behavior of tension pile installed in gypseous soil is yet not covered in a good way in Iraq. Therefore, this study focuses on finding the ultimate shaft resistance of tension pile when constructed in gypseous soil. The study was carried out by using a laboratory model constructed especially with loading frame for examining the soil- pile models. The main variables covered in this study are the gypsum content, G.C% (three percentages 30%, 46%, and 66% used to examine the influence of such problematic soil on pile behavior), slenderness ratios of pile L/D (L/D=10, 15, 20 and 25). Also type of piles (steel solid with both square and circular cross-sections, timber, concrete, pipe pile with both closed and open ends, H pile), effect of pile cross section (circular, square, and rectangular cross sections). As well as, effect of variation of pile diameter (D=1, 1.5, and 2cm), and effect of time (2hr, 4hr, 1day, and 7day from the installation of pile). All these variables are examined in two cases, when the soil-pile model is dry, and also examining the same model but after soaking it with water for 24 hours.

1.4 Thesis Layout

The construction of this thesis is based on five chapters; each one represents a specific part.

-*Chapter One* presents a general view of the thesis, purpose, scope of the study and some case studies for gypseous soil problems in Iraq.

-*Chapter Two* presents general information and literature review related to the subject of the study (about both piles and gypseous soils).

-*Chapter Three* presents the details of the laboratory tests of the model in addition to the properties of the soils and piles used, and description of the laboratory tests which conducted on the soils used in this study.

-*Chapter Four* presents the results of experimental works and discussion of results.

-*Chapter Five* presents conclusions which result from this study, as well as recommendations for future studies.