CONSTRUCTION OF COMPLETE AND MAXIMAL (k, n) ARCS IN THE PROJECTIVE PLANE PG $(2,7)$

By Najim Abdullah Ismaeel *
* Collage of Education \backslash Kalar - University of Sulaimani

Receiving Date: 2011/4/7-Accept Date: 2011/4/24

Abstract

The purpose of this paper is to study the construction of complete and maximal (k, n) arcs in the projective plane $\operatorname{PG}(2,7), \mathrm{n}=2,3, \ldots, 8$.

A $(k, n)-\operatorname{arc} K$ in a projective plane is a set of K points such that no $n+1$ of which are collinear. A $(k, n)-$ arc is complete if it is not contained in a $(k+1, n)-\operatorname{arc}$.
A $(k, n)-\operatorname{arc}$ is a maximal if and only if every line in $P G(2, P)$ is
a $\mathrm{O}-$ secant , or $\mathrm{n}-$ secant , which represented as $(\mathrm{k}, 2)-\operatorname{arc}$ and $(\mathrm{k}, 8)-\operatorname{arc}$.

Introduction

Ahmad(1999) [4] studied the complete arcs in the projective plane over Galois Field GF(9) , also Rashad (1999) [10] showed the complete arcs in the projective plane over Galois Field $\operatorname{GF}(\mathrm{q})$ and Massa (2004) [8] studied the constriction of (k, n)- arcs from (k, m) - arcs in the $\operatorname{PG}(2,17)$ for $2 \leq m<n$. Finally Najm (2005) [9] studied the constriction of (k, $\mathrm{n})$ - arcs from $(\mathrm{k}, \mathrm{m})-\operatorname{arcs}$ in the $\mathrm{PG}(2,13)$ for $2 \leq \mathrm{m}<\mathrm{n}$. This paper deals with complete (k, n) - arc , maximal (k, n) - arc and how constructed from complete (k, m) arc, $2 \leq \mathrm{m}<\mathrm{n}$.

The construction of complete (k, n) - arc, $\mathrm{n}<\mathrm{k}$ prepared from the union of some complete $(\mathrm{k}, \mathrm{m})-\operatorname{arc}, 2 \leq \mathrm{m}<\mathrm{n}$. Usually the construction arc is incomplete arc and we get the complete by eliminating some points from the incomplete $(\mathrm{k}, \mathrm{n})-\operatorname{arc}$.

The only two maximal arcs are $(\mathrm{k}, 2)-\operatorname{arc}$ and $(\mathrm{k}, 8)-\operatorname{arc}$ which represented the whole plane since each line contains eight points.

Basic Definition

Definition (K, n) - Arcs [1, 2, $\mathbf{6}, 7]: A(k, n)-\operatorname{arc}$ in the projective plane PG(2, P) is a set K points such that some line meets K in n points but no line meets k in more than n points $\mathrm{n} \geq 2, \mathrm{p}$ is prime

Definition $[4,6,9,10]: A(k, n)$-arc is complete if it is not contained in. $\underline{\underline{2}}$ $(\mathrm{k}+1, \mathrm{n})-\operatorname{arc}$.

Definition $[\mathbf{3}, \mathbf{6}, \mathbf{8}, \mathbf{1 2}]$: A point p which is not on $(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{K}$ has index i if there are exactly $i(n-s e c a n t)$ through p, we dented the numbers of point p of index i by C_{i}.

Definition [5, 6,9,11]: A $(k, n)-$ arc K is a maximal if and only if every line in PG (2 , p) is a O - secant or $\mathrm{n}-$ secant.
2.5 Definition $\operatorname{PG}(\mathbf{2}, 7)[\mathbf{1}, \mathbf{6}, \mathbf{1 0}]$: A $\operatorname{PG}(2,7)$ is the two - dimensional projective space which consists of points and lines with incidence relation between them and satisfying the following axioms:
i - Any two distinct lines are intersected in a unique point.
ii- Any two distinct points are contained in a unique line.
iii - There exist at least four points such that no three of them are collinear .

Remark (1) $4, \mathbf{5}, \mathbf{6}\rceil$: $\mathrm{A}(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{K}$ is complete if and only if $\mathrm{C}_{0}=\mathrm{O}$, we mean that C_{0} is $0(\mathrm{n}-$ secant $)$, thus K is complete if and only if every point of PG (2,p) lies on some (n - secant) of K

The Projective Plane PG $(2,7)$

The projective plane $\operatorname{PG}(2,7)$ contains 57 points and 57 lines, every line contains 8 points and every point is on 8 lines. Any line in $\operatorname{PG}(2,7)$ can be constructed by means of variety v. let Pi and $\mathrm{Li}, \mathrm{i}=1,2, \ldots, 57$ be the points and lines of $\mathrm{PG}(2,7)$ respectively. Let i stands for the points Pi and the lines Li , then all the points and the lines in $\mathrm{PG}(2,7)$ are given in the table (1)

i	Pi	Li							
1	$(1,0,0)$	2	9	16	23	30	37	44	51
2	$(0,1,0)$	1	9	10	11	12	13	14	15
3	$(1,1,0)$	8	9	22	28	34	40	46	52
4	$(2,1,0)$	5	9	19	29	32	42	45	55
5	$(3,1,0)$	4	9	18	27	36	38	47	56
6	$(4,1,0)$	7	9	21	26	31	43	48	53
7	$(5,1,0)$	6	9	20	24	35	39	50	54
8	$(6,1,0)$	3	9	17	25	33	41	49	57
9	$(0,0,1)$	1	2	3	4	5	6	7	8
10	$(1,0,1)$	2	15	22	29	36	43	50	57
11	$(2,0,1)$	2	12	19	26	33	40	47	54
12	$(3,0,1)$	2	11	18	25	32	39	46	53
13	$(4,0,1)$	2	14	21	28	35	42	49	56
14	$(5,0,1)$	2	13	20	27	34	41	48	55
15	$(6,0,1)$	2	10	17	24	31	38	45	52
16	$(0,1,1)$	1	51	52	53	54	55	56	57
17	$(1,1,1)$	8	15	21	27	33	39	45	51
18	$(2,1,1)$	5	12	22	25	35	38	48	51

CONSTRUCTION OF COMPLETE AND MAXIMAL (\mathbf{k}, \mathbf{n})

ARCS IN THE PROJECTIVE PLANE PG $(2,7)$

By Najim Abdullah Ismaeel

19	$(3,1,1)$	4	11	20	29	31	40	49	51
20	$(4,1,1)$	7	14	19	24	36	41	46	51
21	$(5,1,1)$	6	13	17	28	32	43	47	51
22	$(6,1,1)$	3	10	18	26	34	42	50	51
23	$(0,2,1)$	1	30	31	32	33	34	35	36
24	(1,2,1)	7	15	20	25	30	42	47	52
25	(2,2,1)	8	12	18	24	30	43	49	55
26	$(3,2,1)$	6	11	22	26	30	41	45	56
27	$(4,2,1)$	5	14	17	27	30	40	50	53
28	$(5,2,1)$	3	13	21	29	30	38	46	54
29	$(6,2,1)$	4	10	19	28	30	39	48	57
30	(0, 3, 1)	1	23	24	25	26	27	28	29
31	$(1,3,1)$	6	15	19	23	34	38	49	53
32	($2,3,1$)	4	12	21	23	32	41	50	52
33	$(3,3,1)$	8	11	17	23	36	42	48	54
34	$(4,3,1)$	3	14	22	23	31	39	47	55
35	$(5,3,1)$	7	13	18	23	35	40	45	57
36	$(6,3,1)$	5	10	20	23	33	43	46	56
37	($0,4,1$)	1	44	45	46	47	48	49	50
38	($1,4,1$)	5	15	18	28	31	41	44	54
39	($2,4,1$)	7	12	17	29	34	39	44	56
40	($3,4,1$)	3	11	19	27	35	43	44	52
41	$(4,4,1)$	8	14	20	26	32	38	44	57
42	$(5,4,1)$	4	13	22	24	33	42	44	53
43	($6,4,1$)	6	10	21	25	36	40	44	55
44	($0,5,1$)	1	37	38	39	40	41	42	43
45	$(1,5,1)$	4	15	17	26	35	37	46	55
46	$(2,5,1)$	3	12	20	28	36	37	45	53
47	$(3,5,1)$	5	11	21	24	34	37	47	57

48	$(4,5,1)$	6	14	18	29	33	37	48	52
49	$(5,5,1)$	8	13	19	25	31	37	50	56
50	$(6,5,1)$	7	10	22	27	32	37	49	54
51	$(0,6,1)$	1	16	17	18	19	20	21	22
52	$(1,6,1)$	3	15	16	24	32	40	48	56
53	$(2,6,1)$	6	12	16	27	31	42	46	57
54	$(3,6,1)$	7	11	16	28	33	38	50	55
55	$(4,6,1)$	4	14	16	25	34	43	45	54
56	$(5,6,1)$	5	13	16	26	36	39	49	52
57	$(6,6,1)$	8	10	16	29	35	41	47	53

Table (1)
(Contains 57 points and 57 lines, every line contains 8 points and every point is on 8 lines)

4- The Construction of $(k, n)-\operatorname{Arcs}$ in PG $(2,7)$:

Let $\mathrm{A}=\{1,2,9,17\}$ be the set reference and unit points in the table (1) such that $1=(1$ $, 0,0), 2=(0,1,0), 9=(0,0,1), 17=(1,1,1) . \mathrm{A}$ is a $(4,2)-$ arc , since no three points of A are collinear, the points of A are the vertices of a quadrangle whose side are the lines

$$
\begin{aligned}
& l_{1}=[1,2]=\{1,2,3,4,5,6,7,8\} \\
& \text { la }_{9}:[1,9]=\{1,9,10,11,12,13,14,15\} \\
& \operatorname{lo}_{2}=[1,17]=\{1,16,17,18,19,20,21,22\} \\
& \text { arg es }_{4}=[2,9]=\{2,9,16,23,30,37,44,51\} \\
& \text { Ll s }_{5}=[2,17]=\{2,10,17,24,31,38,45,52\} \\
& \text { lb }_{6}=[9,17]=\{3,9,17,25,33,41,49,57\}
\end{aligned}
$$

The diagonal points of A are the points $\{3,10,16\}$ where:
$3=\cap$
$10=\mu_{2}$?

$16=\mathscr{\iota}_{3} \cap \mathfrak{L}_{4}$, which are the intersection points of pairs of the opposite sides. Then there are 37 points on the sides of the quadrangle, four of them are points of the arc A , and
three of them are diagonal points of A , so there are 20 points not on the sides of the quadrangle which are the points of index zero for A these points are: $\{24,27,28,29,32,34,35,36,39,40,42,43,46,47,48,50,53,54,55,56\}$

Hence A is incomplete (4, 2) - arc

The Conics In PG $(2,7)$ Through the Reference and Unit points The general equation of conic is

$$
\begin{equation*}
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0 \tag{1}
\end{equation*}
$$

By substituting the points of the arc $-A$ in (1), we get

$$
\begin{aligned}
& 1=(1,0,0) \rightarrow a_{1}=0 \\
& 2=(0,1,0) \rightarrow a_{2}=0 \\
& 9=(0,0,1) \rightarrow a_{3}=0 \\
& 17=(1,1,1) \rightarrow a_{4}+a_{5}+a_{6}=0
\end{aligned}
$$

So equation (1) becomes

$$
\begin{equation*}
a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0 \tag{2}
\end{equation*}
$$

If $\mathrm{a}_{4}=0$, then $\mathrm{a}_{5} \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{a}_{6} \mathrm{x}_{2} \mathrm{x}_{3}=0$
Hence $\mathrm{x}_{3}\left(\mathrm{a}_{5} \mathrm{x}_{1}+\mathrm{a}_{6} \mathrm{x}_{2}\right)=0, \mathrm{x}_{3}=0$ or $\mathrm{a}_{5} \mathrm{x}_{1}+\mathrm{a}_{6} \mathrm{X}_{2}=0$
Which are a pair of lines, then the conic is degenerated, therefore $a_{4} \neq 0$
Similarly $\mathrm{a}_{5} \neq 0$ and $\mathrm{a}_{6} \neq 0$
Dividing equation (2) by a 4 we get
$x_{1} x_{2}+\underset{a_{4}}{a_{5}} x_{1} x_{3}+\underset{a_{4}}{a_{6}} \mathrm{x}_{2}=0$
$x_{1} x_{2}+\alpha x_{1} x_{3}+\beta x_{2} x_{3}=0$
$\mathrm{a}_{5} \quad \mathrm{a}_{6}$
$\alpha=[, \beta=$, then
$\mathrm{a}_{4} \quad \mathrm{a}_{4}$
$1+\alpha+\beta=0(\bmod (7))$
$\beta=-(1+\alpha)+Z$ K, then (3) can be written as:
$\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1} \mathrm{x}_{3}-(1+\alpha) \mathrm{x}_{2} \mathrm{x}_{3}=0$
Where $\alpha \neq 0$ and $\alpha \neq 6$, for if $\alpha=0$ or $\alpha=6$, we get degenerated conic, i.e $\alpha=1,2,3,4$,5

The Equations and the Points of the Conic of

PG $(2,7)$ Through The Reference and Unit Points

For any value for α there is a unique conic containing eight points, four of them are the reference and unit points
1- If $\alpha=1$, then the equation of the conic C_{1} is
$\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{x}_{3}+5 \mathrm{x}_{2} \mathrm{x}_{3}=0$, the point of C_{1} are $\{1,2,9,17,29,35,40,48$,
which is a complete $(7,2)-$ arc , since there are no points of index zero for C_{1}
2 - If $\alpha=2$, then the equation of the conic C 2 is

$$
x_{1} x_{2}+2 x_{1} x_{3}+4 x_{2} x_{3}=0
$$

The points of C2 are $\{1,2,9,17,28,36,39,55\}$, which is a complete
$(7,2)$-arc, since there are no points of index zero for C_{2}
3- If $\alpha=3$, then the equation of the conic C_{3} is

$$
x_{1} x_{2}+3 x_{1} x_{3}+3 x_{2} x_{3}=0
$$

The points of C_{3} are $\{1,2,9,17,26,32,50,56\}$, which is a complete
$(7,2)-\operatorname{arc}$, since there are no points of index zero for C_{3}
4- If $\alpha=4$, then the equation of the conic C_{4} is

$$
\mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \mathrm{x}_{3}=0
$$

The points of C_{4} are $\{1,2,9,17,27,43,46,54\}$, which is a complete
$(7,2)$ - arc since there are no points of index zero for C_{4}
5- If $\alpha=5$, then the equation of the conic C_{5} is

$$
\mathrm{x}_{1} \mathrm{x}_{2}+5 \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{2} \mathrm{x}_{3}=0
$$

The points of C_{5} are $\{1,2,9,17,34,42,47,53\}$, which is complete (7,2) - arc, since there are no points of index zero for C_{5}

Thus there are five complete (7,2) - arcs in the PG $(2,7)$ which are
$\mathrm{C}_{1}=\{1,2,9,17,29,35,40,48\}$
$C_{2}=\{1,2,9,17,28,36,39,55\}$
$C_{3}=\{1,2,9,17,26,32,50,56\}$
$C_{4}=\{1,2,9,17,27,43,46,54\}$
$\mathrm{C}_{5}=\{1,2,9,17,34,42,47,53\}$

Construction of Complete ($\mathbf{k}, 3$) -Arcs

We get complete ($k, 3$) - arcs through the following steps:
We take the union of two complete $(8,2)-\operatorname{arcs}$, say C_{1} and C_{2} denoted by D_{1}.
a . Let $D_{1}=C_{1} U C_{2}=\{1,2,9,17,28,29,35,36,39,40,48,55\}$, we notice that D_{1} is incomplete $(\mathrm{k}, 3)-$ arc , since there exist the points
$\{3,5,16,18,45,47,51,53\}$ of index zero for D_{1}
$B-$ We add the point $\{3\}$ from the index zero to D_{1}, therefore
$\mathrm{D}_{1}{ }^{1}=\{1,2,3,9,17,28,29,35,36,39,40,48,55\}$ is a complete $(13,3)-$ arc , since there is no point of index zero i.e $\mathrm{C}_{0}=0$.

Let $D_{2}=C_{1} \cup C_{3}=\{1,2,9,17,26,29,32,35,40,48,55\}$, we notice that there are some line meet D_{2} in four points, hence $(k, 3)$ is not complete. So we eliminate some points from D_{2} to determine a complete $(\mathrm{k}, 3)-\mathrm{arc}$ as follows:
Let $\mathrm{D}_{2}{ }^{1}=\mathrm{C}_{1} \mathrm{UC}_{3} /\{48\}=\{1,2,9,17,26,29,32,35,40,50,56\}$, we notice that D_{2} is incomplete
$(k, 3)$ - arc ,since there exist the points of index zero for D_{2} which are $\{8,10,11,13,18,38,41,51,52\}$

We add $\{8,11\}$ from the index zero to D_{2}, therefore
$D_{2}=\{1,2,8,9,11,17,26,29,32,35,40,50,56\}$ is a complete $(13,3)-$ arc , since $C_{0}=0$
Let $D_{3}=C_{1} U C_{4}=\{1,2,9,17,27,29,35,40,43,46,48,54\}$, notice that D_{3} is incomplete $(k, 3)$ - arc, since there exist points of index zero for D_{3} which are $\{10,16,18,32,51,56\}$ we add $\{56\}$ from the index zero to D_{3}, therefore
$D_{3}{ }^{1}=\{1,2,9,17,27,29,35,40,43,46,48,54,56\}$ is a complete $(13,3)-$ arc , since $C_{0}=0$
Let $\mathrm{D}_{4}=\mathrm{C}_{1} \mathrm{U} \mathrm{C}_{5}=\{1,2,9,17,29,34,35,40,42,47,48,53\}$, notice that there are some line meet D_{4} in four point, hence ($k, 3$) is not complete. So we eliminate some points from D_{4} to determine a complete ($\mathrm{k}, 3$) - arc as follows
Let $\mathrm{D}_{4}=\mathrm{C}_{1} \mathrm{UC}_{5} /\{53\}=\{1,2,9,17,29,34,35,40,42,47,48\}$, we notice that D_{4} is incomplete ($k, 3$) -arc since there exist points of index zero for D_{4} which are

$$
\{3,4,15,18,24,25,51,57\}
$$

We add $\{4,25\}$ from the index zero to D_{4}, therefore
$\mathrm{D}_{4}{ }^{1}=\{1,2,4,9,17,25,29,34,35,40,42,47,48\}$ is a complete $(13,3)-$ arc since $\mathrm{C}_{0}=0$.

Construction of Complete (k, 4) - Arcs

Let $E_{1}=D_{1} \quad U \quad D_{2}=\{1,2,3,8,9,11,17,26,28,29,32,35,36,39,40,48,50,56\}$, we notice that there are some line meet E_{1} in five points, and hence E_{1} is not complete $(k, 4)-\operatorname{arc}$ there for we eliminate $\{32,48\}$ from it to determine complete $(\mathrm{k}, 4)-\operatorname{arc}$ as follows,
$\mathrm{E}_{1}=\mathrm{D}_{1}{ }^{1} \mathrm{U} \quad \mathrm{D}_{2}{ }^{1} /\{32,48\}=\{1,2,3,8,9,11,17,26,28,29,35,36,39,40,50,56\}, \mathrm{E}_{1}$ is incomplete since there are points of index zero which are $\{5,10,13,18,19,30,33,41,45,47,51,53\}$.

We add $\{5,10,31\}$ from the index zero to E_{1}, therefore
$E_{1}{ }^{1}=\{1,2,3,5,8,9,10,11,17,26,28,29,31,35,36,39,40,50,56\}$, is a complete $(19,4)-$ arc, since $\mathrm{C}_{0}=0$.

Let $E_{2}=D_{1}{ }^{1} \mathrm{U} \mathrm{D}_{3}{ }^{1}=\{1,2,3,9,17,27,28,29,35,36,39,40,43,46,48,54,55,56\}$, notice that E is not complete $(\mathrm{k}, 4)-$ arc , since there are points of index zero which are $\{5,10,31,33$, 45 \}

We add $\{5,31\}$ from index zero to E_{2}, therefore
$E_{2}{ }^{1}=\{1,2,3,5,9,17,27,29,31,35,36,39,40,43,46,48,54,55,56\}$ is a complete
(19-4) - arc, since there is no point of index zero.
Let $E_{3}=D_{1}{ }^{1} U_{D}{ }^{1}=\{1,2,3,4,9,17,25,28,29,34,35,36,39,40,42,47,48,55\}$. Notice that E_{3} is not complete $(k, 4)$-arc , since there are points of index zero which are $\{16,50,51,53\}$

We add $\{16,50\}$ from index zero to E_{3}, therefore
$E_{3}{ }^{1}=\{1,2,3,4,9,16,17,25,28,29,34,35,36,39,40,42,47,48,50,55\}$ is complete $(20,4)$ - arc, since there is no points of index zero.

Construction of Complete (k,5) - Arcs

Let $\mathrm{F}_{1}=\mathrm{E}_{1}{ }^{1} \mathrm{UE}_{2}{ }^{1}=\{1,2,3,5,8,9,10,11,17,26,27,28,29,31,35,36,39,40,43,46,48,50,54,55,56$ $\}$, notice that there is a line meet F_{1} in six points, hence $(k, 5)$ is not complete. So we eliminate a point $\{11\}$ from F_{1} to determine a complete $(\mathrm{k}, 5)-\operatorname{arc}$ as follows

Let $\mathrm{F}_{1}=\mathrm{E}_{1} \mathrm{U} \mathrm{E}_{2} /\{11\}=$
$\{1,2,3,5,8,9,10,17,26,27,28,29,31,35,36,39,40,43,46,48,50,54,55,56\}$. Notice that F_{1} is incomplete since there exist points of index zero which are
$\{12,13,16,18,19,32,38,41,44,45,47,49,51\}$
We add $\{12,13,18,32\}$ from index zero to F_{1}, then
$F_{1}{ }^{1}=\{1,2,3,5,8,9,10,12,13,17,18,26,27,28,29,31,32,35,36,39,40,43,46,48,50,54,55,56\}$ is a complete $(28,5)-\operatorname{arc}$, since $C_{0}=0$

Let $F_{2}=E_{1} \quad U E_{3}=$
$\{1,2,3,4,5,8,9,10,11,16,17,25,26,28,29,31,34,35,36,39,40,42,47,48,50,55,56\}$
Notice that there are some lines meet F_{2} in six points, hence $(k, 5)$ is un complete. So we eliminate some points from F_{2} to determine a complete $(k, 5)-$ arc as follows

Let $\mathrm{F}_{2}=\mathrm{E}_{1}{ }^{1} \mathrm{U} \mathrm{E}_{3}{ }^{1} /\{3,16,17\}=$
$\{1,2,4,5,8,9,10,11,25,26,28,29,31,34,35,36,39,40,42,47,48,50,55,56\}$, we notice that F_{2} is incomplete, since there exist the points of index zero which are $\{12,15,43\}$

We add $\{15\}$ from index zero to F_{2}, then
$\mathrm{F}_{2}{ }^{1}=\{1,2,4,5,8,9,10,11,15,25,26,28,29,31,34,35,36,39,40,42,47,48,50,55,56\}$ is a complete $(25,5)-\operatorname{arc}$, since $C_{0}=0$.

Construction of Complete (k, 6) - Arcs

Let $G=F_{1}{ }^{1} U_{F}{ }^{1}{ }^{1}=$
$\{1,2,3,4,5,8,9,10,11,12,13,15,17,18,25,26,27,28,29,31,32,34,35,36,39,40,42,43,46,47,48,50,5$

4,55,56 \} , notice that there are some lines meet G in seven points ,hence $(k, 6)-\operatorname{arc}$ is incomplete arc. So we eliminate some points from G to determine a complete $(k, 5)-\operatorname{arc}$ as follows.

Let $\mathrm{G}=\mathrm{F}_{1}{ }^{1} \mathrm{UF}_{2}{ }^{1} /\{9,39,42\}=$
$\{1,2,3,4,5,8,10,11,12,13,15,17,18,25,26,27,28,29,31,32,34,35,36,40,43,46,47,48,50,54,55,56$ \} .

Notice that G is incomplete, since there exist the points of index zero for G which are $\{21,45,49,52\}$. We add $\{21,49\}$ from index zero to G, therefore
$\mathrm{G}^{1}=\{1,2,3,4,5,8,10,11,12,13,15,17,18,21,25,26,27,28,29,31,32,34,35,36,40,43,46,47,48,49,50$ $, 54,55,56\}$ is a complete $(34,6)-$ arc , since $C_{0}=0$.

Construction of Complete (k, 7) - Arcs

Let us take complete $(k, 6)-\operatorname{arc} G^{1}, G^{1}$ is incomplete $(k, 7)-\operatorname{arc}$, since there exist points of index zero for G^{1} which are $\{6,7,9,14,16,19,20,22,23,24,30,33,37,38,39,41,42,44,45,51,52,53,57\}$

We add eight points of index zero which are $\{9,16,20,33,39,42,44,57\}$ to G^{1},we denoted it by H
$\mathrm{H}=\{1,2,3,4,5,8,9,10,11,12,13,15,16,17,18,20,21,25,26,27,28,29,31,32,33,34,35,36,39,40,42,4$ $3,44,46,47,48,49,50,54,55,56,57\}$ is a complete $(42,7)-$ arc , since $\mathrm{C}_{0}=0$.

Construction of Complete ($\mathbf{k}, 8$) - Arcs

We take complete (2,7)-arch, H is incomplete (k, 8) - arc since there exist points of index zero for H which are $\{6,7,14,19,22,23,24,30,37,38,41,45,51,52,53\}$

We add the points of index zero to H denoted by I , then I contains all the points of the plane i.e $\mathrm{I}=\{1,2,3, \ldots, 55,56,57\}$ is a complete $(57,8)-$ arc.

This arc is the whole plane, since each line in it contains eight points. Hence this arc is a maximal arc.

REFERENCES

1. Ali,T. H.,2004" Complete (k, n) -arc in the Projective Plane (2, 17) . Thesis, University of Baghdad, Iraq.
2. Al-Jofy, R.A.S. (1999) " Complete Arcs in a projective plane over Galois Field : , M.Sc. , Thesis , University of Baghdad Iraq.
3. Abdul - Hussein , M , A (1997) " Classification of (K , 4) - Arc in the projective plane of order Five " , M , Sc , Thesis, University of Basrah, Iraq.
4. Ahmed, A , M , (1999) , " Complete Arcs in the projective plane over GF(q) " . Ibn AL-Haitham, Iraq.
5. Ban (2001) , " The maximal (K,n) - arcs " University of Mosul, Iraq.
6. Hirscfled , T . W, (1997) " Projective Geometrics Over Finite Field " Oxford Press.
7. Hughes, D.R and piper F . C. , (1973), " Projective Plane Gpringer - Verlag, New York , Inc.
8. Mayssa G. M (2004) " Construction of (k,m)-arcs from (k, n) arcs in the Projective Plane PG (2, 17) , m $<\mathrm{n}$.
9. Najim , A . I (2005) Complete (k, n) - arcs in the Projective Plane (2, 13). Thesis , University of Baghdad, Iraq.
10. Rashad (1999) " Complete arcs in a Projective Plane Over Galois Field, M .Sc. Thesis , University of Baghdad, Iraq.
11. Rutter , J . W , (2000) "Geometry of Curves ", Chapman and Hall / CRC.
12. Sawsan, J. K , (2001) "Construction of (k, n) - arcs in PG (2, P), $2 \leq m<n$

PG(7,2) فی المستوى الإسقاطى (k,n) - بناء أقو اس كاملة وأعظمية

الخلاصة

$$
\text { الاسقاطي } \operatorname{PG}(2,7) .
$$

قوس - في المستوى الاسقاطي هو مجمو عة من k من النقاط بحيث لا يوجد n + 1 نقطة منها على

 (k, 8) (k, 2

