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Abstract  
This paper presents an iterated and iterated retarded integral inequalities and explicit bounds 

to unknown functions on some iterated and iterated retarded integral inequalities are 

established. 
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 الولخص 

ان الهدف الزئيسي مه هذا البحث هى تقديم المتزاجحاث التكامليت المتكزرة واعطاء قيىد صزيحت للدوال المجهىلت في 

 يت المتكزرة التباطؤيت .زاجحاث التكاملتبعض المتزاجحاث التكامليت المتكزرة والم

 

1. Introduction 
Integral inequalities with iterated integrals are indispensable for us in the quantitative study of 

various differential equations and integral equations. motivated by a desire to apply integral 

inequalities which provide explicit bounds on unknown functions, in the development of the 

theory of differential and integral equations with retarded arguments. 

Lemma  1 . 

     Let  and  be nonnegative continuous functions on  for  the inequality 

                                  

 holds, where    is constant. Then 

                                  

 

     The result was proved by Gronwall [13]. Gronwall type integral inequalities provide a 

necessary tool for the study of the theory of differential equations, integral equations and 

inequalities of various types see [2-11, 15 ].Some Gronwall-Bellman type integral inequalities 

with fixed delay has been presented in [1].  

     The aim of the present paper is to establish explicit bounds on more general integral 

inequalities with iterated and iterated retarded integral inequalities. 

     The plan of the paper is as follows: Section 2  presents some iterated integral inequalities. 

Section 3  presents some iterated retarded integral inequalities. Finally, Section 4  presents a 

short conclusion. 
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2. Integral Some Iterated Inequalities 

      This section presents some iterated integral inequalities and then give explicit bounds to 

unknown functions. Later on  and   

 

Theorem : (2.1) 
      Let  

be real constant, where 

                       

 
     If      , …..(2.1) 

for ,  then  

                  ,    …… .…..  (2.2)     

for , where    and 

                                   

 
    Let    be real-valued positive continuous and nondecreasing function defined in . 

 If        …..  (2.3) 

for  , then      

                              ……  (2.4) 

for ,  where  

         

and 

       

 

 
       If 

  

                                                                                                             ….. (2.5) 

for , then 

                        …….  (2.6) 

for  , where 
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And 

  

 

 
Proof: 

 

        Defin a function  by                       

…..   (2.7) 

 Then  ,  is nondecreasing for  and inequality (2.1) can be written as 

                                             …..  (2.8)  

From inequality (2.8) and using the elementary inequality see [14], [12] 

 
Where      and       

we observe that                 

…….   (2.9) 

Differentiating (2.7) and using (2.8), (2.9) we get: 
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Integrating both sides of the above inequality from    to   we get : 

               ……    (2.10) 

 

Using (2.10) in (2.8), we get the required inequality in (2.2). 

 

 
      Since  is positive, continuous and nondecreasing function for , from(2.3) then 

one can get : 

. 

Now an application of the inequality given in  yields the desired result in(2.4). 

 

 
Define the function  by  

….(2.11) 
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Then as in the proof of part   from (2.11) we see that the inequalities (2.8) and (2.9) hold. 

Differentiating (2.11) and using (2.8), (2.9) and the fact that  is nondecreasing in  we 

get:   
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Integrating both sides of the above inequality from 0 to  yields 

                                       .               ……   (2.12) 

Using (2.12) in (2.8), we get the required inequality in (2.6).  

 

Theorem : (2.2) 

Let  ,  

 and   be real constant. 

 
Let  and  

 
                                                                                                          …..   (2.13) 

for  If  

              ……   (2.14) 

then  

       ….. (2.15) 

for ,  where  

 
, 

 
 

and  
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Let are nondecreasing in for each  and  

  for .                         ……  (2.16) 

 

If    …..  (2.17)                  

then  

                                                 

…..   (2.19) 

 

for , where 

, 

 
and  

 

. 

 

 
Let and  
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                                                                                          ………..(2.20) 

for  If 

                ……   (2.21) 

then 

,         …  (2.21) 

 

for , where  

,  

  

     and      

 

 

Proof : 

 
Define a function   by 

 

                                                                                

………  (2.22) 

Then  ,   is nondecreasing for  

                                    …………….(2.23) 

 

Then as in the proof of part , from (2.23)we see that the inequalities(2.8)and(2.9)hold. 

Differentiating(2.23)and using(2.9)and the fact that  is nondecreasing in , we get: 
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But  is nonnegative and nondecreasing for , then  

 
Therefore, , one can have : 

 
 

Integrating both sides of the above inequality from to  , for , we get: 

                                

………(2.24) 

from (2.24) and (2.9) one can get  

 

 

 

 .            
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……(2.25) 

 

From (2.23) and (2.25) Which implies  

 

 
then  

 
from (2.14) we obtain that  

                                                                                      …….(2.26) 

 

The required inequality (2.15) follows from (2.26), (2.24) and (2.8). 

 

 
Fix any  , , then for  we have  

, 

                                                                                                                                         

                                                                                                         …….. (2.27) 

Define a Function  ,  by 

    …….(2.28) 

Then ,  is nondecreasing for , 
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        ,                       …………(2.29) 

and inequality (2.16) can be written as  

.          ……. (2.30) 

Then as in the proof of part  , from (2.30) we see that the inequalities (2.31) hold.  

 

                                                   

                                                                                            …….. (2.31) 

Differentiating (2.28) and using (2.31) and the fact that   is nondecreasing in , we get  

 

 

 
then  

 

                                  ……….(2.32) 

 

for  by setting   in (2.32) and integrating it with respect to    from    to  we 

get: 

              

        

……...…(2.33) 

 

Since    is arbitrary from (2.33), (2.31), (2.30) and (2.29) with  replaced by  one can get  

           

             

………..(2.34) 

 

                                       …………(2.35) 
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                                                                                                          …….(2.36) 

 

Where 

  

                                   …… ….  (2.37) 

 

then from (2.37) and (2.36) Which implies  

 

                                                                             . 

But  is nonnegative and nondecreasing for , then 

 
                        

                                                                    

 

from (2.17) we obtain that  

 

                                                  ………..(2.38) 

 

The required inequality (2.18) follows from (2.38), (2.34) and (2.35). 

 

 
Define the function    by  
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.                  

……. (2.39) 

 

Then   ,   is non-decreasing for    

Then as in the proof of part  . From (2.39) we see that the inequalities (2.8) and (2.9) 

hold. Differentiating (2.39) and using (2.9) and the fact that   is nondecreasing in  we 

get 

 

 

 
                          

. 

 

Let 

                                 ……….    (2.40) 

 

then  and nondecreasing for , and since  then  

                                             ……….  (2.41) 

                                                                   ……… (2.42) 

                                        ………..   (2.43) 

Differentiating both sides of (2.40) and using (2.42) and (2.43), We get: 
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then  

                                                                           

………..  (2.44) 

Integrating both sides of (2.44) from   to t , for  , and using (2.42), we get:  

                                      

                                                                                               ………  (2.45) 

from (2.45) and (2.41), one can get: 

 
from (2.20) which implies  

                                                                 ………..  (2.46)  

The required inequality (2.21) follows from (2.46), (2.45) and (2.9). From the hypotheses, we 

observe that  for  

 

3. Iterated Retarded Integral Inequalities 
           In this section we prove obtain explicit bounds to unknown functions in the some 

iterated retarded integral inequalities ,in the following theorem we take the single integral 

inequalities and in another theorem we take the double and triple integral inequalities. 

 

Theorem : (3.1) 

         Let   and ,  for 

be non-decreasing with   on   and   be 

real constant. 

 
   

If

           

                                                                                                          ……  (3.1) 

for  then  

 ,               ……  (3.2) 

for , where  
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and 

 

 

 
         Let   be real-valued positive continuous and nondecreasing function defined in  

If 

 ,            

……. .(3.3) 

for , then 

         …….  (3.4) 

for where 

and 

 

 

Proof : 

 

      Define a function  by      .         

……   (3.5) 

Then   and as in the proof of part , we get  

 
Therefore,  , one can have: 
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Integrating both side of the above inequality from  to ,   and by making the change of 

variables we get: 

              for   .   …..   (3.6)  

 

Using (3.6) in (2.8), yields the required inequality in (3.2).u 

 

 
       Since   is positive continuous and nondecreasing function for   , then inequality 

(3.3) can be written as  

 . 

Now an application of the inequality given in  yields desired result in (3.4). 

 

Theorem : (3.2) 

      Let  

be a real constant,  be nondecreasing with  

 

 
      Let    and 

 

,                                       …..   (3.7) 
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for    If  

             …..   (3.8) 

then  

          

, 

for , where 

 

, 

and  

 
 

 
        Let   are nondecreasing in , for each and 

 

,                           
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…….  (3.10) 

For  .  If  

     ,            

…….   (3.11) 

then  

             

……    (3.12) 

for   , where  

 
 

 
and  

 
 

 

 
       Let   and if 

,       

…..  (3.13) 

for . Then 
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                     …….   (3.14) 

For  , where  

 
and  

 
Proof: 

 
    Define a function    by 

 
                            

                          ,                 …………  (3.15)      

 

   

 Then     is nondecreasing for  

                                 ………. (3.16) 

 

Then as in the proof of part , from (3.15) we see that the inequalities (2.8) and (2.9) hold. 

Differentiating (3.15) and using (2.9) and the fact that  is nondecreasing in   we get: 
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Therefore, , one can have: 

 

 

                           

 

 

Integrating both sides of the above inequality from to   and by making the change 

of variables, we get: 

            .. (3.17) 

from (3.17), (2.9) and (3.16), we get: 
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then  

 
from (3.8) we obtain that  

                                  ………  (3.18) 

 

The required inequality (3.9) follows from (3.18), (3.17) and (2.8). 

 

 
Fix any  then for , we have 

 

 

                                                                                   

……….(3.19)                                                                                                      

Define a function by     

 

                                …..…..(3.20) 
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Then  is nondecreasing for  

 

                                            ….. (3.21) 

and inequality (3.10) can be written as 

 

                                   …….(3.22) 

Then as in the proof of part  , from (3.22) we see that the inequalities (3.23) hold. 

                                                       ……..(3.23) 

Differentiating (3.20) and using (3.23) and the fact that  is nondecreasing in   we get: 

 

 

                          ,                          

……..  (3.24) 

 

for by setting   in (3.24) and integrating it with respect to  from    to   and 

by making change of variables we get: 

 

 

 

 
 

Since  is arbitrary from (3.25), (3.23), (3.22) and (3.21) with  replaced by  one can 

get: 
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                                                                                                 ………..(3.26) 

 

                                                       ……….  (3.27) 

and 

 

 
              

      

…….(3.28) 

 

 

and  

                        ……….(3.29)       

                                        

from (3.29) and (3.28) one can get: 

 

 
Since  is nondecreasing and nonnegative for  and     then 
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From (3.11) which implies  

                                                                         ……….(3.30) 

 

The required inequality (3.12) follows from (3.30), (3.26), and (3.27). 

 

 
Define a function   by 

        

     

                                                                                                         ……..(3.31) 

Then is nondecreasing for  . 

Then as in the proof of part , from (3.31) we see that the inequalities (2.8) and (2.9) hold. 

Differentiating (3.31) and using (2.9) and the fact that  is nondecreasing in   we get: 

 

 

.  
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Therefore, , one can have 

 

 

 

 
Integrating both sides of the above inequality from to since  and by 

making the change of variables we get: 

                                     ….. (3.32) 

The required inequality (3.14) follows from (3.32) and (2.9). 

 

4. Conclusions  
     We have constructed some iterated integral inequalities then extended to the iterated 

retarded integral inequalities. And also explicit bounds to unknown functions in each integral 

inequalities are given. 
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