

Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

# Determination of Heavy Metals (Zn,Cd,Pb,Cu) by Atomic Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob and Ahmed Raoof Mahmood University of Tikrit ,College of pharmacy , Iraq

Received 23 April 2015 Accepted 9 August 2015

#### Abstract

The current study was conducted to measure the total concentration of heavy metals (Zn,Cd,Pb,Cu) in contaminated soil in Baiji oil refinery at Salah -alden governate, Iraq. Forty one samples were collected from different area distributed in two stations. The total concentration of heavy metals in soil samples were extracted by digestion of soil with concentrated nitric acid. The AAS was used to determine the metals at specific wave length and Hallow Cathode Lamp (HCL).Metal speciation was also determined by AAS after extraction of the metal with different chemical reagents.

**Keywords :** Determination, Speciation and Heavy Metals ,Zn,Cd,Cu,Pb, Atomic Absorption.

تقدير تراكيز العناصر الثقيلة (الزنك والكادميوم والرصاص والنحاس) المرتبطة مع طبقات التربة بواسطة تقنية طيف الامتصاص الذري

> حسين حسن خرنوب و احمد رؤوف محمود جامعة تكريت – كلية الصيدلة



Determination of Heavy Metals (Zn,Cd,Pb,Cu) by Atomic Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

## الخلاصة

تضمنت هذه الدراسة قياس التراكيز الكلية للعناصر الثقيلة (الزنك والكادميوم والرصاص والنحاس) في التربة الملوثة في مصفى بيجي حيث تم جمع (40) عينة من التربة وقد تم القياس باستخدام تقنية طيف الامتصاص الذري بعد الاستخلاص باستخدام حامض النتريك المركز. تم قياس تركيز العناصر المرتبطة بطبقات التربة بعد استخلاص العناصر باستخدام مواد كيميائية مختلفة ومن ثم قياس كمية العنصر المرتبطة بالطبقة

الكلمات المفتاحية: قياس، عناصر ثقيلة، الزنك، الخارصين، النحاس، الكادميوم، الطيف الذري

# Introduction

During the last twenty years ago, there has been increasing interest in environmental contamination by heavy metals due to some are essential for maintenance for normal growth and development, while other are  $toxic^{(1,2)}$ . Heavy metals have also received special attention because they are immutable, i-e not biodegradable in biochemical cycle<sup>(3)</sup>, and so can enter food chain via plant uptake or contamination of fresh water<sup>(4)</sup>. Recently the association between heavy metals accumulation in man and the incidence of disease has been  $recognized^{(5,6)}$ . The metals used in this study were Zn,Cd, Cu,Pb. The sources of these metals in soil are generated from geological origin and man activities<sup>(7)</sup>, therefore the soil was considered the main source of pollution to the environmental<sup>(8)</sup>. The sequential extraction gives good information about the chemical formula of the metal ion, bonded and free<sup>(9)</sup>. The metal species in ion exchangeable layer is weakly associated and can be release easily to the environmental<sup>(10)</sup>. The chemical agent was used to extract metal in ion exchangeable layer is magnesium chloride at pH = 5.4, while the rest of the metal in carbonate, Fe-Mn oxide, organic matter and residual layers can be extracted by sodium acetate (pH=5) , hydroxyl amine hydrochloride,H2O2, and mixture of strong acid (HCl+HNO3 respectively<sup>(11)</sup>. There are many analytical methods used for determination of Zn,Cd,Pb,Cu in environmental samples such as spectrophotometric, , inductive couple plasma, electrochemical and atomic absorption methods<sup>(12)</sup>. In present work flame atomic absorption spectrophometry was used due to its availability, sensitivity and reliable for use.



Determination of Heavy Metals (Zn,Cd,Pb,Cu) by Atomic Absorption Spectrophotometer (AAS) Technique Hussian Hassan Kharnoob Ahmed Raoof Mahmood

# **Experimental part and methods**

#### Sample area and collection of samples

The area was oil refinery in Baiji at Salah –alden governate which is fifty kilometer north of Tikrit city on west of Tigris river .Fourty samples soil were collected in plastic bags, labeled and removed to the laboratory. The samples were dried and prepare to determine total concentration of Zn,Cd,Cu,Pb.

## **Materials**

Concentrated nitric acid, hydrogen peroxide, acetic acid, ammonium acetate, hydroxylamine hydrochloride and magnesium chloride are pure chemical from BDH company.

Atomic absorption type Germany Varian AA240FS was used

# <u>Methods</u>

The sample was grinded in motor and sieving . Using 1mm , the sample (1gm) was digested with concentrated nitric acid at sand bath , until the dryness of the sample , then deionizer water was added , filtered and complete the filtrate to 25ml with deionizer water.

#### **Results**

The total concentration of Zn ,Cd, Cu, Pb were determined by AAS using the Air /Acetylene flame , specific Hallow Cathode Lamp, specific Wavelength and calibration curve of standard solution of each metals was run . After fitting the absorbance of the sample to the calibration curve of the metal to get the concentration of the metal , the result was multiple by 25ml and divided by one to get the result as  $\mu g/g$ . The results were described in Table -1-

DIVALAL TRYVERSIT DIVALAL TRYVERSIT CHILL ( / SUPPORT

Determination of Heavy Metals (Zn,Cd,Pb,Cu) by Atomic

Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

|      | Zn     | Cd       | Pb      | Cu     | Site           |
|------|--------|----------|---------|--------|----------------|
|      | 48.125 | 1.5625   | 280.5   | 12.15  | North of St-   |
|      | 53.94  | 1.2875   | 254.25  | 10.375 | TEL            |
|      | 60     | 1.54375  | 242.10  | 21.8   |                |
|      | 52.6   | 1.20625  | 93.75   | 16.1   |                |
|      | 61.8   | 2.31875  | 150.25  | 17.725 |                |
|      | 47.37  | 1.30625  | 97      | 15.1   |                |
| Mean | 53.972 | 1.537    | 186.308 | 15.541 |                |
| SD   | 5.9543 | 0.4089   | 82.998  | 4.065  | 500 N          |
|      | 55.24  | 1.31875  | 134.91  | 12.725 | South of St-   |
|      | 50.57  | 1.0125   | 107     | 11.05  | TEL            |
| Mean | 52.905 | 1.165625 | 120.955 | 11.887 |                |
| SD   | 3.302  | 0.216    | 19.735  | 1.184  | E I            |
|      | 55.075 | 1.43125  | 103.65  | 6.75   | East of St-TEL |
|      | 53.87  | 1.00625  | 80.22   | 10.675 | 2              |
|      | 39.752 | 1.40625  | 73.25   | 14.325 | 9              |
|      | 49.825 | 1.33     | 65.25   | 10.775 |                |
|      | 62.059 | 1.082    | 109     | 60.625 | VIENAE         |
| Mean | 52.116 | 1.251    | 86.274  | 20.63  |                |
| SD   | 8.197  | 0.194    | 19.148  | 22.517 |                |
|      | 43.83  | 1.2125   | 105.75  | 13.75  | West of St-    |
|      | 64.42  | 1.1812   | 194.25  | 14.525 | TEL            |
| Mean | 54.125 | 1.1968   | 150     | 14.137 | 255            |
| SD   | 14.559 | 0.0221   | 62.578  | 0.548  |                |
|      | 57.7   | 1.443    | 102.5   | 11.95  | Random of St-  |
|      | 45.82  | 1.256    | 72.5    | 11.45  | TEL            |
|      | 64.76  | 1 10/    | 79.5    | 12.375 |                |
|      | 147.93 | 1.068    | 185.5   | 21.225 |                |
|      | 47.375 | 1.275    | 34.5    | 12.9   |                |
| Mean | 72.717 | 1.208    | 94.9    | 13.98  |                |
| SD   | 42.753 | 0.1766   | 56.243  | 4.085  |                |

Table -1- Total concentration of Zn,Cd,Pb,Cu in Soil (µg/g).



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

#### Studying the speciation of Zn,Cd,Pb,Cu in soil

Scheme -1, listed below, was selected to study the speciation of Zn,Cd,Pb,Cu in different sites at Baiji refinery soil.

| Step | Surface layers    | chemicals reagents and conditions                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Exchangeable      | 1 g is extracted at room temp. At 8 ml of 1 M MgCl <sub>2</sub> (pH 7)<br>shaking for 1 h with centrifuge for 30min at 3000r/min,<br>filtrate in 25ml the volume to mark de-ionized water<br>,measure metal by AAS.                                                                                                                                                                                                                      |
| 2    | Carbonate         | To the step 1 residue add 8 ml of 1 M sodium acetate<br>adjusted to pH 5 with acetic acid shake for 5 h at room<br>temperature, filtrate as step 1.                                                                                                                                                                                                                                                                                      |
| 3    | Fe-Mn oxide       | To the residue of step 2 add 20ml 0,04M NH <sub>2</sub> OH.HCl in 25% acetic acid shaking in water bath at 95±°C for 6 h, centrifuge for5min at 3000r/min, filtrate as step 1                                                                                                                                                                                                                                                            |
| 4    | Organic<br>matter | To the residue of step 3 add 3 ml of 30% H <sub>2</sub> O <sub>2</sub> shaking and<br>add5ml H <sub>2</sub> O <sub>2</sub> heat to 85±3 °C for 2 h; add 3 ml of acidified<br>H <sub>2</sub> O <sub>2</sub> , heat to 85±3°C for 2 h; finish with 5ml of 3.2M<br>ammonium acetate in 20 % HNO <sub>3</sub> .for 20ml of de-ionized<br>water and agitate shaking for 0,5 h, centrifuge at 5min for<br>3000r/min, filtrate as step 1.       |
| 5    | Residual          | To the residue of step 4 few drop of $0.005N \text{ HNO}_3$ , add 3:1<br>HCl and HNO <sub>3</sub> 2.5 ml and 750µml in 30% H <sub>2</sub> O <sub>2</sub> Leaves24h,<br>hated at 95±3C <sup>0</sup> end drought add 2.5ml HF and 750 µml in<br>30% H <sub>2</sub> O <sub>2</sub> , hated 5 min at 95±3C <sup>0</sup> add 250 µml HCl, with<br>2.5 ml of de-ionized water, again hated 0.5h at 95±3C <sup>0</sup> ,<br>filtrate as step 1. |

The results obtain in all steps are illustrated in Tables(2-6)



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

Table -2- Speciation of Zn, Cd, Pb, Cu, in North of Station TEL

| Speciation µg/g  | Zn      | Cd     | Pb       | Cu    |
|------------------|---------|--------|----------|-------|
| Ion exchangeable | 1.425   | 0.25   | 35.75    | 0.2   |
| U                | 3.25    | 0.175  | 134.5    | 0.275 |
|                  | 1.875   | 0.4    | 132      | 0.275 |
|                  | 3.475   | 0.2    | 12.25    | 0.25  |
|                  | 3.95    | 1.175  | 36.75    | 0.375 |
|                  | 2.825   | 0.225  | 7.75     | 0.175 |
| Mean             | 2.8     | 0.4041 | 59.833   | 0.258 |
| SD               | 1.235   | 0.0432 | 1.435    | 0.321 |
| Carbonate        | 9.992   | 0.175  | 158.75   | 0.425 |
|                  | 11.737  | 0.075  | 32.05    | 0.325 |
|                  | 14.797  | 0.2    | 33.625   | 1.15  |
|                  | 9.665   | 0.025  | 32.25    | 0.4   |
| S.               | 11.025  | 0.025  | 41.75    | 0.5   |
|                  | 11.94   | ND     | 26       | 0.1   |
| Mean             | 11.526  | 0.0833 | 54.070   | 0.483 |
| SD               | 1.234   | 0.0123 | 1.876    | 0.123 |
| Fe-Mn oxide      | 26.93   | 1.1    | 67.75    | 5.175 |
|                  | 27.69   | 1.075  | 36.35    | 4.625 |
|                  | 26.096  | 1.1    | 36.25    | 10.42 |
|                  | 25.4928 | 1.25   | 28       | 8.352 |
|                  | 33.225  | 1.175  | 29.5     | 9.275 |
| 2                | 24.515  | 1.225  | 32       | 7.825 |
| Mean             | 27.3248 | 1.1541 | 38.308   | 7.612 |
| SD               | 1.765   | 0.675  | 1.654    | 2.876 |
| Organic matter   | 3.3475  | 0.425  | 6        | 2.125 |
|                  | 4.0375  | 0.35   | 38.5     | 1.2   |
|                  | 3.8875  | 0.25   | 22.25    | 2.575 |
|                  | 3.2575  | 0.325  | 4.5      | 2.82  |
|                  | 4.38    | 0.325  | 31.25    | 3.025 |
|                  | 3.105   | 0.35   | 22.75    | 2.9   |
| Mean             | 3.669   | 0.3375 | 20.875   | 2.440 |
| SD               | 0.543   | 0.876  | 1.8760.8 | 0.876 |
| Residual         | 5.97062 | N.D    | 10.937   | 2.925 |
|                  | 7.42625 | N.D    | 12.3     | 2.843 |
|                  | 12.3575 | N.D    | 18.506   | 6     |
|                  | 10.8669 | N.D    | 15.725   | 3.831 |
|                  | 9.00313 | N.D    | 10.293   | 4.187 |
|                  | 6.7468  | N.D    | 9.95     | 4.656 |
| Mean             | 8.728   | N.D    | 12.951   | 4.073 |
| SD               | 1.765   | N.D    | 1.876    | 0.765 |



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

Table -3- Speciation of Zn, Cd, Pb, Cu, in of East of Station

| Speciation µg/g       | Zn      | Cd     | Pb      | Cu    |
|-----------------------|---------|--------|---------|-------|
| Ion exchangeable      | 4.65    | 0.25   | 12.25   | 0.6   |
| _                     | 1.625   | 0.025  | 18.25   | 0.275 |
|                       | 2.125   | 0.375  | 5       | 0.05  |
|                       | 2.825   | 0.2    | 4       | 0.15  |
|                       | 1.7     | 0.3    | 6       | 0.6   |
| Mean                  | 2.585   | 0.23   | 9.1     | 0.335 |
| SD                    | 1.543   | 0.012  | 1.234   | 0.432 |
| Carbonate             | 9.155   | N.D    | 36      | 0.35  |
|                       | 6.17    | N.D    | 33.5    | 0.05  |
|                       | 7.1425  | N.D    | 13.75   | 0.7   |
| (V)                   | 9.695   | N.D    | 13.75   | 0.225 |
| 15                    | 10.765  | 0.175  | 31.75   | 1.975 |
| Mean                  | 8.5855  | 0.035  | 25.75   | 0.66  |
| SD                    | 0.987   | 0.1231 | 1.432   | 0.321 |
| Fe-Mn oxide           | 28.835  | 1.275  | 13.425  | 3.425 |
|                       | 33.472  | 1.275  | 12.75   | 2.25  |
| TAT                   | 19.892  | 1.35   | 17.5    | 9.125 |
| DI                    | 26.725  | 1.15   | 31.25   | 6.25  |
|                       | 28.94   | 0.975  | 27.75   | 34.9  |
| Mean                  | 27.5728 | 1.205  | 20.535  | 11.19 |
| SD                    | 2.876   | 0.567  | 1.453   | 0.342 |
| <b>Organic</b> matter | 4.1225  | 0.35   | 29.25   | 1.175 |
| E.                    | 4.095   | 0.425  | 7.44    | 2.7   |
|                       | 2.5075  | 0.175  | 26.75   | 1.5   |
| 27                    | 3.7075  | 0.575  | 4       | 1.2   |
|                       | 6.3525  | 0.1    | 33.25   | 11.15 |
| Mean                  | 4.157   | 0.325  | 20.138  | 3.545 |
| SD                    | 0.453   | 0.124  | 1.123   | 1.234 |
| Residual              | 7.3481  | N.D    | 11.518  | 2.037 |
|                       | 7.7137  | N.D    | 6.6187  | 3.781 |
|                       | 6.3856  | N.D    | 11.075  | 2.862 |
|                       | 7.1193  | N.D    | 11.606  | 2.45  |
|                       | 15.631  | N.D    | 10.35   | 12.22 |
| Mean                  | 8.83954 | N.D    | 10.2335 | 4.67  |
| SD                    | 1.343   | N.D    | 3.786   | 4.874 |



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

Table -4- Speciation of Zn, Cd, Pb, Cu, in South of station TEL

| Speciation µg/g  | Zn     | Cd     | Pb      | Cu    |
|------------------|--------|--------|---------|-------|
| Ion exchangeable | 3.425  | 0.35   | 20.25   | 0.2   |
|                  | 1.975  | 0.275  | 4.75    | 0.8   |
| Mean             | 2.7    | 0.3125 | 12.5    | 0.5   |
| SD               | 1.025  | 0.053  | 10.96   | 0.424 |
| Carbonate        | 12.227 | 0.025  | 35.75   | 0.425 |
|                  | 13.37  | 0.1    | 37.5    | 1.2   |
| Mean             | 12.798 | 0.0625 | 36.625  | 0.812 |
| SD 🗸             | 0.808  | 0.053  | 1.237   | 0.548 |
| Fe-Mn oxide      | 29.39  | 1.075  | 39.5    | 6.875 |
| Z                | 27.192 | 0.975  | 11      | 3.65  |
| Mean             | 28.291 | 1.025  | 25.25   | 5.262 |
| SD               | 1.554  | 0.07   | 20.15   | 2.28  |
| Organic matter   | 3.275  | 0.325  | 27      | 1.725 |
| DIYA             | 4.03   | 0.275  | 37      | 2.125 |
| Mean             | 3.6525 | 0.3    | 32      | 1.925 |
| SD               | 0.533  | 0.035  | 7.071   | 0.282 |
| Residual         | 6.285  | N.D    | 11.687  | 3.068 |
| E                | 5.006  | N.D    | 16.65   | 2.268 |
| Mean             | 5.6455 | N.D    | 14.1685 | 2.668 |
|                  | 0 904  | N.D    | 3.509   | 0.565 |



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

| Table -5- Speciation | of Zn, | Cd, Pb, | Cu, in | West of station TEL |
|----------------------|--------|---------|--------|---------------------|
|                      |        |         |        |                     |

| Speciation µg/g  | Zn      | Cd     | Pb     | Cu     |
|------------------|---------|--------|--------|--------|
| Ion exchangeable | 2.175   | 0.175  | 12.5   | 0.225  |
|                  | 2.725   | 0.125  | 24.25  | 0.15   |
| Mean             | 2.45    | 0.15   | 18.375 | 0.187  |
| SD               | 0.388   | 0.0353 | 8.308  | 0.053  |
| Carbonate        | 7.6725  | 0.075  | 31.25  | 0.15   |
| -                | 7.175   | 0.125  | 48     | 0.275  |
| Mean             | 7.42375 | 0.1    | 39.625 | 0.2125 |
| SD               | 0.351   | 0.035  | 11.844 | 0.088  |
| Fe-Mn oxide      | 18.552  | 1.25   | 29     | 4.075  |
| Q                | 40.786  | 1.125  | 94.25  | 6.225  |
| Mean             | 29.669  | 1.1875 | 61.625 | 5.15   |
| SD               | 15.721  | 0.088  | 46.138 | 1.523  |
| Organic matter   | 2.925   | 0.225  | 30.75  | 2.9    |
| 10               | 5.845   | 0.225  | 9      | 3.175  |
| Mean             | 4.385   | 0.225  | 19.875 | 3.037  |
| SD               | 2.064   | 0      | 15.37  | 0.194  |
| Residual         | 12.243  | N.D    | 2.8    | 6.813  |
| - AV             | 6.6756  | N.D    | 17.743 | 4.25   |
| Mean             | 9.4593  | N.D    | 10.271 | 5.531  |
| SD               | 3.936   | N.D    | 10.566 | 1.812  |



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

Table -6- Speciation of Zn, Cd, Pb, Cu, in of Random station TEL

| Speciation µg/   | Zn     | Cd       | Pb     | Cu    |
|------------------|--------|----------|--------|-------|
| 1 10             | 2      | 0.2      | 4.75   | 0.12  |
|                  | 1.375  | 0.15     | 1.75   | 0.132 |
| Ion exchangeable | 1.775  | 0.15     | 1.75   | 0.025 |
| -                | 6.825  | 0.225    | 11     | 0.775 |
|                  | 4.425  | 0.225    | 1.25   | 0.525 |
| Mean             | 3.28   | 0.19     | 4.1    | 0.315 |
| SD               | 2.313  | 0.037    | 4.098  | 0.32  |
| 15               | 8.177  | 0.025    | 21.75  | 0.15  |
|                  | 6.412  | N.D      | 20.75  | 0.375 |
| Carbonate        | 10.715 | N.D      | 41     | 0.3   |
| 150              | 36.417 | N.D      | 61     | 0.35  |
| S                | 11.027 | N.D      | 7.25   | 1.125 |
| Mean             | 14.549 | 0.005    | 30.35  | 0.46  |
| SD 2             | 12.37  | 0.0089   | 20.93  | 0.381 |
| Fe-Mn oxide      | 32.554 | 1.3      | 31     | 4.55  |
|                  | 24.302 | 1.325    | 33.5   | 4.15  |
|                  | 37.207 | VI VILLI | 14.5   | 4.2   |
|                  | 69.262 | 1.075    | 60     | 7.65  |
|                  | 17.747 | 1.025    | 7.5    | 5.275 |
| Mean             | 36.214 | 1.145    | 29.3   | 5.165 |
| SD               | 19.934 | 0.162    | 20.354 | 1.46  |
| K.               | 4.775  | 0.325    | 32.5   | 1.6   |
| Organia mattan   | 3.692  | 0.325    | 4.5    | 2.25  |
| Organic matter   | 4.987  | 0.325    | 7.75   | 3.328 |
| VV.              | 30.337 | 0.275    | 38     | 5.675 |
|                  | 7.357  | 0.3      | 3.75   | 1.575 |
| Mean             | 10.229 | 0.31     | 17.3   | 2.885 |
| SD               | 11.319 | 0.039    | 16.569 | 1.713 |
|                  | 10.843 | N.D      | 13.237 | 3.337 |
|                  | 8.331  | N.D      | 11.918 | 3.006 |
| Residual         | 11.142 | N.D      | 12.781 | 3.6   |
|                  | 4.881  | N.D      | 16.168 | 6.231 |
|                  | 5.7043 | N.D      | 13.568 | 3.7   |
| Mean             | 8.1806 | N.D      | 13.534 | 3.975 |
| SD               | 2.868  | N.D      | 1.597  | 1.289 |



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

# **Discussion**

The results in Table -1- indicate that all sites of the station TEL are contaminated with lead in all surface of layers of soil as showing in Figure-1-



Figure -1- Distribution of Total Concentration of Zn, Cd ,Cu and Pb in Soil

## Speciation of Zn, Cd, Cu,Pb in Baiji Refinery Soil

1. Zinc metal exists in all sites in following order(Figure-2-)

 $Fe-Mn \ oxide > carbonate > residual > organic \ matter > ion-exchangeable \ .$ 



#### Absorption Spectrophotometer (AAS) Technique

#### Hussian Hassan Kharnoob

Ahmed Raoof Mahmood



2. Cadmium metal present in all sites of the soil in the following order(Figure-3-)

Fe-Mn oxide >organic matter>ion-exchangeable > carbonate >residual



Figure-3- Speciation of Cadmium in Soil



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

3. Copper exists in all sites in the layer as following (Figure-4-)

 $Fe-Mn \ oxide > Residual > organic \ matter > carbonate > ion-exchangeable \ .$ 



## Figure-4- Speciation of Copper in Soil

4. speciation of lead as following order(Figure-5-)

carbonate > Fe-Mn oxide >Ion-exchangeable > organic matter >residual.



#### Absorption Spectrophotometer (AAS) Technique



#### Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

## Figure-5- Speciation of Lead in Soil

The results mentioned previously mean that lead metal is easily available to taken up by plant and other biotic while Cd,Zn,Cu are less available to biota, this fact explain that lead-more toxic than Cd,Zn,Cu. The analytical parameters for determination of Zn,Cd,Cu,Pb in BaiJi soil were illustrated in Table-7-, the results show low detection limits for each metal which indicate the method is sensitive enough for determine the pollution of metal in soli

DIVALAL TRYVERSIT DIVALAL TRYVERSIT CHILL ( / SUPPORT

Determination of Heavy Metals (Zn,Cd,Pb,Cu) by Atomic

Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

#### Table-7- The Analytical Parameters for Determination of Zn,Cd,Cu,Pb in Soil

| Metals                                  | Zn              | Cd              | Pb               | Cu               |
|-----------------------------------------|-----------------|-----------------|------------------|------------------|
| λ max(nm)                               | 213.9           | 228.8           | 217              | 324.8            |
| Regression line                         | Y=0.199x+0.0097 | Y=0.294x+0.0036 | Y=0.0403x+0.0069 | Y=0.1005x-0.0009 |
| Standard deviation                      | 0.0003          | 0.0004          | 0.0005           | 0.0004           |
| Correlation cofficial<br>R <sup>2</sup> | 0.997           | 0.997           | 0.998            | 0.998            |
| Limit of detection<br>(µg/ml)           | 0.013           | 0.006           | 0.033            | 0.012            |
| Limit of quantity<br>(µg/ml)            | 0.003           | 0.012           | 0.110            | 0.041            |
| Total<br>concentration(µg/g)            | 58.103          | 1.312           | 128.281          | 15.917           |
| Flame                                   | Air/Acetylene   | Air/Acetylene   | Air/Acetylene    | Air/Acetylene    |

The speciation study was carried out using Tessier scheme by sequential extraction the chemical formula of metal present the layers , ion – exchangeable , carbonate , Fe-Mn oxide , organic matter and residual . The metal species was also determined by AAS (Table-8-). The results which are listed below showed that the area of the study was contaminated with lead metal due to addition of tetraethyl lead(TEL) to petrol as anti-knock agent and to increase octane number of fuel .

CONTRACT COLLEGE STATE

Determination of Heavy Metals (Zn,Cd,Pb,Cu) by Atomic

Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

| <b>Table-8- Speciation</b> | of Zn.Cd.Cu.Pb in | Baiii | Soil Sample |
|----------------------------|-------------------|-------|-------------|
| Tuble o Speciation         |                   | Duiji | Son Sumple  |

| Metals concentration (µg/g) | Zn     | Cd    | Pb     | Cu    |
|-----------------------------|--------|-------|--------|-------|
| Ion – exchangeable          | 2.820  | 0.272 | 24.337 | 0.308 |
| Organic matter              | 5.501  | 0.372 | 20.809 | 3.836 |
| Residual                    | 8.834  | N.D   | 12.721 | 4.203 |
| Carbonate                   | 11.624 | 0.051 | 37.871 | 0.527 |
| Fe-Mn oxide                 | 29.940 | 1.152 | 32.638 | 7.413 |

The results obtained in this study was compared with other workers<sup>(13-19)</sup> as showing in Table (9). The results shows that AAS is useful technique for determination of heavy metals in soil as comparing with other analytical techniques .

# Table (9) Comparison Between Present Results with Results of Other Workers for Soil Analysis Using Different Analytical Techniques

| Technique |          | Ref    |        |        |              |
|-----------|----------|--------|--------|--------|--------------|
|           | Zn       | Cd     | Pb     | Cu     |              |
| DPASV     |          | 0.62 💛 | 12.24  | 18.36  | 13           |
| ICP-OES   | 103      |        |        |        | 14           |
| XRF       | 11.33    | 3.03   | 23.79  | 10.1   | 15           |
| ICP/OES   | 0.03     | 0.068  | 0.037  | 1.27   | 16           |
| ICP       | 53.93    |        | 18     | 111.0  | 17           |
| ICP/MS    | 9.8ng/ml | 0.89   | 22.0   | 20     | 18           |
| AAS       | 25.06    | 9.11   | 14.13  | 22.14  | 19           |
| A AAS AAS | 8.103    | 1.312  | 12.281 | 15.917 | Present Work |

## **Conclusion**

The results obtained in this work proved that measurement of total concentration of metal does not consider as pollution index while determination the concentration of metal speciation indicate the pollution index. The recent study was also conclude that all the sites of the soil in Baiji refinery are contaminated with Pb,Cd,Zn,Cu due to close these sites to the station of tetraethyl lead (TEL). The metals mentioned before have the ability to accumulated in the



Absorption Spectrophotometer (AAS) Technique

Hussian Hassan Kharnoob

Ahmed Raoof Mahmood

environment and effect on people working in and out the sites, therefore precaution must be taken to reduce the risk of these metal on public health.

# **References**

- **1.** Martin ,M.H., Ducan , E.M., **Environ. Pollut** . (B), 3, 147,(1982)
- 2. Chestes, R., Kudoja ,M.W.,J. Environ . Pollut .(B), 10,213,(1985)
- 3. Tessier, A., Campbel, P.G.C., Bisson, M., Anal Chem. 51: 844,(1979)
- 4. Saenz, V.andBlusco, G.P., Environ Toxicol .22,2833,(2000)
- 5. Peter, S. and Adewale ,J.R,J. Environ . protection, 3, 1384,(2012)
- 6. Burt ,R.and Wilson , M ., J. Environ. Quality. 5,345,(2010)
- 7. Bahadur, A. Z., and Chaudhry, G., J. Pharm . Pharmacol. 5, 1157,(2011)
- 8. Babatunde, O. A. and Oyewale, M.M., J. Toxicology Food Tech. 8, 47,(2014)
- 9. Lasat, M.M., J. Envi. Quality, 31,109,(2002)
- **10.** Yruela, T., **J. Plant Physiol.**,17,145,(2005)
- 11. Templeton, D.M. and Ariese F., Pure. Appl. Chem., 72, 1453,(2000)
- 12. Emmerson, R.,H.,andBirkett , J. W, Sci. Total Envi. 254, 75,(2000)
- 13. Chen, G., Anal. Sci., 20,825 ,(2004).
- 14. Kalicanin, B. and Velimirovic, D.(2014), J. Medi., Sci.3,59,(2014)
- 15. Mihaly, N. and Cozmuta ,M., J. Appl. Sci. 2 , 358,(2012)
- 16. Pavlovic, A.andLaketić, T., J. Hem. Ind. 68, 247,(2014).
- 17. Raju, O. and Prasad, P., J.. Res. Sci. Eng. Tec. (2), 978.(2014)
- 18. Parveen, N. ,and Ghaffar, A. J. Geogr. Nat . 2, 1,(2010).
- 19. Sonthalia, P. ,and Mcgaw, E., Analytical Chem . Acta. 522 , 35,(2004)