

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما خالد هادى مهدى محمود احمد عليوى فراس محمود هادى

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي جامعة بغداد -كلية التربية/ ابن الهيثم -قسم الفيزياء

الخلاصة

قدم هذا البحث توصيفاً للنويدات المشعة الموجودة في نماذج تربة بغداد بالاضافة إلى قياس فعاليتها النوعية باستعمال مطيافية اشعة كاما.

تم جمع سنة وعشرون انموذج تربة سطحية من جانب الكرخ واربعة عشر انموذجاً في جانب الرصافة، التي ثبتت احداثياتها باستعمال جهاز (G.P.S) ، بالاضافة إلى تربة خمسة مواقع تعرضت للقصف في احداث اذار 2003 .

استعملت منظومة مطيافية اشعة لكما نوع (DSA 2000) مع كاشف الجرمانيوم عالي النقاوة (HpGe) ذي كفاءة 50% وقدرة تحليل (2.2 keV) بالنسبة للطاقة (1332 keV) للمصدر (60 Co).

كانت نتانج معدلات الفعالية النوعية للنويدات المشعة (214 Pi و 214 Pi و (208 Ti و (208 Ti و (208 Ti و (214 Pi و (214 Pi) و (2

يستنتج من هذا البحث انه لم تؤشر أية مستويات عالية لنفعالية النوعية وكانت ضمن المستويات المطلوبة.

الكلمات المفتاحية: الملوثات الطبيعية والصناعية، مطيافية اشعة كاما، تربة بغداد، كاشق الجرمانيوم HpGe، الفعالية النوعية.

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما خالد هادى مهدى محمود احمد عليوى فراس محمود هادى

Measurement and Identification of Natural and Artificial Ratio Active Pollutants in Soil Samples of Baghdad City Using Gammaray Spectrometry

Khalid H. Mahdi

Mahmoud A. Elawi

Firas M. Hadi

Baghdad University/Education College- Ibn-Al- Haitham/ Physics Department

Abstract

In this work an identification of the ratio active nuclide in soil samples of Baghdad city with the measurement of there specific activity using Gamma-ray spectrometry is given. Twenty six samples of surface soil from Al-Kharch side and Four tenth samples from Al-Rusafa side are collected. Their positions are allocated using GPS system. A Gamma-ray spectrometry system type (DSA2000) is used in measurements with (HpGe) detector with 50% efficiency and 2.2 keV at the 1332 keV line emitted from (60 Co) source.

The results of specific activity averages of the radio active nuclide (208 Tl or 228 Ac) , (214 Pb or 214 Bi) , (40 K) , (137 Cs) in surface soil of Al-Kharch and Al-Rusafa sides are (47.199±2.047), (47.032±3.147), (819.901±11.134), (7.49±0.759) Bq/kg respectively for Al-Kharch soil and (51.703±2.229), (49.388±32.361), (852.715±1.798), (7.54±0.804) Bq/kg for Al-Rusafa soil, which are close, for example, to the uranium percentage as estimated by (UNCERR) which is (48.89) Bq/kg.

It may be concluded that no indication of high level of specific activity is observed and results are within the ordinary levels.

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

المقدمة

تقوم الكثير من دول العالم بقياس معدل النشاط الناجم عن الاشعاع الطبيعي لاغراض مختلفة منها الدراسات الوبائية وكذلك اختيار موقع المنشأة وخاصة النووية واعداد خطط الطوارئ أو الاستشعار عن المواد النووية من اية نفاياتت أو نشاط نووي تفجيري أو صناعي [1]. إن لعملية رصد مستوى النشاط الاشعاعي البيئي اهمية كبيرة في ضمان امن وسلامة المجتمع لذا يتوجب معرفة مقدار الزيادة في هذا المستوى لما له من تأثير ات صحية سلبية جسدية ووراثية [2].

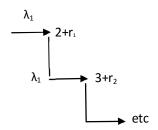
ابتدات برامج الرقابة الجدية والعلمية المدروسة على النشاط الاشعاعي البيئي في العراق منذ اكثر من ثلاثة عقود واستمر لحد اواخر عام 2003. تمثلت بمراقبة موقع التويثة ومواقع مختلفة من القطر خاصة في شمال العراق بعد حادثة تشرنوبل 1986 وجنوب العراق بعد إستعمال الولايات المتحدة للقذائف المصنوعة من اليورانيوم المنضب عام 1991 [3].

يشتمل البحث قياس وتوصيف باعثات اشعة كاما الناتجة عن النشاط الطبيعي للسلاسل الطبيعية الثلاثة (اليورانيوم، الثوريوم، الأكتينيوم) والطبيعية الأخرى (40 K) والصناعية الأحرى (137 Cs) . تبدأ سلسلة اليورانيوم (الذي وفرته الشوريوم، الأكتينيوم) والطبيعية الأخرى (40 K) والصناعية الأحرى (40 K) . تعاني افراد هذه السلسلة في الطبيعة بمقدار (40 C) من اليورانيوم الطبيعي والعمر النصف لهذه الوفرة هو (40 C) . تعاني افراد هذه السلسلة العديد من الانحلالات ببعث α أو α وصاحب معظمها انبعاث α . تضم السلسلة ستة عشر نظيراً تتراوح اصياف اعمارها بين الثواني ومئات الالاف من السنين، حيث يعاني العديد من الانحلالات لتنتهي بالنظير المستقر الرصاص (40 C) (40 C) . تبدأ سلسلة الثوريوم (40 C) ذو وفرة طبيعية هي (40 C) وعمر النصف له (40 C) وبتراكيز قليلة في الطبيعة وتعاني العديد من الانحلالات لتنتهي بالنظير المستقر الرصاص (40 C) وعمر النصف له (40 C) وبتراكيز قليلة في الطبيعة وتعاني العديد من الانحلالات لتنتهي بالنظير المستقر الرصاص (40 C) وعمر النصف له (40 C) وعمر الانحلالات لتنتهي بالنظير المستقر الرصاص (40 C) والمستقر المستقر المستقر المستقر المستقر المستقر المستقر المستقر المستقر المستقر الإنجاد المستقر ال

تبدأ سلسلة الاكتينيوم باليور انيوم (235 U) هو النظير الام الاولى في السلسلة، وعمر النصف له هو (235 U) ووفرته في الطبيعة ($^{0.72}$ C) ووبدأ السلسلة باليور انيوم - 235 U الذي يعاني العديد من الانحلالات وتنتهي بالنظير المستقر الرصاص (207 Pb) من نظائر البوتاسيوم المشعة الموجودة بوفرة طبيعية قدر ها (40 K) من نظائر البوتاسيوم المشعة الموجودة بوفرة طبيعية قدر ها (40 C) ويمكن تمييز اضمحلاله عن اضمحلال النويدات المشعة في السلاسل المذكورة سابقاً من خلال الخط الكامي المفرد ذي الطاقة المؤردة عنها يكون النظير (137 Cs) هو ناتج صناعي عن النشاطات اليومية.

 $N = N_0 e^{-\lambda t}$ يخضع اضمحلال النوى المشعة لقانون اسي:

حيث أن:


 N_0 : يمثل عدد ذرات نواة الأم عند الزمن (t=0) ، N: يمثل عدد ذرات نواة الأم المتبقية عند الزمن λ : ثابت الانحلال λ : ثابت الانحلال ألانحلال ألانحلال ألانحلال ألانحلال ألانحلال ألانحل ألا

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادی مهدی محمود احمد علیوی فراس محمود هادی

كما يوضح الانحلال للسلاسل بالمخطط الاتي:

 $N_{1} = N_{10} e^{-\lambda_{i} t}$ بالنسبة للاضمحلال فالنوع الاول يكون:

$$N_2 = rac{N_{10}\lambda_1}{\lambda_2 - \lambda_1}(e^{-\lambda_1 t} - e^{-\lambda_2 t})$$
 عدد الذرات من النوع الثاني سيكون:

$$N_2 = \frac{N_{10}\lambda_1}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) : 0$$
و عدد الذرات من النوع الثاني سيكون:
$$N_3 = \frac{N_{10}\,\lambda_1\lambda_2}{\lambda_2 - \lambda_1} \bigg(\frac{1 - e^{-\lambda_1 t}}{\lambda_1} - \frac{1 - e^{-\lambda_2 t}}{\lambda_2}\bigg) : 1$$
اما عدد الذرات من النوع الثالث فسيكون:

ومن المعادلة الاخيرة فإذا كان عمر النصف اللازم اكبر بكثير من عمر النصف للنواة الوليدة أي أن $\lambda_0 > \lambda_1$ فأنه بعد

$$N_2 = rac{N_{10} \; \lambda_1}{\lambda_2 - \lambda_1} \, e^{-\lambda_1 t} = rac{\lambda_1}{\lambda_2 - \lambda_1} \, N_1$$
 فترة زمنية طويلة $(t>>1/\lambda_1)$ يصبح لدينا

، تكون نسبة الفعالية $\frac{A_2}{A_1} = \frac{\lambda_2 N_2}{\lambda_2 - \lambda_1} \approx \frac{\lambda_2}{\lambda_2 - \lambda_1}$ تكون نسبة الفعالية $\frac{A_2}{A_1} = \frac{\lambda_2 N_2}{\lambda_2 - \lambda_1} \approx \frac{\lambda_2}{\lambda_2 - \lambda_1}$ تكون نسبة الفعالية $\frac{A_2}{A_1} = \frac{\lambda_2 N_2}{\lambda_2 - \lambda_1} \approx \frac{\lambda_2}{\lambda_2 - \lambda_1}$

[8] . $\lambda_2 N_2 pprox \lambda_1 N_1$ وإن الفعاليات سوف تتساوى وبذلك نحصل على التوازن العرضي $(\lambda_1 >> \lambda_2 N_2 pprox \lambda_1 N_1)$

الجانب العملى

1. جمع العينات :تم جمع اربعة عشر انموذجاً للتربة السطحية من جانب الرصافة، وستة و عشرين انموذجاً من جانب الكرخ، وتسجيل احداثياتها باستعمال جهاز (G.P.S) مصنوع من قبل شركة Etrex كما ثبتت في الجدول (1) كما ثبتت في الجدولين (2,1) على التوالي بعد التأكد من عدم وجود مصادر للتلوث باستعمال جهاز (BUG-1) المحمول ويوضح الجدول (3) المواقع التي تعرضت للقصف.

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادی مهدی محمود احمد علیوی فراس محمود هادی

2. تحضير العينات : تجفف العينات الترابية بدرجة (20°C) لمدة ساعتين، وطحنت وغربات بمنخل حجم (200 μm) كون هذا الحجم يمثل متوسط حجوم عوائق الهواء تقريباً ثم تترك لمدة اربع اسابيع في وعاء مارنيلي محكم الغلق للحصول على التوازن الاشعاعي بين النويدات المشعة.

3. منظومة القياس : هي منظومة خاصة بقياسات كاما وتتكون من:

أ .كاشف الجرمانيوم (HpGe): هو من كواشف المواد شبه الموصلة ذو كفاءة (50%) وقدرة تحليل (2.2keV) بالنسبة للطاقة (1332 keV) للمصدر (60°Co). وقد اتخذت الاجراءات اللازمة لاحاطته بجدار من الرصاص بسمك (10سم) لتقليل الخلفية الاشعاعية بالاضافة إلى عمل حاوية تحيط بالبلورة مكونة من ثلاث طبقات من الالمنيوم والكادميوم والحديد بسمك (1ملم) كل طبقة.

ب. محلل الطيف الرقمي (DSA) (Digital Spectrum Analyzer): محلل الطيف الرقمي المستعمل كان من موديل (نوع) (DSA2000) مصنع من شركة CANBERRA وهو محلل متعدد القنوات عالي الاداء متكامل الاجزاء والوحدات الفرعية المطلوبة للحصول على طيف عالي الجودة يشكل صورة وحدة متكاملة تسيطر الحاسبة كلياً على الالكترونيات داخل المحلل باستعمال البرنامج التحليلي (GENE 2000) [9,10] وهو موضح في الشكل رقم (1).

طريقة العمل

أ. تم تعيير منظومة القياس بالنسبة للطاقة باستعمال مصدر (^{152}Eu). حيث وضع المصدر القياسي في وعاء مارنيلي سعة (1 لتر) بعد خلطه مع الاسمنت وبفعالية ($^{236}Bq/kg$). وكان زمن القياس المختار (10000) ثانية. يوضح الشكل (^{152}Eu) طيف اليوربيوم (^{152}Eu) الخاص بمعايرة الطاقة لمنظومة القياس حيث تم الحصول على المعادلة الخاصة بتعيير الطاقة فكانت

$$E = -4.034 \times 10^{-1} + 1.957 \times 10^{-1} \times C$$

ب حساب الخلفية الاشعاعية الطبيعية: تم حساب الخلفية الاشعاعية الطبيعية من منطقه عمل المنظومة حيث وضع وعاء مارنيلي فارغ وتسجيل طيف اشعة كاما، حيث سجلت المساحة تحت المنحني بين الذروات لغرض طرح هذا العدد من القراءات المسجلة للنماذج.

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادی مهدی محمود احمد علیوی فراس محمود هادی

ج. حساب كفاءة الكاشف للطاقات المختلفة: المنظومة مصممة لحساب كفاءة الكاشف للطاقات المختلفة وذلك بتسجيل طيف المصدر القياسي (152 ومن ثم حساب المساحة تحت الذروة من طيف الاشعة لكل طاقة بعد طرح الخلفية الاشعاعية وحساب الكفاءة من المعادلة الأتية:

$$\varepsilon = \frac{cps(yeled)}{dps \times I} \times 100\%$$

cps: يمثل العد لكل ثانية للطاقة المختارة على زمن القياس (10000s) ، (I): تمثل الشدة النسبية لكل طاقة من طاقات المصدر المشع ، dps: يمثل النشاط الاشعاعي القياسي عند القياس بعد أن تم تصحيحها والشكل (3) يوضح العلاقة بين الطاقة والكفاءة النسبية، حيث تم الحصول على المعادلة الخاصة بالكفاءة وهي الاتي:

$$\log \varepsilon = (-3.54*10^{-5})*E - 2.282*10^{-1} + \frac{1.31*10^{2}}{E} - \frac{8.541*10^{-3}}{E^{2}}$$

ويوضح الجدول (4) طاقات نظير (152Eu) والكفاءة النسبية لها وشبة الانحلال [11].

د. حساب (dps) للنماذج (الفعالية النوعية Special Activity): بعد وضع الانموذج في وعاء مارنيلي يتم تثبيته حول كاشف الجرمانيوم. ويسجل طيف اشعة كاما لمدة قياس (10000s) ، لم يقوم برنامج (Gene 2000) برسم الطيف وعمل تقرير يتضمن ارقام القنوات والطاقات المقابلة لها وقيم (FWHM) وقدرة التفريق (ع) وصافي مساحة الذروة من منحنى طيف الطاقة ومقدر الخطأ فيها. فتحسب الفعالية النوعية

$$dps = \frac{cps}{\varepsilon_* w_* I_{\gamma}}$$

حيث أن: (cps): صافي مساحة الذروة للطاقة المختارة، (ع): كفاءة الكاشف للطاقة المختارة ، (I_{γ}): الشدة النسبية لاشعة كاما من جداول خاصة بها ، (v) : وزن الانموذج.

ه. حساب حد الكشف Detection Limit: يعبر عن حد الكشف من معادلة كوري $^{[1]}$ الاتية

$$D.L = (2.77 + 3.29\sqrt{B.G}) \times \frac{dps(concentration)}{NetArea}$$

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

$$B.G = \frac{(\delta)^2 - A}{2}$$
 تحسب B.G کالاتي

تحسب (δ) من التقرير الخاص بالمنظومة. رتبت حدود الكشف بالجدول رقم (5).

النتائج والمناقشة

أ. كانت نتائج الفعالية النوعية لنظير البزموث -214 والرصاص-214 كالاتى:

في جانب الكرخ سجلت اعلى قيمة (± 1.14 قيمة (± 1.05) بكرل/كغم في منطقة الدورة، وبادنى قيمة (± 1.963) بكرل/كغم في الكاظمية / ساحة عبد المحسن الكاظمي، والمعدل العام (± 1.04) بكرل/كغم. كما سجلت في جانب الرصافة اعلى قيمة (± 1.23) بكرل/ كغم من منطقة جسر ديالى وبادنى قيمة (± 1.23) بكرل/ كغم في منطقة الاعظمية /كلية التربية/ابن الهيثم، والمعدل العام (± 2.22) بكرل/كغم.

ب. نتائج الفعالية النوعية لنظير الاكتينيوم -228 أو الثاليوم-208:

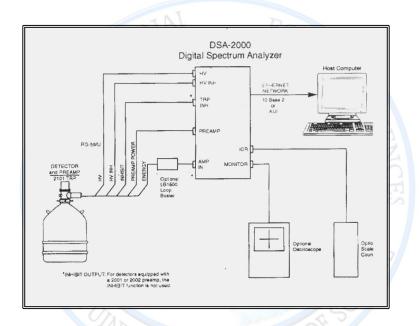
فكانت في جانب الكرخ اعلى قيمة (65.115±3.387) بكرل/كغم لمنطقة الدورة، وبادنى قيمة (35.39±35.39) بكرل/كغم في الكاظمية / منطقة الصنايع، وكان المعدل العام (47.032±3.147) بكرل/كغم. كما سجلت في جانب الرصافة اعلى قيمة (47.032±30.00) بكرل/كغم كانت في منطقة الزعفر انية، وادنى قيمة (120.5±30.00) بكرل/كغم كانت في منطقة البلديات، والمعدل العام (49.382±3.361) بكرل/كغم.

ج. نتائج الفعالية النوعية لنظير البوتاسيوم - 40:

فكانت في جانب الكوخ اعلى قيمة (1162.365±14:553) بكرل/كغم في منطقة الكاظمية وادنى قيمة فكانت في جانب الكوخ اعلى قيمة (1162.365±14:553) بكرل/كغم في منطقة اليرموك، فكان المعدل العام في تربة الكرخ (819.901±11.134) بكرل/كغم . كما سجلت في جانب الرصافة اعلى قيمة (993.741±12.903) بكرل/كغم في حي القاهرة ، وادنى قيمة (624.527±20.784) بكرل/كغم داخل معمل البطاريات. والمعدل العام (852.715±85.715) بكرل/كغم.

د. نتائج الفعالية النوعية لنظير السيزيوم-137:

فكانت في جانب الكرخ اعلى قيمة (0.970 ± 0.970) بكرل/كغم في منطقة اليرموك/ تقاطع شارع الضباط، وادنى قيمة فكانت في جانب الكرخ اعلى منطقة التاجي، وكان المعدل العام (0.73 ± 0.789) بكرل/كغم في منطقة التاجي، وكان المعدل العام (0.73 ± 0.789) بكرل/كغم في منطقة التاجي،

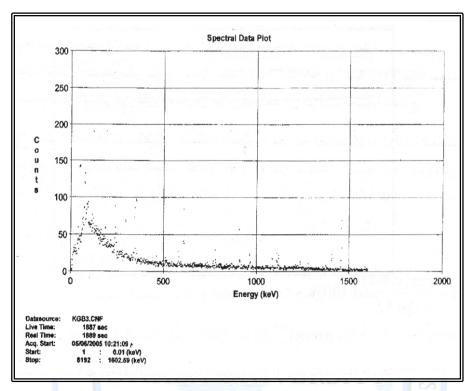


قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

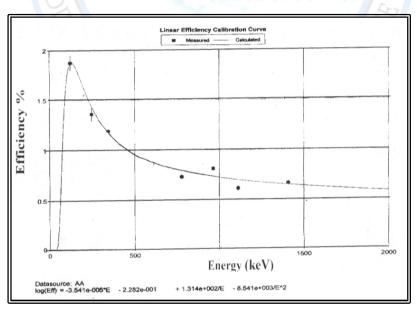
خالد هادی مهدی محمود احمد علیوی فراس محمود هادی

الوصافة اعلى قيمة (24.085 \pm 2.332) بكرل/كغم في منطقة الزعفرانية، وادنى قيمة (633 \pm 2.332) بكرل/كغم في منطقة معسكر الرشيد، والمعدل العام (0.804 \pm 0.804) بكرل/كغم.

رتبت نتائج الفعالية النوعية في جانب الكرخ والرصافة بالجدولين (7,6) على التوالي، ويوضح الجدول رقم (8) الفعالية النوعية النوعية للنويدات المختلفة في المواقع التي تعرضت للقصف. في الجدول رقم (8,7,6) لم تؤشر أي زيادة في الفعالية النوعية للنويدات وبالتالي فانها ضمن النشاط الطبيعي لمدينة بغداد. فيما اشر الجدولين (9,10) تقاربا مع نتائج الدراسات الاخرى والاختلاف قد يكون عدم دقة منظومة القياس أو اسلوب النمذجة.


الشكل: (1) منظومة مطيافية اشعة كاما الخاصة بالقياس [9]

Vol: 8 No: 3, July 2012 44 ISSN: 2222-8373



قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الشكل: (2) طيف نظير اليوريبيوم - 152 الخاص بمعايرة الطاقة لمنظومة القياس

الشكل: (3) العلاقة بين الطاقة والكفاءة النسبية للكاشف

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الجدول (1) المناطق التي جمعت منها نماذج تربة سطحية في جانب الرصافة

ثیات	الاحدا	رقم الانموذج	أسم المنطقة	ت
X=55129	Y=77415	RL1	جسر دیالی	1
X=54010	Y=78209	RL2	الز عفر انية	2
X=50475	Y=82420	RL3	معسكر الرشيد	3
X=50395	Y=86480	RL4	زيونة	4
X=47540	Y=88920	RL5	الكر ادة/ مسبح	5
X=51543	Y=89572	RL6	البلديات	6
X=46700	Y=90371	RL7	شارع فاسطين	7
X=49756	Y=91290	RL8	الحبيبية/ الثورة	8
X=42833	Y=93269	RL9	حي القاهرة	9
X=42974	Y=95560	RL10	حي الشعب	10
X=41120	Y=92120	RL11	الاعظمية/كلية التربية	11
X=40637	Y=96539	RL12	سوق السمكة/ سبع ابكار	12
X=43020	Y=91900	RL13	معمل البطاريات	13
X=56535	Y=72049	RL14	التويثة/ الطاقة الذرية	14
X=56592	Y=72049	RL14*		

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الجدول (2) المناطق التي جمع نماذج تربة سطحية منها في جانب الكرخ

اثيات	الاحد	رقم الأنموذج	أسم المنطقة	ت
X=39000	Y=92050	KL1	ساحة عبد المحسن الكاظمي/ الكاظمية	1
X=37671	Y=93180	KL2	شارع الصناعة/ الكاظمية	2
X=36667	Y=98404	KL4	معهد النفط العربي	3
X=36167	Y=94250	KL5	بوابة بغداد الشمالية	4
X=34712	Y=92990	KL6	بوابة الشعلة/ الشعلة	5
X=32809	Y=90590	KL7	الشارع العام/ الغز الية	6
X=32277	Y=88220	KL8	قرب جامع الرسول/ الغز الية	1
X=34560	Y=86430	KL9	قرب ثانوية المتميزات/ الخضراء	8
X=33036	Y=84442	KL10	قرب ملجأ العامرية/ العامرية	9
X=33025	Y=84432	KL11	داخل ملجأ العامرية/ العامرية	10
X=34664	Y=80470	KL12	قرب جامع محمد رسول س/ الجهاد	11
X=37797	Y=78717	KL13	قرب جامع عمر بن الخطاب/ الاعلام	12
X=38140	Y=75700	KL14	قرب جامع الحمزة بن عبد المطلب	13
X=40178	Y=79281	KL15	تقاطع السيدية/ السيدية	14
X=39910	Y=81827	KL16	قرب محطة تعبئة وقود البياع	15
X=38600	Y=84653	KL17	قرب تقاطع نادي الضباط/ اليرموك	16
X=38332	Y=87529	KL18	تقاطع 14 رمضان/ المصور	17
X=38535	Y=89584	KL19	قرب جامع الحاج صالح خز عل/ الإسكان	18
X=42276	Y=87757	KL20	مطار المثنى	19

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

X=37213	Y=90280	KL26	مشتل الحرية/ الحرية	20
X=46300	Y=79100	KL21	قرب الطريق السريع/ الدورة	21
X=43150	Y=87850	KL23	الصالحية/ علاوي الحلة	22
X=42177	Y=89020	KL24	تقاطع حيفا/ الكرخ	23
X=41389	Y=89670	KL3	ساحة الساعة/ الشالجية	24
X=36218	Y=87320	KL25	قرب شركة الصناعات الخفيفة/ حي الجامعة	25
X=	Y=	KL27	المامون	26

الجدول (3) المواقع التي جمعت منها نماذج تربة سطحية والتي تعرضت للقصف

رقم الانموذج	أسم المنطقة	ت
KL28	الرضوانية	
KL26	الحرية/ دور نواب الضباط	2
KL20*	مطار المثنى	3
KL27*	برج المامون	4
KL4 ⁴	التاجي	5

Vol: 8 No: 3, July 2012 48 ISSN: 2222-8373

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الجدول (4) طاقات النظير (152Eu) والكفاءة النسبية لهما ونسبة الانحلال

طاقة الفوتون	نسبة الانحلال ^[127]	الكفاءة Efficiency
Photon Energy (keV)	Percentage Per Disintegration	
121.779±0.003	28.37±0.24	1.869265
244.693±0.005	7.51±0.06	1.357481
344.272±0.007	26.58±0.18	1.189348
778.890±0.016	12.96±0.07	0.728893
964.05±0.03	14.62±0.06	0.812463
1112.08i0.04	13.56±0.06	0.612492
1408.03±0.03	20.58±0.09	0.663521

الجدول (5) معدلات حد الكشف عن النظائر في نماذج التربة.

	الطاقة مختارة للنظير	حد الكشف (D.L.)
Isotope النظير		
1 ().	(MeV)	Detection Limit Bq/kg
K-40	1460	12.459
Bi-214	609	4.149
Ac-228	911	7.047
T1-208	583	1.824
Cs-137	662	1.989
Bi-212	727	20.108
Pb-214	352	5.102
Pb-212	238	5.717

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الجدول (6) مستويات الفعالية النوعية للنويدات المختلفة للاتربة السطحية في جانب الكرخ

	Bq/kg ä	الفعالية النوعي		. ق	المو قع
Cs-137	K-40	Ac-222 أو -Tl 208**	Bi-214 أو Pb- 214	رقم الانموذج	الموقع
7.615±0.663	730±9.600	40.522±2.736	40.278±1963	KL1	ساحة عبد المحسن الكاظمي
6.407±0.863	1162.365±14.55	35.391±3.830	45.894±2.474	KL2	منطقة الصنايع/ الكلية
11.808±0.96 7	919.816±11.642	50.213±3.392	52.528±2.139	KL3	ساحة الساعة/ تربية الكرخ
3.400±0.738	910.742±12.391	58.396±3.427	61.301±2.225	KL4	تاجي/ معهد النفط العربي
4.513±0.768	834.407±11.878	50.211±3.177	47.694±2.108	KL5	بوابة بغداد
4.832±0.778	774.535±10.691	43.713±3.024	45.765±2.29	KL6	الشعلة/ قرب جسر المرور
BDL	750.593±10.379	40.405±3.229	48.001±1.771	KL7	الغز الية/ قرب سكلة المواد الانشائية
9.704±1.010	853.932±12.829	53.651±3.553	46.873±2.224	KL8	الغز الية/ جامع الرسول الكريم
BDL	918.978±12.006	54.148±3.362	58.260±2.242	KL9	حي الخضراء/ ثانوية المتميزين
7.577±0.833	798.976±11.124	55.295±3.199	55.666±2.157	KL10	العامرية/ مقابل الملجأ
3.794±0.606	711.193±9.273	40.894±2.616	430359±1.614	KL11	العامرية/ داخل الملجأ
4.275±0.589	714.300±9.995	37.311±2.950	44.108±1.981	KL12	الجهاد/ جامع محمد رسول الله
5.896±0.775	708.416±10.230	43.566±2.978	41.393±1.925	KL13	الاعلام/ جامع عمر بن الخطاب
3.895±0.751	731.552±11.175	42.254±2.954	43.843±1.846	KL14	حي التراث/جامع الحمرة بن عبد
6.090±0.723	788.480±10.582	40.688±3.208	47.357±2.149	KL15	المطلب السيدية/ تقاطع داخل السيدية
7.663±0.800	848.354±11.358	56.208±3.115	54.033±2.383	KL16	البياع/مقابل محطة البنزين
23.020±0.97 0	651.121±10.197	39.228±2.875	47.308±1.894	KL17	اليرموك/ تقاطع شارع الضباط
15.856±0.948	878.554±11.393	48.525±3.425	53.371±1.910	KL18	المنصور/ نقاطع 14 رمضان
6.459±0.907	891.377±12.452	49.613±3.450	53.399±2.235	KL19	الاسكان/ جامع الحاج صالح خز عل
9.015±0.902	906.529±12.339	55.747±3.562	53.245±2.227	KL20	مطار المثنى

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

4.476±0.742	918.733±12.078	65.115±3.387	61.557±2.114	KL21	الدورة/ تقاطع السريع مع المصفي
11.203±0.79 4	792.046±11.187	46.856±3.051	46.612±1.842	KL23	علاوي الحلة/ الصالحية
4.799±0.623	798.916±10.474	42.346±2.992	46.038±2.059	KL24	شارع حيفا/ تقاطع جسر 14 تموز
6.860±0.741	750.763±9.783	43.002±2.836	44.902±2.029	KL25	حي الجامعة/ قرب ورشة تصليح
4.637±0.763	861.248±10.853	48.642±3.097	53.369±1.907	KL26	الحرية/ مشتل الحرية
6.097±0.677	711.488±9.198	41.185±2.402	44.423±1.530	KL27	المامون
7.495±0.789	819.901±11.134	47.032±3.147	47.199±2.047		المعدل

الجدول (7) مستويات الفعالية النوعية للنويدات المختلفة في نماذج تربة سطحية في جانب الرصافة

	ية Bq/kg	الفعالية النوع		رقم	
Cs-137	K-40	Ac-228 أو -TI 208**	Bi-214 أو Pb- 214	الأنموذج	الموقع
5.170±0.912	927.223±12.863	50.579±3.735	62.524±2.217	RL1	جسر دیالی
24.085±1.123	926.386±12.480	59.666±3.737 V	56.937±2.141	- RL2	الز عفرانية
2.332±0.633	787.420±10.649	46.445±3.025	46.175±2.442	RL3	معسكر الرشيد
4.325±0.683	832.677±11.558	51.487±3.474	51.910±1.899	RL4	زيونة
9.812±0.887	879.861±11.921	53.327±3.647	56.700±2.193	RL5	الكرادة/ المسبح
4.464±0.482	766.998±10.893	39.029±3.120	47.391±1.903	RL6	البلديات
7.147±0.848	915.633±12.464	53.807±3.440	55.089±2.117	RL7	شارع فلسطين / ساحة بيروت
10.287±0.895	898.781±12.346	54.419±3.292	57.114±2.542	RL8	الثورة/ الحبيبية
8.752±0.791	993:741±12.903	49.518±3.457	52.466±2.219	RL9	حي القاهرة
B.D.L.	856.120±11.906	51.631±3.312	55.935±2.504	RL10	الشعب
6.896±0.641	746.927±9.815	43.818±2.701	41.235±1.957	RL11	الاعظمية/ كلية التربية

Vol: 8 No: 3, July 2012 51 ISSN: 2222-8373

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

3.549±0.718	754.992±10.921	39.140±3.182	43.909±1.927	RL12	سبع ابكار / سوق السمكة
16.049±0.992	624.527±10.784	40.804±3.165	47.554±2.037	RL13	معمل البطاريات/ داخل المعمل
5.642±0.666	737.199±9.412	39.868±2.750	42.778±1.846	RL13*	مديط المعمل
5.110±0.865	883.266±12.184	50.745±3.470	46.920±2.044	RL13**	خارج المعمل
0.781±2.878	985.85±13.333	58.149±3.788	57.811±3.058	RL14	التويثة
0.941±4.145	978.548±14.135	57.175±3.846	56.505±2.855	RL14*	التويثة
7:540±0:804	852.719±11.798	49.388±3.361	51.703±2.229	PI	المعدل

الجدول (8) مستويات الفعالية النوعية للنويدات المختلفة في المواقع التي تعرضت للقصف

	Bq/kg	الموقع			
Cs-137	K-40	Ac-228 أو **Ac-228	Pb-214 [*] او Bi-214	الانموذج	_
B.D.L	807.660±11.315	53.593±3.471	56.156±1.946	KL28	الرضوانية
5.468±0.711	840.530±10.877	38.988±2.489	42.860±1.663	KL22	الحرية/ دور نواب الضباط
9.819±0.402	899.827±12.464	55.747±3.562	58.296±2.839	KL20*	مطار المثنى
9.487±1.922	1738.515±31.144	84.671±8.903	117.214±6.499	KL27*	برج المامون
4.862±0.783	923.445±12.672	69.632±3.446	60.578±2.311	KL4*	التاجي

Vol: 8 No: 3, July 2012 52 ISSN: 2222-8373

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الجدول (9) الفعالية النوعية للنويدات المشعة المختارة لبعض دول العالم والدول العربية ومقارنتها بالدراسة الحالية

Country		(Specific Ac	ctivity) Bq/kg		Reference
(Sample)	U-238	Th-232	K-40	Cs-137	
Ireland (تربة سطحية)	68.1	49.55	284.55	-	[29]
USA (تربة سطحية)	370±3.07	36.26±7.02	472	23	[28]
India (تربة سطحية)	22.0	9.3	233	SOIE	[25,29]
Australia (مواد بناء)	24.79±14.61	32.56±19.98	172.77±16.5	ICES	[30]
Bangladesh (تربة سطحية)	88.1±4.8	68.2±5.28	256.4±16.3	7.5±16.3	[30]
Hungary (تربة سطحية)	26.3±1.5	52.8±2.0	443±15	-	[30]
China (تربة سطحية)	40±34	49±28	580±200	-	[18]
Taiwan (تربة سطحية)	30	44	462	B.D.L.	[30]
West Malaysia (تربة سطحية ورسوبيات)	51.8±10.36	70.3±6.63	-	0.37±24.65	[22]

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

West Germany (مواد بناء)		14.8	18.5	<259	-	[29]
Finland (مواد بناء)		37	42	1024		[29]
		3/	43	1034	-	
USSR						[29]
(مواد بناء)		14.8±37.0	14.8	259	-	
Tunis		(01)	11.	- OR PA		
(تربية سطحية)		17.1±2.54	19.54±3.47	284.2±55.45	8.72±7.57	[30]
Yemen (تربة سطحية)		47.49±2.89	37.89±1.484	908.8±22.12	21.75±0.96	[30]
					图	[00]
الدراسة الحالية	رواسب نهر دجلة	54.758±2.177	52.682±3.482	895.833±12.186	8.475±0.789	
	تربة بغداد/ الكرخ	47.199±2.047	47.032±3.147	819.901±11.134	7:49±0:759	
	تربة بغداد/ الرصافة	51.703±2.229	49.388±3.361	852.715±11.798	7.54±0.804	
	n.	AUNV	ERSITY CO	LLEGE OF S	5	

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

الجدول (10) الدراسات العراقية ومقارنتها بالدراسة الحالية

Reference		الانموذج والسنة				
Reference	U-238	Th-232	K-40	Cs-137	الانمودج وانسته	
الكبيسي[27]	359-127	125-68	800	175-0.5	تربة الصحراء الغربية 2004	
معروف[1]	70-60	431	437	<10	تربة سطحية بابل 2000	
معروف[1]	-	URN	- I	0 5	تربة سطحية بغداد 2000	
زا <i>ي</i> ^[31]	-	\$ -5-	5250 6	76.0	تربة المنطقة الغربية 2000	
اْمين[32]	55	3//-	520	1-10	تربة بغداد 2000	
شمسي[33]	45.65	11.46	304	4.75	تربة الوزيربة 2002	
مزور <i>ي</i> ^[34]	-	DIVAT		33	تربة الموصل 1999	
شذى[35]	2.54±38.67	11.62±0.63	771.80±120.0	E COIENCE	تربة بغداد 1996	
الدراسة الحالية	47.199±2.047	473±47:032	819.901±11.134	7.49±0.759	تربة بغداد/ الكرخ	
This Work	51.703±2.229	49.388±3.361	852.715±11.798	7.54±0.804	تربة بغداد / الرصافة	

References

معروف ، بهاء الدين،" النشاط الاشعاعي الطبيعي في العراق "، دراسات وابحاث مختارة من المؤتمر العلمي عن اثار استعمال اسلحة اليورانيوم المنضب على الانسان والبيئة في العراق، 26-27 اذار 2002 ، بغداد-العراق، إصدار وزارة التعليم العالى والبحث العلمي، ص¹²⁹.

- 2. Matsuki Y. and Lec R., "Deciding The Way", IAEA, Bull, 41, 10-13, 1999.
- 3. T.A. Little Fied & Thorley N. "Atomic and Nuclear Physics", London, New York, Van Nostrand, 1963.

4. عزوز، عاصم عبد الكريم،" مقدمة في الفيزياء النووية"، تأليف ماير هوف، مترجم، مطبعة الموصل، 1989.

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

- 5. Ecology/ Kozloduy NPP and environment, 2000, Internet.
- 6. D.C., Tayal "Nuclear Physics", Himalaya Publishing House, New Delhi, 1982.
- 7. R.T. Weidner and R.L Sells "Elementary Modern Physics", Second Edition, Allyn and Bacon, Inc., Boston, 1990.
- 8. J., Dacre "Nuclear Physics", First Published, HEINMANN EDUCATIONAL, 1990.
- 9. Genie 2000 Operation Tools Manual, Canberra Industries Inc., USA, 2001.
- 10. Genie 2000 Customization Tools Manual, Canberra Industries Inc., USA, 2001.
- 11. "Radioactive Standard Substances PIB", (Stand 1.3.1980 and 1.7.1980).
- 12. Erdtmarn G. and Soyka W., Die γ-linfen der Radionuklide Band 1-5, April, 1974, (K.F.A).
- 13. KERNFORS CHUNG SANLAGE JULICH, Technical reports series No.295, "M. of Radionuclides in Food and the Environment", IAEA. 1989.
- 14. Dikson, H.W., Kerr, G.D., Perdue, P.T, and Abdulla, S.A., "Environmental Gamma-Ray Using Insult and Core Sampling Techniques", Health Physics, 30, 221-227, 1976.
- 15. Myrick T.E., "Determination Of Concentration of Selected Radionuclide in Surface in The U.S.", Health Physics, vol.51, No.2, 239-244, 1986.
- 16. Delaune R.D., Jones G.L. & Smith C.J., "Radionuclide Concentrations in Louisiana Soil and Sediments", Health Physics, vol.51, No.2, 239-244, 1986.
- 17. Mishra, V.C. and Sadasviran, S., "Fallout Radioactivity in Indian Soil", Health Physics, 23, 1972.
- 18. Pallai K.C., "Assessment of Natural Ridioactivity Levels in Building Materials and Evaluation of Indoor Radiation Exposure", Environment Technology Letters, vol.5, 1948.
- 19. Berelka, J. and Mathew, P.J., "Natural Radioactivity on Australian Building Materials, Industrial Wastes and By-Products", Health Physics, vol.48, No.1, 1985.
- 20. Mollah A.S., Rahman M.M. & Husain S.R., "Distribution of γ-emitting Radionuclide in Soil at The Atomic Energy Research Establishment, Savar, Bangladesh", Health Physics, vol.50, No.6, 1986.
- 21. Jhn S.A. & Gasparini A.P., "Gamma-Ray Spectrometry of Rocks, Methods in Geochemistry and Geophysics".

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادی مهدی محمود احمد علیوی فراس محمود هادی

- 22. UNSCEAR 1993, United Nations Scientific Committee on The Effect of Atomic Radiation, "Sources and Effects of Ionizing Radiation", Report to The General Assembly , with Scientific Annexes, New York, United Nations, 1993.
- 23. Yu-Ming Lin, Pei-Huo Lin, Ching Jiang Chen and Ching-Chung Huang, "Measurements Of Terrestrial γ-Radiation in Taiwan, Republic Of China", Health Physics, col.52, No.3, 1989.
- 24. Hassan A., Abdel Wahab A.M., Nada A., Walley Al-Dine N. and Khazbak N., "Determination Of Uranium and Thorium in Egyptian Monazite By Gamma-Ray Spectrometry", Applied Radiation and Isotopes, vol.48, No.1, 1997.
- 25. باز هير، عبد العزيز عمر محمد،" دراسة الترب السطحية الصخور اليمنية وتحليلها باستخدام طرائق نووية وطيفية"، اطروحة دكتوراه، جامعة بغداد /كلية التربية / ابن الهيثم، تموز 2000.
- 26. Mahat R.H. & Amin Y.M., "Concentration Of Radon Precursors in Some Malaysian Building Materials", J. Radio Anal Nucl. Chem. Letter. Chem. Latter, vol. 144, No.5, 1990.
- 27. الكبيسي، كمال كريم علي،" دراسة الجيولوجيا الاشعاعية للصحراء الغربية العراق مع التركيز على الجانب البيئي الاشعاعي "، اطروحة دكتوراه، جامعة بغداد / كلية العلوم /قسم علم الارض، 2004.
- 28. Ellis W.R., "Advantages of solid state nuclear track detectors for the assessment of alpha and fissile elements". Nuclear Tracks, Vol.12, Nos. 1-6 (1986), p. 773-780.
- 29. Fleischer R.L., Price P.B. & Walker R.M., "Nuclear Tracks in solid", University of California Press, (1975).
- 30. (I.A.E.A), International Atomic Energy Agency, Vienna, "Calibration of Desimeters used in Radio therapy". (A manual sponsored by the (IAEA) and (WHO)), Technical Reports Series, Vol.1, No. 374, (1994).
- 31. Zayir, Yousif Muhsin, "Radiological Characterization of the Western Region of Iraq", Thesis, University of Baghdad, College of Science: August (2000).
- 32. Ameen, Nabeel Hashem, "Assessment of Environmental Radioactivity in Baghdad City", M.Sc. Thesis, Al-Mustansiriyah University, College of Environmental Engineering, (2000).
- 33. صالح ، علي شمسي ، "التلوث الكيميائي والإشعاعي لمنطقة الوزيرية ببغداد" ، رسالة ماجستير، الكليّة الهندسية الكيميائية (2002).

قياس وتوصيف الملوثات الإشعاعية الطبيعية والصناعية في نماذج تربة مدينة بغداد باستعمال مطيافية أشعة كاما

خالد هادي مهدي محمود احمد عليوي فراس محمود هادي

34. Al-Mozouri, Nashwan Shawkat, "Environmental Radiological Pollution and its Sources in Nineveh Governorate", Thesis, University of Baghdad, (2000).

35. محمد ، شذى عبد الحسين ،" إيجاد تراكيز المواد المشعة في التربة باستخدام تقنية التحليل الطيفي لأشعة كاما "، أطروحة ماجستير – كلية التربية / ابن الهيثم – جامعة بغداد ، (1996).

