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Structural Behavior of Reinforced Concrete Deep Beams With Longitudinal 
Holes 
Abstract 

Deep beams made of reinforced concrete with a hollow core feature 

longitudinal openings along the length of their span and have many 

advantages. The longitudinal openings in the hollow reinforced concrete 

beams reduce the quantity of concrete used, lowering dead loads and 

construction costs while allowing for a longer span. Additionally, these 

hollows are used to pass mechanical and electrical services. Due to the 

decreased CO2 emissions, concrete abatement aids in the sustainability 

process.  

The current study includes an experimental investigation of the 

structural behavior of hollow reinforced concrete deep beams. The 

experimental program included casting and testing sixteen reinforced 

concrete deep beams with dimensions of 1400 mm length, 150 mm width, 

and 320 mm total depth. The shear span is 375 mm and the clear span is 

1060 mm. Fifteen of the samples had longitudinal hollows with a reference 

solid sample. The variables studied are the number of longitudinal hollows 

(one to three), the size of the hollows (25 mm to 50 mm), the depth of the 

hollow (76 mm to 200 mm), the geometric shape of the hollow (circular, 

rhombic, rectangular), and the inclination of the longitudinal hollow (0% to 

8.86%) to their effects on the structural behavior of hollow reinforced 

concrete deep beams. 

Experimental results showed that the use of hollows with numbers 

from one to three reduces the first crack load for flexural by 17.33% to 

22.66% and reduces the first crack load for diagonal by 10.71% to 14.28%, 

as well as the ultimate strength decreased between 8. 12% and 20.1%, and 

the use of hollows with diameters from 25 to 50 mm reduces the load of the 

first crack for flexural by 2.66% to 22.66%, and the load of the first crack 

for diagonal decreased by 2.14% to 14.28% as well as The ultimate 
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strength decreased between 2.8% to 20.2%. 

When using hollows with depth variations from 76 mm to 200 mm, 

the first crack load for flexural is reduced by 17.33% to 1.33%, the first 

crack diagonal load is reduced by 10.71% to 1.42%, and the ultimate load 

strength is between 8. 12% to 13.4 %. In addition, the load of the first 

crack to flexural decreased by 2.67% to 8%, and the load of the first crack 

for diagonal decreased by 3.56% to 10%, as for the ultimate load resistance 

it decreased by 6.72% to 11.76% at using the longitudinal hollows of the 

circular, rhombic and rectangular shape, respectively. Also, the presence of 

hollow with a slope from 0% to 8.86% reduces the load of the first crack 

for flexural by 2.67% to 6.67% and reduces the load of the crack slit for 

diagonal by 3.57% to 7.14%, and the last decrease of the ultimate load 

resistance is reduced By 6.72% to 11.20%. 

It was reported that the stiffness factor decreased by 25.51to 56.22% 

when using one to three hollows, respectively, while the stiffness factor 

decreased by 8.45% to 56.22% when using hollows with a diameter of 25 

mm to 50 mm respectively. While changing the depths of the hollow from 

76 mm to 200 mm leads to a reduction in the stiffness factor of 25.51% to 

21.72%, respectively. While a decrease of 18.95% to 30.55% was reported 

when using circular, rhombic, and rectangular hollows, respectively. A 

slope of 0% to 8.86% reduces the stiffness factor by 18.95% to 30%, 

respectively. 

Using hollow reinforced concrete deep beams will lower the weight 

of the raw materials to 13.8% % saving up to 13.8 % in costs. Furthermore, 

reduced the embedded energy and CO2 emission by about 13.82%. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General  

The self-weight of the structural members constitutes a large part of 

the design loads when designing the concrete members, so there are great 

efforts to reduce the self-weight of the concrete members, which reduces 

the design loads and the size of the foundations (Joy and Rajeev 2014; 

Bernardo, 2019). 

The laying of longitudinal pipes to create hollow core structural 

members is one of the common methods at the present time to remove an 

amount of concrete and reduce the self-weight of the structural members 

(Parthiban and Neelamegam 2017; Abtan and AbdulJabbar 2019). 

There are many advantages when using the hollow-core reinforced 

concrete beam compared to solid beams (Nimnim., 1993; Hemzah and 

Hassan., 2020; El Maaddawy and Sherif,2009) such as : 

1. Economically in terms of costs due to the low amount of concrete 

used. 

2. It is used to pass several types of services (sewage, mechanical, 

electrical and communications...etc.) and to protect these services 

from external environmental conditions. 

3. Construction is quick for hollow beams due to the decrease in the 

amount of concrete in them. 

4. As a result of reducing the amount of concrete used in the 

construction of beams, CO2 emissions are reduced, so it is an 

environmentally friendly measure. 

In construction work, reinforced concrete deep beams are commonly 

used in high-rise buildings (Figure (1.1)), which are commonly used in 
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bunkers, Transfer girders, pile caps (Figure (1.2)), and many other 

applications (Chin, et 2015; El-barbary 2015; Abdul-Razzaq and Farhood 

2019). 

 
Figure (1.1) Deep Beam in a multi-story1 building (El-barbary1 2015) 

 

Figure (1.2) Column footing (deep beam) supported by two piles (Hasan 2016) 

In modern construction, openings in deep beams are often used, 

especially in tall buildings to allow the passage of various services (Hanoon 

et al., 2017; Nair,2015; Hassan et al., 2019). This poses a challenge 

because the stress distribution is non-linear as a result of the generation of 

the D-regions along the deep beams, so it is difficult to locate the neutral 

axis. (Niranjan and Patil2012; Senthil and Singh 2018; Abdul-Razzaq and 

Jebur 2017). 
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1.2 Deep Beams Requirements According to ACI  Code 

The American Concrete Institute Code (ACI), (ACI 318-19) 

describes deep beam as: 

Deep beams are members that are loaded on one face and supported 

on the opposite face such that strut-like compression elements can develop 

between the loads and supports and that satisfy (a) or (b): 

a) Clear spans (Ln), less than or equal to 4 times the whole member depth.; 

b) Concentrated loads exist within a distance of 2h from the face (h) of the 

support. 

1.3 Modes of Failure of Reinforced Concrete Deep Beams 

In general, the structural behavior of RC deep beams is affected by 

many factors, including the conditions of deep beams (clear span/total 

depth ratio (L/h) and shear/depth ratio (a/h)), loading and location of load, 

strength of concrete, amount of tensile steel, inclusion of other materials 

Such as fiber...etc.(Subedi, et al., 1986). The mode failure of RC deep beam 

can be summarized as follows: 

1. Flexural failure: When there is a low amount of reinforcement in the 

tensile zone and a large a/h ratio which causes decreased load 

capacity and increase in the deflection, the failure will be in the 

reinforcing steel produced in the maximum moment area as shown in 

Figure (1.3). 
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.  

Figure (1.3): Flexural failure1 of deep beam (Subedi et al., 1986) 

2. Flexural-shear failure: When the tensile area is reinforced with 

enough steel reinforcement and the improvements of the inclined 

diagonal cracks are headed by flexural cracks at the maximum 

moment zone, the main cracks will produce the failure. It is the 

cracks spreading from the support area to the bearing area (loading 

area) that cause the failure as shown in Figure (1.4). 

 
Figure (1.4): Flexural-shear failure1 of deep beam (Subedi et al., 1986) 

3. Diagonal splitting failure: This type of failure occurs when the 

diagonal terminal crack extends between the load and the support 

and propagates outward from the middle band as shown in Figure 

(1.4). 
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Figure (1.5): Diagonal splitting failure of deep beam (Kong et al.,1970) 

4. Diagonal compression failure: This type of failure arises. A diagonal 

crack develops around the line connecting the support and the load. 

As a result of the increase in the applied loads, another crack 

develops that is tilted and closer to the support zone than the first 

crack and increases in development upwards with the increase in the 

load. Which leads to the demolition of concrete parts between the 

first and second cracks, causing the final failure, which forms 

support between the bearing points and the support as shown in 

Figure (1.6). 

 
Figure (1.6): Diagonal compression failure of deep beam ( Kong et al., 1970) 

5. Bearing failure: This failure occurs when there is an increase in 

pressures in the zone of supports or zone of load; see crack No.1 in 

Figure (1-6). 
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6. Bond failure (Anchorage failure): This type of failure takes place 

about the beam ends, where high flexural bond stresses can combine 

with high local bond stresses as shown by crack No.2 in Figure (1-5). 

To avoid bond failures, the longitudinal reinforcement may be 

anchored by a plate or through the embedment of straight bars, 

headed bars, or hooked bars ACI 318M-19 (R23.2.6). A standard 

hook can be used, as defined by ACI 318M-19 (25.3.1), contains a 

bend of 90-degree with 12 times the diameter of the bar behind the 

bend as extension. The hook must be positioned at that point where 

the bars are fully developed. Strut and Tie Model (STM) states that 

the longitudinal tension reinforcement of the tie could be fully 

developed at compression- compression- tension (CCT) vertical face 

at every support node. Bearing and anchorage failure in deep beam is 

shown in Figure (1.7). 

  

Figure (1.7): Bearing and Anchorage failures in deep beam ( Kong et al., 1970) 

1.4 Importance of the Study 

In fact, deep beams are very heavy members that consume concrete 

quantities, so attempts have been made to reduce the weight of the beam 

and the quantities of concrete used, and one of these methods is the use of 

longitudinal hollows in deep beams. Also, proper implementation of HRCB 

is a very governing issue in civil engineering projects for both strength and 

serviceability requirements. The collection of reliable empirical results 
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about HRCB is very useful for comparing its performance with 

conventional reinforced concrete beams. 

Consequently, scientific authors and structural designers still have 

motivations to understand and quantify the structural behavior of HRCB, in 

this way, this study attempts to improve the knowledge about this field 

through the implementation of an experimental investigation on a hollow-

core concrete deep beam. 

1.5 Problem1 Statement1 

In some buildings, it is not feasible to use slender beams, so the 

solution is to use deep beams. However, little information is available in 

the literature that studies the existence of longitudinal hollows in reinforced 

concrete deep beams. Thus, studies and research are directed to discover 

this field more and how to develop it and increase knowledge in this field. 

1.6 Aim, Objectives and Scope 

The main objective of this study is to show the effect of the structural 

behavior of reinforcement concrete deep beams that have longitudinal 

hollows inside them. And verify the possibility of applying such beams in 

civil engineering projects. To achieve the aim of the study, the following 

are the objectives that were obtained: 

1- The concrete mix was designed according to the compressive 

strength required in this study. 

2- To create longitudinal hollows in the deep beams, recycled plastic 

pipes were used. 

3- Sixteen RC deep beam samples that were divided into five groups 

were poured, each group containing three samples with a reference 

sample to study the structural behavior of the hollow deep beams, 
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including the number, diameter, location, shape, and inclination of 

longitudinal hollows. 

1.7 Thesis Layout 

The current study can be divided into five chapters: 

 Chapter One: It contains a general introduction to the hollows in 

reinforced concrete beams, the longitudinal hollows in the deep 

beams, the specifications of the beams according to the ACI  Code, 

a review of the types of failures in the deep beams, the research 

problem, and a statement of the importance of the study, and the 

scope covered. 

 Chapter Two: A review of the latest literature on concrete beams 

with hollows is relevant to the current study. 

 Chapter Three: It explains the experimental program and all its 

details, in addition to the materials used in this study and their 

characteristics. 

 Chapter Four: Presents the results of the tests in the experimental 

program, as well as discussed these results. 

 Chapter Five: It includes the main conclusions of this study, as well 

as recommendations for future studies. 

 
 
 
 
 
 
 
 


