
 
 

 
Ministry of Higher Education    

and Scientific Research 

University of Diyala 

College of Engineering 

  

 

 

BEAM COLUMN CONNECTIONS IN SMART 
STEEL FRAME SUBJECTED TO EFFECT OF 

DYNAMIC LOADS 
 
 

A Thesis Submitted to Council of College of Engineering,  
University of Diyala in Partial Fulfillment of the 

Requirements for the Degree of Master of Science in Civil 
Engineering  

 
 

By 

Jelan Hameed Theab 
 

Supervised by 

Prof. Dr. Ali L. Abbas 

 

2019-july               IRAQ                   1440-thul Qaeda 
 

 

 

 

 



 
 

 

  

 



III 
 

DEDICATION  

 

To:  
  

My parents, my brothers, and my sisters 
without them none of this would be 

possible. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

 

ACKNOWLEDGMENT 

In the name of Allah, the most Gracious the most 
Merciful 

Thanks to Allah first and foremost  

I would like to express my deepest appreciation and 

sincere gratitude to Professor Dr. Ali L. Abbas, for the 

guidance, advice, and cooperation; Thanks for 

expensive time that he gave throughout the steps of 

this study. I'm proud to be his student.  

Also, many thanks go to staff members of Civil 

Engineering Department University of Diyala.   

       Special thanks to my family who helped in any 
way, I would like to extend my warmest sense of 
gratitude.   
   

Jelan Hameed Theab 
July 2019



III 
 



1 
 

 
 

BEAM COLUMN CONNECTION IN SMART STRUCTURE 
SUBJECTED TO EFFECT OF DYNAMIC LOAD. 

By 

 

Supervised by 

 Prof. Dr. Ali Laftah Abbas 

 

ABSTRACT 

This study evaluates the seismic performance of steel frame with new type 

of  partially restrained connection using shape memory alloy (SMA). 

superelastic form of shape memory alloy has large recoverable deformation 

upon removal the load is used in current study. The suggested connection 

consists of 16 steel bars and SMA bars (25.4mm) in diameter.  3D Finite 

element simulation using ABAQUS v.2017 software is developed, and their 

result was compared with an experimental test to validate the solution. This 

study aims to explore the effect of integrated SMA bars within frame  on 

recentering ability, storey drift, residual storey drift, residual displacement,  

Energy dissipation, peak floor acceleration, stress and residual stress in the 

system. 

Eleven  steel frame (one storey frame  with two damage factor (10, 100) 

and two storey frame with three different combination of steel bars  and  

SMA bars) (100% steel bars, 50% steel bars and 50% SMA bars, 100% 

SMA bars for each case), frame equipped with 100% steel bars  was chosen 

as reference model.   

 

    At the beginning of analysis, models were simulated under effect of free 

vibration and shows the six  Eigen modes and frequency for one storey and 

two storey.  
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In case of one storey with damage factor =10 the addition SMA bars with 

percentage is (50%, 100%) instead of steel bars which lead to decease the 

residual roof displacement by (32.93%, 72%) respectively as compared 

with reference model , which  also lead to  decrease the stresses and 

residual stresses in frames. 

While increasing  earthquake intensity for one storey cases for frame 

equipped with 50% SMA bars and 50% steel bars they enhance the 

recentering ability with ratio (83.5%) as compared  with reference model, 

thus lead to reduction in residual displacement and residual storey drift by 

(47.08%) as compared with reference model. 

While in case of two storey frame , the results of numerical study shows 

that the adding   SMA bars in frame  instead of steel bars with  ratio of 

(100%, 50%) improved  strong recentering ability with the ratio (136%- 

98%) respectively, as compared with reference  model, in addition the  

reduction in residual roof  displacement is  (158.72%, 82.7%)  in case of 

frame equipped with 100% SMA bars and frame equipped 50% SMA bars 

and 50% steel bars respectively, as compared with reference model. Also 

adding  SMA bars instead of steel bars  in frame lead to good  contributes 

towards   reduces  the stress and residual stress. 
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CHAPTER ONE 

INTRODUCTION 

1.1 INTRODUCTION 

       Connections are categorized by three main parameters stiffness, 

strength, and ductility. For Stiffness connections are categorized as fully 

restrained (FR),partially restrained (PR) or simple pinned connection, 

While the strength connections are categorized as either full strength (FS) 

or partial strength (PS) depending on whether  or not they can transmit 

the full plastic moment (MP) of beam. The  ductility  connections are 

categorized as brittle or ductile connection based on their ability to 

achieve a certain plastic rotation demand. As shown in figure (1.1)  ( Hu, 

2008) 

The rotational demand at the connection varies  according to whether 

they are utilized in ordinary, intermediate, or special moment frame .For 

example, an aftermath of the  earthquake in Northridge, the capacity to 

undergo an elastic rotation of (0.01 rad.) and plastic rotation of (0.03rad.) 

is accepted under cyclic loading as the rotational limit between brittle and 

ductile connections for special moment resisting frames(SMRF). This 

limit agrees up to a 20% decrease from the peak bending resistance at a 

rotational limit. ( Hu, 2008) 

The conventional design strategies for seismic resistant 

connections normally induce unrecoverable post-earthquake deformations 

either in the beams (for full strength connections) or in the connections 

(for partial strength connections), both of which are costly and difficult to 

repair. An early attempt to address this issue was to incorporate 

posttensioned high-strength bars within the connections to provide a self-

centring mechanism.  In parallel with these studies, recent interest has
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 been directed to material-based recentring connections. Among 

these  innovative investigations, practical application of  nickel  titanium  

(NiTi) shape memory alloys (SMAs) has emerged recently as an 

encouraging solution in the area of seismic engineering. In particular, the 

ability of SMAs to undergo reversible deformations of up to 8% strain 

(either via heating for martensitic SMA or via unloading for austenitic 

SMA) and to dissipate a moderate amount of energy during cyclic 

loading makes them promising candidates to be used as structural 

components against earthquake loading. In addition, The excellent 

corrosion resisting performance of SMA (equivalent to stainless steel) 

may overcome the ageing, durability. (Fang et al. 2013) 

 

Figure (1.1) Typical moment-rotation curve. ( Hu, 2008) 

1.2 SMART STRUCTURE  

  Recent researches explore man-made and natural materials with 

unusual characteristics called smart materials and system that can 

spontaneously adjust themselves to change in environment called 

adaptive system,  This lead to innovations of smart structure concept 

when smart materials are integrated within structure the structure 

becomes smart (Cheng, F. Y., et al. 2008),  



Chapter one                                                                     Introduction 
 

5 
 

          Smart structure for civil engineering is defined as system that can 

spontaneously adjust structural properties in response to unanticipated 

severe loading and external disturbances. The idea is that the structures 

can contribute towards response which result in improving serviceability, 

structural safety,  and extension life of structure. (Hu, 2008)  smart 

structure system is characterized by 

   1-Having sensation ability to any variation in external action 

    2-Monitoring any problems at critical location. 

3-Measuring and processing data. 

4-Taking suitable actions in order to improve the system performance 

with preserving safety of structure, integrity, serviceability. (Anwar, 

Aung and Najam, 2017) as shown in figure (1.2). 

 

Figure (1.2) The important players in smart structure technology. (Anwar, 

Aung and Najam, 2017) 
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1.3 TYPES OF SMART MATERIALS 

     They are utilized to develop dampers, sensors, and structural 

components with embedded smart material for actuation and sensing  

Structural members with embedded smart materials, sensors, and dampers 

are applied in the structures of civil engineering such as these structures 

which have the ability to respond automatically to the seismic activity in 

order  to minimize undesired effects (Cheng, F. Y., et al. 2008) 

Types of smart materials  

1-electrorheoloicalogical (ER) 

2-magnetorheologicol (MR) materials 

3-piezolectric (PZT) layers 

4-shape memory alloys (SMAs), will study in this thesis. 

1.3.1 Shape Memory Alloys (SMAs) 

     Nickel-Titanium alloys  (NiTi)  are class of an extraordinary of metal 

that displays several unique properties such as the ability to recover large 

deformation with little permanent of the residual strain, through up 

heating (shape memory effect ) or unloading (superelasticity effect ). 

Superelastic Nitinol  (nickel titanium naval ordnance laboratory) is a type 

of SMA with unique ability to sustain large strain as high as (6-8%) ,high 

strength, large fatigue resistance, and high damping. among these 

properties, the superelasticity makes them desirable for passive vibration 

control systems. During deformation, SMA will undergoes to phase 

transformation (solid to solid) between its stable two phases namely 

austensite and martensite. typical  martensite is stable at high stress, 
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whereas austenite is stable at low stress levels, when it loaded the nitinol 

transform from austenite to martensite,  

upon unloading the martensite transform back to its original parent 

or austenite phase.(DesRoches et al., 2004). The recovery shape shown in  

figure (1.3). 

 

Figure (1.3) Stress-strain-temperature relationships in SMA.(DesRoches, 

McCormick and Delemont, 2004) 

         Using superelastic nitinol (Nickel-Titanium Naval Ordnance 

Laboratory) bars in steel beam column connection as moment transfer 

elements creates smart structure that spontaneously adjusts to seismic 

action ( Hu, 2008), as shown in figure (1.4). This kind of connection does 

not only hold all the benefits of bolted PR connections summarized 

above, but also provides the  recentering ability due to the little 

permanence of  residual strain in the SMA tendons. Table (1-1) 

summarizes properties of  SMA Nitinol compared to a typical structural 

steel. 
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Table(1-1): Properties of  SMA Nitinol compared to a typical structural 

steel (Penar, 2005) 

 

 

 

                          Nitinol 

Austenite phase          martensite phase 

 

structural 

steel 
 

           Physical properties 

Melting point   1240                                  13190ºC 1500ºC 

Density                      6.45 g/cm^3 7.849g/cm^3 

Thermal conductivity  0.28 W/cmºC                   0.14 W/cmºC 0.65 W/cmºC 

Coeff. Of thermal expansion 11.3*10^-6/ºC                    6.6*10^-6/ºC 11.7*10^-6/ºC 

    Mechainal properties 

Recoverable elongation                       Up to 8% 0.2% 

Modulus of elasticity 30-83Gpa                            21-41Gpa 200Gpa 

Yeild strength  195-690Mpa                         70-140Mpa 248-517Mpa 

Ultimate tensile strenght  895-1900Mpa 448-827Mpa 

Elongation at failure  5-50% (typically 25%) 20% 

Poisson ratio  0.33 0.27-0.30 

Hot workability  Quite good Good 

Cold workability Diffecult due to rapid work harding Good 

Machinability Diffecult, abrasive techniques perferred Good 

Hardness 30-60 Rc Varies 

Weldability Quite good Very good 

Electrical properties 

Resistivity                          13-  

Chemical propertis 

Corrosion performance  Excellent (similar to stainless steel ) Fair 
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Figure (1.4) Superelastic Nitinol tendons connection.(Penar, 2005) 

1.4 EARTHQUAKE INTRODUCTION 

1.4.1 General Aspects 

Earthquakes "are geological phenomenon produced by the sudden release 

of energy in seismic sources  located at different depths tens 

of kilometers or hundreds of kilometers, and generate seismic waves". 

Earthquakes are obvious by  means of the seismic wave at the ground 

surface, with a period that can be displayed in terms of seconds (tens or 

hundreds of seconds). (Inculet, 2016) The scheme of an earthquake is 

shown in figure (1.5) 

 

Figure (1.5) Scheme of an earthquake (Inculet, 2016) 
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 (F): Focus (hypocenter), theoretical point in which the process of rupture 

and release of seismic energy is initialized 

(E): Epicenter, point on ground surface that is connected with the focus 

with a vertical line 

(S): Seismic station, where the accelerograms are recorded 

hF: Focal depth 

(R) :Hypocentral distance 

The seismic energy that is released in the source of seismic and it is 

transferred throughout the media of propagation by means of propagation 

waves. The source of seismic depends on the depth of the hypocenter 

(focal depth),  (Inculet, 2016). earthquakes are classified in to: 

 surface earthquakes:: hF 60 - 70 km 

 intermediate earthquakes:: 70 km < hF < 250 - 300 km 

 deep earthquakes:: 300 km < hF < 700 -800 km. 

1.4.2 Seismic Waves 

The seismic waves are the waves that travel through a propagation media 

structure as result of an earthquake. They propagate in all directions and 

there are of two types: 

1- Body waves: 

That are propagated inside the earth's body. Its velocity depends on the      

materials that are cross, and on the distance to a hypocenter. The body 

waves also consist of two types: 

 P waves, also called primary waves, compression waves or 

longitudinal waves, are propagated roughly in a straight line 

manner. They are the fastest type of seismic waves, the first ones 

to be recorded by the seismopraphs. 
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S waves, also called secondary waves, shear waves or 

transversal waves, propagated perpendicular to the direction of 

the P waves. As shown in figure (1-8) a, (Inculet, 2016) 

 

2- Surface waves: 

These the waves are directed by the surface of the earth. They are of less    

velocity  than the body waves but their amplitude is commonly higher. 

There are two types of surface waves: 

 Love waves: are the fastest than surface waves. It is horizontal 

shear waves and can be observed as S waves without  horizontal 

component. 

 Rayleigh waves: are seismic surface waves which are  likened 

to the waves at the surface of a lake, with both vertical and 

horizontal components. The propagation of the seismic waves is 

showed in Figure (1.8) b. 

 

(a)                                            (b) 

Figure (1.8) Propagation of the seismic waves, (a) body waves, (b)  

surface waves, (Inculet, 2016)  
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1.4.3 Seismic Magnitude 

        The seismic magnitude is the factor determination according to the 

readings recordings at the ground level, used for featuring the severity of 

a seismic event. This factor has an energetic signification. 

 

 Richter scale. 

is developed by Charles Francis Richter in 1930,The magnitude is 

defined equally logarithm on base 10 of   maximum amplitude of a 

displacement (measured in µm) measured by a standard seismograph at a 

distance of (100)km from epicenter of earthquake on a hard terrain. 

(Inculet, 2016) 

 

ML = log /  

 

Where  

 ML is local magnitude. 

 A is  maximum amplitude of the displacement of the terrain, 

 A* is correction. 

 

1.4.4 Seismic Intensity 

The seismic intensity (not to be confused with  magnitude),  scales with 

separate values which depend on the effects on earth surface from the 

earthquake. The intensity scales are the Mercalli modified scale (MM56), 

the European Macroseismic Scale (EMS-98) and the Medvedev 

Sponheuer Karnik scale (MSK).(Inculet, 2016), table (1.2) Modified 

Mercalli intensity (MMI) scale. (Inculet, 2016) 
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Table (1.2) Modified Mercalli intensity (MMI) scale (Datta,2010) 

Instrument 

intensity 

Evaluation Description Magnitude (Richter 

scale) 

 Insignificant  Only detected by instrument  1.0-1.9 

 Very light  Only felt by sensitive people 

oscillation objects 

2.0-2.9 

 Light  Small vibratory motion 3.0-3.9 

 Moderate  Felt inside building, noise 

produced by moving objects  

4.0-4.9 

 Slightly 

strong 

Felt by most people, some 

panic, minor damage  

 

 Strong  Damage to non-seismic 

resistant structures  

5.0-5.9 

 Very strong  People running some damage 

in seismic resistant structures 

and serious damage to un-

reinforced masonry structures   

 

 Destructive  Serious damage in structures in 

general  

 

 Ruinous  Serious damage to well-built 

structure, almost total 

destruction of non-seismic 

resistant structures  

6.0-6.9 

 Disastrous  Only seismic resistant structure 

remain standing 

7.0-7.9 

 Disastrous in 

extreme  

General panic, almost total 

destruction, the general cracks 

and opens.   

 

 Catastrophic  Total destruction. 8.0-8.9 
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1.5 OBJECTIVES OF STUDY 

              This study present  numerical analysis by the  FEM (ABAQUS 

version 2017) to simulate smart steel frames using steel and superelastic 

SMA tendons as tension fastener in smart SMA PR beam column 

connection under dynamic loading, The overall objectives are 

1- improve  the seismic performance of smart steel frame with SMA bars 

that give superior performance in terms of ductility, seismic behavior, 

energy dissipation. 

2- This study is intended to take benefit of the unique characteristics of 

shape memory alloys to provide a moment resisting connection with 

recentering capabilities. 

 

1.6 OUTLINE OF THESIS  

      This thesis is divided into five chapters a brief description of each 

chapter contents is presented below:  

1.Chapter One : provides a  brief introduction about the  PR connection , 

SMA materials and earthquake introduction. 

2.Chapter Two: provides a brief literature review on subject related to 

SMA PR connection and frames with PR SMA bolts subjected 

earthquake loading. 

3.Chapter Three: deals with finite element method program (ABAQUS 

version 2017), to simulate the behavior of the PR connection frame under 

earthquake action.  
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4.Chapter Four: includes the case study represented by finite element 

method for frame structure under the effect of dynamic load and a 

verification problem of frame structure is reanalyzed. 

5.Chapter Five: is the  conclusions drawn from study carried out 

together with recommendations for future studies. 

 


