Retarded Integral Inequalities with Iterated Integrals

 Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

Received 9 October 2013 ; Accepted 21 October 2014

Abstract

This paper presents an iterated and iterated retarded integral inequalities and explicit bounds to unknown functions on some iterated and iterated retarded integral inequalities are established.
keywords: Integral inequalities, Retarded integral inequalities, Non-decreasing functions, Non-negative continuous functions, partial derivatives, Explicit Bounds.

E-mail : alisangawi2000@yahoo.com
م. سؤدد موسى رشيد - قسم الرياضيات ـكلية العووم - جامعة السليمانية
E-mail : sudadmusa@hotmail.com
الملخص

1. Introduction

Integral inequalities with iterated integrals are indispensable for us in the quantitative study of various differential equations and integral equations. motivated by a desire to apply integral inequalities which provide explicit bounds on unknown functions, in the development of the theory of differential and integral equations with retarded arguments.

Lemma 1.

Let $\mathrm{u}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be nonnegative continuous functions on $\mathrm{I}=[0, \infty)$ for the inequality

$$
u(x) \leq c+\int_{a}^{x} g(t) u(t) d t \quad, \quad t \in I
$$

holds, where c is constant. Then

$$
u(x) \leq c e^{\int_{a}^{x} g(t) d t}, t \in I .
$$

The result was proved by Gronwall [13]. Gronwall type integral inequalities provide a necessary tool for the study of the theory of differential equations, integral equations and inequalities of various types see [2-11, 15].Some Gronwall-Bellman type integral inequalities with fixed delay has been presented in [1].

The aim of the present paper is to establish explicit bounds on more general integral inequalities with iterated and iterated retarded integral inequalities.

The plan of the paper is as follows: Section 2 presents some iterated integral inequalities. Section 3 presents some iterated retarded integral inequalities. Finally, Section 4 presents a short conclusion.

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

2. Integral Some Iterated Inequalities

This section presents some iterated integral inequalities and then give explicit bounds to unknown functions. Later on $\mathbb{R}_{+}=[0, \infty], I=[\alpha, \beta]$ and $I_{1}=\left[t_{2}, \beta\right]$.

Theorem : (2.1)

Let
$u(t), f(t), a(t), g(t), h(t) \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), k(t, s), k_{t}(t, s) \in$ $C\left(D, \mathbb{R}_{+}\right)$and $p>1$
be real constant, where

$$
D=\left\{(t, s) \in \mathbb{R}_{+}^{2}: 0 \leq s \leq t \leq \infty\right\}
$$

(a_{1})

$$
\begin{equation*}
\text { If } u^{p}(t) \leq a(t)+\int_{0}^{t} f(s)\left[u^{p}(s)+\int_{0}^{s} k(s, \sigma) u(\sigma) d \sigma\right] d s \tag{2.1}
\end{equation*}
$$

for $t \in \mathbb{R}_{+}$, then

$$
\begin{equation*}
u(t) \leq\left[a(t)+\int_{0}^{t} A_{1}(s) \exp ^{\int_{s}^{t} B_{1}(\tau) d \tau} d s\right]^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

for $t \in \mathbb{R}_{+}$, where $A_{1}(t)=\frac{f(t)}{p}\left[p a(t)+\int_{0}^{t} k(t, \sigma)[(p-1)+a(\sigma)] d \sigma\right]$ and

$$
B_{1}(t)=f(t)\left[1+\int_{0}^{t} \frac{k(t, \sigma)}{p} d \sigma\right] .
$$

(a_{2})
Let $c(t)$ be real-valued positive continuous and nondecreasing function defined in \mathbb{R}_{+}.

$$
\begin{equation*}
\text { If } u^{p}(t) \leq c^{p}(t)+\int_{0}^{t} f(s)\left\{u^{[p]}(s)+\int_{0}^{s} k(s, \sigma) u(\sigma) d \sigma\right\} d s \tag{2.3}
\end{equation*}
$$

for $t \in \mathbb{R}_{+}$, then

$$
\begin{equation*}
u(t) \leq c(t)\left[1+\int_{0}^{t} A_{2}(s) \exp ^{\int_{s}^{t} B_{[}[2](\tau) d \tau} d s\right]^{\frac{1}{p}} \tag{2.4}
\end{equation*}
$$

for $t \in \mathbb{R}_{+}$, where

$$
A_{2}(t)=f(t)\left[1+\int_{0}^{t} k(t, \sigma) c^{1-p}(\sigma) d \sigma\right]
$$

and

$$
B_{2}(t)=f(t)\left[1+\int_{0}^{t} \frac{\left\{k(t, \sigma) c^{1-p}(\sigma)\right\}}{p} d \sigma\right] .
$$

(a_{3})
If
$u^{p}(t) \leq a(t)+\int_{0}^{t} k(t, s)\left\{u(s)+\int_{0}^{s}\left[g(\sigma) u^{p}(\sigma)+\right.\right.$
$h(\sigma) u(\sigma)] d \sigma\} d s$,
for $t \in \mathbb{R}_{+}$, then

$$
\begin{equation*}
u(t) \leq\left[a(t)+\int_{0}^{t} A_{3}(s) \exp \int_{s}^{\int_{s}^{t} B_{s}(\tau) d \tau} d s\right]^{\frac{1}{p}} \tag{2.5}
\end{equation*}
$$

for $t \in \mathbb{R}_{+}$, where

$$
\begin{aligned}
& \text { Retarded Integral Inequalities with Iterated Integrals } \\
& \text { Ali W.K. Sangawi } \\
& A_{3}(t)=\frac{k(t, t)}{p}\left[(p-1)+a(t)+\int_{0}^{t}[p g(\sigma) a(\sigma)+h(\sigma)[(p-1)+a(\sigma)]] d \sigma\right] \\
& +\int_{0}^{t} \frac{k_{t}(t, s)}{p}[(p-1)+a(s) \\
& +\int_{0}^{s}[p g(\sigma) a(\sigma)+h(\sigma)[(p-1) \\
& +a(\sigma)]] d \sigma] d s
\end{aligned}
$$

And

$$
B_{3}(t)=\frac{k(t, t)}{p}\left[1+\int_{0}^{t}[p g(\sigma)+h(\sigma)] d \sigma\right]+\int_{0}^{t} \frac{k_{t}(t, s)}{p}[1+
$$

$\left.\int_{0}^{s}[p g(\sigma)+h(\sigma)] d \sigma\right] d s$.

Proof:

(a_{1})
Defin a function $z(t)$ by $z(t)=\int_{0}^{t} f(s)\left\{u^{p}(s)+\int_{0}^{s} k(s, \sigma) u(\sigma) d \sigma\right\} d s$.
..... (2.7)
Then $z(t) \geq 0, z(t)$ is nondecreasing for $t \in I$ and inequality (2.1) can be written as

$$
\begin{equation*}
u^{p}(t) \leq a(t)+z(t) \tag{2.8}
\end{equation*}
$$

From inequality (2.8) and using the elementary inequality see [14], [12]
$x^{\frac{1}{p}} y^{\frac{1}{q}} \leq \frac{x}{p}+\frac{y}{q}$
Where $x, y \geq 0$ and $\frac{1}{p}+\frac{1}{q}=1$,
we observe that $\quad u(t) \leq[a(t)+z(t)]^{\frac{1}{p}}(1)^{\frac{1}{p} \frac{p}{p-1)}}$
$\leq \frac{(p-1)}{p}+\frac{a(t)}{p}+\frac{z(t)}{p}$
Differentiating (2.7) and using (2.8), (2.9) we get:

$$
=A_{1}(t)+B_{1}(t) z(t)
$$

Integrating both sides of the above inequality from 0 to t we get :

$$
\begin{equation*}
z(t) \leq \int_{0}^{t} A_{1}(s) \exp ^{\int_{s}^{t} B_{1}(\tau) d \tau} d s \tag{2.10}
\end{equation*}
$$

Using (2.10) in (2.8), we get the required inequality in (2.2).

$\left(\alpha_{2}\right)$

Since $c(t)$ is positive, continuous and nondecreasing function for $t \in \mathbb{R}_{+}$, from (2.3) then one can get :

$$
\begin{gathered}
\left(\frac{u(t)}{\sigma(t)}\right)^{p} \leq \\
1+\int_{0}^{t} f(s)\left\{\left(\frac{u(s)}{c(s)}\right)^{p}+\int_{0}^{s} k(s, \sigma) c^{1-p}(\sigma) \frac{u(\sigma)}{c(\sigma)} d \sigma\right\} d s
\end{gathered}
$$

Now an application of the inequality given in $\left(a_{1}\right)$ yields the desired result $\mathrm{in}(2.4)$.

(a_{3})

Define the function $z(t)$ by

$$
z(t)=\int_{0}^{t} k(t, s)\left\{u(s)+\int_{0}^{s}\left[g(\sigma) u^{p}(\sigma)+\right.\right.
$$

$h(\sigma) u(\sigma)] d \sigma\} d s$

$$
\begin{aligned}
& \text { Retarded Integral Inequalities with Iterated Integrals } \\
& \text { Ali W.K. Sangawi }{ }^{1,2} \text { and Sudad M. Rasheed }{ }^{1,2} \\
& z^{\prime}(t)=f(t)\left\{u^{p}(t)+\int_{0}^{t} k(t, \sigma) u(\sigma) d \sigma\right\} \\
& \leq f(t)\{a(t)+z(t) \\
& +\int_{0}^{t} k(t, \sigma)\left[\frac{(p-1)}{p}+\frac{a(\sigma)}{p}\right. \\
& \left.\left.+\frac{z(\sigma)}{p}\right] d \sigma\right\} \\
& =\frac{f(t)}{p}\left\{p a(t)+\int_{0}^{t} k(t, \sigma)[(p-1)+a(\sigma)] d \sigma\right\} \\
& +f(t)\left\{1+\int_{0}^{t} \frac{k(t, \sigma)}{p} d \sigma\right\} z(t)
\end{aligned}
$$

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
Then as in the proof of part $\left(a_{1}\right)$, from (2.11) we see that the inequalities (2.8) and (2.9) hold. Differentiating (2.11) and using (2.8), (2.9) and the fact that $z(t)$ is nondecreasing in t we get:

$$
\begin{aligned}
& z^{\prime}(t)=k(t, t)\left\{u(t)+\int_{0}^{t}\left[g(\sigma) u^{p}(\sigma)+h(\sigma) u(\sigma)\right] d \sigma\right\}+ \\
& \int_{0}^{t} k_{t}(t, s)\left\{u(s)+\int_{0}^{s}\left[g(\sigma) u^{p}(\sigma)+h(\sigma) u(\sigma)\right] d \sigma\right\} d s \\
& \leq k(t, t)\left\{\frac{p-1}{p}+\frac{a(t)}{p}+\frac{z(t)}{p}\right. \\
& \quad+\int_{0}^{t}[g(\sigma)[a(\sigma)+z(\sigma)] \\
& \left.\left.\quad+h(\sigma)\left[\frac{p-1}{p}+\frac{a(\sigma)}{p}+\frac{z(\sigma)}{p}\right]\right] d \sigma\right\}
\end{aligned}
$$

$$
+\int_{0}^{t} k_{t}(t, s)\left\{\frac{p-1}{p}+\frac{a(s)}{p}+\frac{z(s)}{p}\right.
$$

$$
+\int_{0}^{s}\left[g(\sigma)[a(\sigma)+z(\sigma)]+h(\sigma)\left[\frac{p-1}{p}+\frac{a(\sigma)}{p}\right.\right.
$$

$$
\left.\left.\left.+\frac{z(\sigma)}{p}\right]\right] d \sigma\right\} d s
$$

$$
=\frac{k(t, t)}{p}\{(p-1)+a(t)
$$

$$
\left.+\int_{0}^{t}[p g(\sigma) a(\sigma)+h(\sigma)[(p-1)+a(\sigma)]] d \sigma\right\}
$$

$$
+\int_{0}^{t} \frac{k_{t}(t, s)}{p}\{(p-1)+a(s)
$$

$$
+\int_{0}^{s}[p g(\sigma) a(\sigma)
$$

$$
+h(\sigma)[(p-1)+a(\sigma)]] d \sigma\} d s+\frac{k(t, t)}{p}
$$

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{gathered}
\left\{z(t)+\int_{0}^{t}[p g(\sigma) z(\sigma)+h(\sigma) z(\sigma)] d \sigma\right\} \\
+\int_{0}^{t} \frac{k_{t}(t, s)}{p}\{z(s) \\
\left.+\int_{0}^{s}[p g(\sigma) z(\sigma)+h(\sigma) z(\sigma)] d \sigma\right\} d s \\
=A_{3}(t)+B_{3}(t) z(t)
\end{gathered}
$$

Integrating both sides of the above inequality from 0 to t yields

$$
\begin{equation*}
z(t) \leq \int_{0}^{t} A_{3}(s) \exp ^{\int_{s}^{t} B_{s}(\tau) d \tau} d s \tag{2.12}
\end{equation*}
$$

Using (2.12) in (2.8), we get the required inequality in (2.6).

Theorem : (2.2)

Let $u(t), g(t) \in C\left(I, \mathbb{R}_{+}\right), k(t, s), b(t, s), c(t, s) \in C\left(D, \mathbb{R}_{+}\right)$,
$h(t, s, \sigma) \in C\left(E, \mathbb{R}_{+}\right)$and $a(t), a^{\prime}(t) \in C\left(I, \mathbb{R}_{+}\right), p>1$ be real constant.
(b_{1})
Let $\phi(t) \in C\left(I, \mathbb{R}_{+}\right)$and $u^{p}(t) \leq a(t)+\int_{\alpha}^{t} \phi(s) u(s) d s+\int_{\alpha}^{t} \int_{\alpha}^{s} k(s, \tau) u(\tau) d \tau d s+$
$\int_{\alpha}^{t} \int_{\alpha}^{s} \int_{\alpha}^{\pi} h(s, \tau, \sigma) u(\sigma) d \sigma d \tau d s+\int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s$
for $t \in I$. If

$$
\begin{equation*}
P_{1}=\frac{1}{p} \int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau) \exp ^{\int_{\alpha}^{\tau} B_{4}(\xi) d \xi} d \tau d s<1 \tag{2.13}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq\left[a(t)+M_{1} \exp ^{\int_{\alpha}^{t} B_{4}(\xi) d \xi}+\int_{\alpha}^{t} A_{4}(\eta) \exp ^{\int_{\alpha}^{t} B_{4}(\xi) d \xi} d \eta\right]^{\frac{1}{p}} \tag{2.15}
\end{equation*}
$$

for $t \in I$, where

$$
\begin{aligned}
& A_{4}(t)= \frac{1}{p}\left\{\phi(t)[(p-1)+a(t)]+\int_{\alpha}^{t} k(t, \tau)[(p-1)\right. \\
&+a(\tau)] d \tau \\
&\left.\quad+\int_{\alpha}^{t} \int_{\alpha}^{\tau} h(t, \tau, \sigma)[(p-1)+a(\sigma)] d \sigma d \tau\right\} \\
& B_{4}(t)= \frac{1}{p}\left\{\phi(t)+\int_{\alpha}^{t} k(t, \tau) d \tau+\int_{\alpha}^{t} \int_{\alpha}^{\tau} h(t, \tau, \sigma) d \sigma d \tau\right\}
\end{aligned}
$$

DIVALA JOURNAL FOR PURE SCIENCES

$$
\begin{aligned}
& M_{1}= \\
& \frac{1}{1-P_{1}}\left\{\frac{1}{p} \int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau)[(p-1)+a(\tau)\right. \\
& \\
& \left.\left.\quad+\int_{\alpha}^{\tau} A_{4}(\eta) \exp _{\alpha}^{\int_{\alpha}^{\tau} B_{4}(\xi) d \xi} d \eta\right] d \tau d s\right\}
\end{aligned}
$$

(b_{2})

Let $k(t, s), b(t, s), h_{t}(t, s, \sigma)$ are nondecreasing in $t \in I$, for each $s \in I$ and $u^{p}(t) \leq$
$a(t)+\int_{\alpha}^{t} k(t, \tau) u(\tau) d \tau+\int_{\alpha}^{t} \int_{\alpha}^{s} h(t, s, \sigma) u(\sigma) d \sigma d s+$
$\int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s$ for $t \in I$.

If $P_{2}=\frac{1}{p} \int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau) \exp ^{\int_{\alpha}^{\tau} B_{s}(\eta, \tau) d \eta} d \tau d s<1$
then
$u(t) \leq$
$\left[a(t)+M_{2} \exp ^{\int_{\alpha}^{t} B_{5}(\eta, t) d \eta}+\int_{\alpha}^{t} A_{5}(\xi, t) \exp ^{\int_{\xi}^{t} B_{5}(\eta, t) d \eta} d \xi\right]^{\frac{1}{p}}$
for $t \in I$, where

$$
A_{5}(t, T)=\frac{1}{p}\left\{k(T, t)[(p-1)+a(t)]+\int_{\alpha}^{t} h(T, t, \sigma)[(p-\right.
$$

1) $+a(\sigma)] d \sigma\}$
$B_{5}(t, T)=\frac{1}{p}\left\{k(T, t)+\int_{\alpha}^{t} h(T, t, \sigma) d \sigma\right\}$
and

$$
\begin{gathered}
M_{2}= \\
\frac{1}{1-P_{2}}\left\{\frac{1}{p} \int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau)[(p-1)+a(\tau)+\right. \\
\left.\left.\int_{\alpha}^{\tau} A_{5}(\xi, \tau) \exp ^{\int_{\xi}^{\tau} B_{5}(\eta, \tau) d \eta} d \xi\right] d \tau d s\right\}
\end{gathered}
$$

(b_{3})

Let $r(t) \in C\left(I, \mathbb{R}_{+}\right)$and

DIVALA JOURNAL FOR PURE SCIENCES

$$
\begin{aligned}
& \text { Retarded Integral Inequalities with Iterated Integrals } \\
& \text { Ali W.K. Sangawi, } \\
& u^{p}(t) \leq a(t)+\int_{\alpha}^{t} g(s)\left\{u(s)+\int_{\sigma}^{s} k(s, \sigma) u(\sigma) d \sigma+\right. \\
& \left.\int_{\alpha}^{\beta} r(\sigma) u(\sigma) d \sigma\right\}
\end{aligned}
$$

for $t \in I$. If

$$
\begin{equation*}
P_{3}=\int_{\alpha}^{\beta} r(\sigma) \exp \int_{\alpha}^{\sigma} B_{6}(\eta) d \eta \quad d \sigma<1, \tag{2.20}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq\left[a(t)+M_{3} \exp \int_{\alpha}^{t} B_{6}(\eta) d \eta \quad+\int_{\alpha}^{t} A_{6}(\xi) \exp ^{\int_{\alpha}^{t} B_{6}(\eta) d \eta} d \xi\right]^{\frac{1}{p}} \tag{2.21}
\end{equation*}
$$

for $t \in I$, where
$A_{6}(t)=g(t) \frac{1}{p}\left\{(p-1)+a(t)+\int_{\alpha}^{t} k(t, \sigma)[(p-1)+\right.$
$\left.a(\sigma)] d \sigma+\int_{\alpha}^{\beta} r(\sigma)[(p-1)+a(\sigma)] d \sigma\right\}$
$B_{6}(t)=\frac{1}{p} g(t)+k(t, t)+\int_{\alpha}^{t} k_{t}(t, \sigma) d \sigma \quad$ and
$M_{3}=\frac{1}{1-P_{3}}\left\{\int_{\alpha}^{\beta} r(\sigma) \int_{\alpha}^{\sigma} A_{6}(\xi) \exp \int_{\xi_{6}^{\tau} B_{6}(\eta) d \eta}^{d \xi} d \sigma\right\}$.

Proof :

(b_{1})
Define a function $z(t)$ by

$$
\begin{align*}
& z(t)=\int_{\alpha}^{t} \phi(s) u(s) d s+\int_{\alpha}^{t} \int_{\alpha}^{s} k(s, \tau) u(\tau) d \tau d s \\
& +\int_{\alpha}^{t} \int_{\alpha}^{s} \int_{\alpha}^{\pi} h(s, \tau, \sigma) u(\sigma) d \sigma d \tau d s \\
& \quad+\int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s \tag{2.22}
\end{align*}
$$

Then $z(t) \geq 0, z(t)$ is nondecreasing for $t \in I$

$$
\begin{equation*}
z(\alpha)=\int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s \tag{2.23}
\end{equation*}
$$

Then as in the proof of part $\left(a_{1}\right)$, from (2.23)we see that the inequalities(2.8) and(2.9)hold.
Differentiating(2.23)and using(2.9)and the fact that $z(t)$ is nondecreasing in t, we get:

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{aligned}
& z^{\prime}(t)=\phi(t) u(t)+\int_{\alpha}^{t} k(t, \tau) u(\tau) d \tau \\
& +\int_{\alpha}^{t} \int_{\alpha}^{\tau} h(t, \tau, \sigma) u(\sigma) d \sigma d \tau \\
& \leq \phi(t) \frac{1}{p}[(p-1)+a(t)+z(t)]+\int_{\alpha}^{t} k(t, \tau) \frac{1}{p}[(p-1) \\
& +a(\tau)+z(\tau)] d \tau \\
& +\int_{\alpha}^{t} \int_{\alpha}^{\pi} h(t, \tau, \sigma) \frac{1}{p}[(p-1)+a(\sigma)+z(\sigma)] d \sigma d \tau \\
& =\frac{1}{p}\left\{\phi(t)[(p-1)+a(t)]+\int_{\alpha}^{t} k(t, \tau)[(p-1)+a(\tau)] d \tau\right. \\
& \left.+\int_{\alpha}^{t} \int_{\alpha}^{\pi} h(t, \tau, \sigma)[(p-1)+a(\sigma)] d \sigma d \tau\right\} \\
& +\frac{1}{p}\left\{\phi(t) z(t)+\int_{\alpha}^{t} k(t, \tau) z(\tau) d \tau\right. \\
& \left.+\int_{\alpha}^{t} \int_{\alpha}^{\pi} h(t, \tau, \sigma) z(\sigma) d \sigma d \tau\right\} .
\end{aligned}
$$

But $z(t)$ is nonnegative and nondecreasing for $t \in I$, then
$z^{\prime}(t) \leq A_{4}(t)+B_{4}(t) z(t)$
Therefore, $\alpha \leq \eta \leq t \leq \beta$, one can have:
$\frac{d}{d \eta}\left[z(\eta) \exp \int^{\int_{\eta}^{t} B_{4}(\xi) d \xi}\right] \leq A_{4}(\eta) \exp \int_{\eta}^{\int_{\eta}^{t} B_{4}(\hbar) d \xi}$

Integrating both sides of the above inequality from α to t, for $t \in I$, we get:

$$
\begin{equation*}
z(t) \leq z(\alpha) \exp \int_{\alpha}^{t} B_{4}(\xi) d \xi \quad+\int_{\alpha}^{t} A_{4}(\eta) \exp ^{\int_{V^{t}}^{t} B_{4}(\xi) d \xi} d \eta \tag{2.24}
\end{equation*}
$$

from (2.24) and (2.9) one can get

$$
\begin{aligned}
& u(t) \leq \frac{1}{p} z(\alpha) \exp ^{\int_{\alpha}^{t} B_{4}(\xi) d \xi}+\frac{1}{p}[(p-1)+a(t)+ \\
& \int_{\alpha}^{t} A_{4}(\eta) \exp ^{\int_{V_{\eta}^{t} B_{4}(\zeta) d \xi}^{t} d \eta}
\end{aligned}
$$

From (2.23) and (2.25) Which implies

$$
\begin{aligned}
& z(\alpha) \leq \int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau)\left\{\frac{1}{p} z(\alpha) \exp \int_{\alpha}^{\tau} B_{4}(\xi) d \xi\right. \\
&+\frac{1}{p}[(p-1)+a(\tau) \\
&+\int_{\alpha}^{\tau} A_{4}(\eta) \exp \int_{\alpha}^{\tau} B_{4}(\xi) d \xi \\
&d \eta]\} d \tau d s
\end{aligned}
$$

then

$$
\left.\left.\begin{array}{rl}
z(\alpha)\left[1-\frac{1}{p} \int_{\alpha}^{\beta}\right. & \int_{\alpha}^{s} c(s, \tau) \exp \int_{\alpha}^{\tau} B_{4}(\xi) d \xi \\
d
\end{array}\right] d s\right] \quad \begin{aligned}
& \quad \\
& \int_{\alpha}^{\beta} \int_{\alpha}^{s} c(s, \tau) \frac{1}{p}[(p-1)+a(\tau) \\
& \\
& \left.+\int_{\alpha}^{\tau} A_{4}(\eta) \exp ^{\int_{\alpha}^{\tau} B_{4}(\xi) d \xi} d \eta\right] d \tau d s
\end{aligned}
$$

from (2.14) we obtain that

$$
z(\alpha) \leq M_{1} .
$$

The required inequality (2.15) follows from (2.26), (2.24) and (2.8).

(b_{2})

Fix any $T, \alpha \leq T \leq \beta$, then for $\alpha \leq t \leq T$, we have

$$
\begin{aligned}
& \quad u^{p}(t) \leq \\
& a(t)+\int_{\alpha}^{t} k(T, \tau) u(\tau) d \tau+\int_{\alpha}^{t} \int_{\alpha}^{s} h(T, s, \sigma) u(\sigma) d \sigma d s+ \\
& \int_{\alpha}^{\beta} b(T, s) \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s
\end{aligned}
$$

Define a Function $z(t, T), \alpha \leq t \leq T$ by $z(t, T)=\int_{\alpha}^{t} k(T, \tau) u(\tau) d \tau+\int_{\alpha}^{t} \int_{\alpha}^{s} h(T, s, \sigma) u(\sigma) d \sigma d s+$ $\int_{\alpha}^{\beta} b(T, s) \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s$

Then $z(t, T) \geq 0, z(t, T)$ is nondecreasing for $t \in I$,

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{equation*}
z(\alpha, T)=\int_{\alpha}^{\beta} b(T, s) \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s \tag{2.29}
\end{equation*}
$$

and inequality (2.16) can be written as

$$
\begin{equation*}
u^{p}(t) \leq a(t)+z(t, T), \quad \alpha \leq t \leq T . \tag{2.30}
\end{equation*}
$$

Then as in the proof of part (a_{1}), from (2.30) we see that the inequalities (2.31) hold.

$$
\begin{equation*}
u(t) \leq \frac{(p-1)}{p}+\frac{a(t)}{p}+\frac{z(t, T)}{p}, \quad \alpha \leq t \leq T \tag{2.31}
\end{equation*}
$$

Differentiating (2.28) and using (2.31) and the fact that $z(t, T)$ is nondecreasing in t, we get

$$
\begin{gathered}
z^{\prime}(t, T)=k(T, t) u(t)+\int_{\alpha}^{t} h(T, t, \sigma) u(\sigma) d \sigma \\
\leq \frac{1}{p}\{k(T, t)[(p-1)+a(t)] \\
\left.+\int_{\alpha}^{t} h(T, t, \sigma)[(p-1)+a(\sigma)] d \sigma\right\}+\frac{1}{p}\{k(T, t) \\
\left.+\int_{\alpha}^{t} h(T, t, \sigma) d \sigma\right\} z(t, T)
\end{gathered}
$$

then

$$
\begin{equation*}
z^{\prime}(t, T) \leq A_{5}(t, T)+B_{5}(t, T) z(t, T) \tag{2.32}
\end{equation*}
$$

for $\alpha \leq T$ by setting $t=\eta$ in (2.32) and integrating it with respect to η from α to T, we get:

$$
\begin{align*}
& z(T, T) \leq \\
& z(\alpha, T) \exp \int_{\alpha}^{T} B_{s}(\xi, T) d \xi \tag{2.33}
\end{align*}+\int_{\alpha}^{T} A_{5}(\eta, T) \exp ^{\int_{\eta}^{T} B_{s}(\xi, T) d \xi} d \eta, ~ l
$$

Since T is arbitrary from (2.33), (2.31), (2.30) and (2.29) with T replaced by t one can get

$$
\begin{align*}
& z(t, t) \leq \\
& z(\alpha, t) \exp \int_{\alpha}^{t} B_{5}\left(\xi_{5}, t\right) d \xi \tag{2.34}\\
& +\int_{\alpha}^{t} A_{5}(\eta, t) \exp ^{\int_{\alpha}^{t} B_{5}(\xi, t) d \xi} d \eta
\end{align*}
$$

$$
u^{p}(t) \leq a(t)+z(t, t)
$$

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
$u(t) \leq \frac{1}{p}\{(p-1)+a(t)+z(t, t)\}$
\leq
$\frac{1}{p}\left\{(p-1)+a(t)+z(\alpha, t) \exp ^{\int_{\alpha}^{t} B_{\xi}(\xi, t) d \xi}+\right.$
$\int_{\alpha}^{t} A_{5}(\eta, t) \exp \int_{\eta}^{\int_{\eta}^{t} B_{5}(\xi, t) d \xi} d \eta$,

Where

$$
\begin{equation*}
z(\alpha, t)=\int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau) u(\tau) d \tau d s \tag{2.37}
\end{equation*}
$$

then from (2.37) and (2.36) Which implies

$$
\begin{gathered}
z(\alpha, t) \leq \int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau) \frac{1}{p}\{(p-1)+a(\tau) \\
+z(\alpha, \tau) \exp _{\int_{\alpha}^{\tau} B_{s}(\xi, \tau) d \xi}^{\tau}
\end{gathered}
$$

$$
\left.+\int_{\alpha}^{\tau} A_{5}(\eta, \tau) \exp \int_{\eta}^{\int_{\bar{s}}^{\tau} B_{5}\left(\xi_{5} \tau\right) d \xi} d \eta\right\} d \tau d s
$$

But $z(t, T)$ is nonnegative and nondecreasing for $t \in I$, then
$z(\alpha, t)\left[1-\frac{1}{p} \int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau) \exp ^{\int_{\alpha}^{\tau} B_{s}(\xi, \tau) d \xi} d \tau d s\right] \leq$
$\int_{\alpha}^{\beta} b(t, s) \int_{\alpha}^{s} c(s, \tau) \frac{1}{p}\{(p-1)+a(\tau)+$
$\left.+\int_{\alpha}^{\tau} A_{5}(\eta, \tau) \exp ^{\int_{\eta}^{\tau} B_{5}(\xi, \tau) d \xi} d \eta\right\} d \tau d s$
from (2.17) we obtain that

$$
\begin{equation*}
z(\alpha, t) \leq M_{2} . \tag{2.38}
\end{equation*}
$$

The required inequality (2.18) follows from (2.38), (2.34) and (2.35).

(b_{3})

Define the function $z(t)$ by

DIYALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{align*}
& z(t)= \\
& \int_{\alpha}^{t} g(s)\left\{u(s)+\int_{\alpha}^{s} k(s, \sigma) u(\sigma) d \sigma+\int_{\alpha}^{\beta} r(\sigma) u(\sigma) d \sigma\right\} d s \tag{2.39}
\end{align*}
$$

Then $z(t) \geq 0, z(t)$ is non-decreasing for $t \in I, z(\alpha)=0$.
Then as in the proof of part $\left(a_{1}\right)$. From (2.39) we see that the inequalities (2.8) and (2.9) hold. Differentiating (2.39) and using (2.9) and the fact that $z(t)$ is nondecreasing in t, we get

$$
\begin{aligned}
& z^{\prime}(t)=g(t)\left[u(t)+\int_{\alpha}^{t} k(t, \sigma) u(\sigma) d \sigma+\int_{\alpha}^{\beta} r(\sigma) u(\sigma) d \sigma\right] \\
& \begin{aligned}
\leq & \frac{1}{p} g(t)\left\{(p-1)+a(t)+\int_{\alpha}^{t} k(t, \sigma)[(p-1)+a(\sigma)] d \sigma\right.
\end{aligned} \\
& \left.\quad+\int_{\alpha}^{\beta} r(\sigma)[(p-1)+a(\sigma)] d \sigma\right\} \\
& +\frac{1}{p} g(t)\left\{z(t)+\int_{\alpha}^{t} k(t, \sigma) z(\sigma) d \sigma+\int_{\alpha}^{\beta} r(\sigma) z(\sigma) d \sigma\right\} \\
& = \\
& A_{6}(t)+\frac{1}{p} g(t)\left\{z(t)+\int_{\alpha}^{t} k(t, \sigma) z(\sigma) d \sigma+\int_{\alpha}^{\beta} r(\sigma) z(\sigma) d \sigma\right\}
\end{aligned}
$$

Let

$$
\begin{equation*}
v(t)=z(t)+\int_{\alpha}^{t} k(t, \sigma) z(\sigma) d \sigma+\int_{\alpha}^{\beta} r(\sigma) z(\sigma) d \sigma \tag{2.40}
\end{equation*}
$$

then $v(t) \geq 0$ and nondecreasing for $t \in I$, and since $z(\alpha)=0$ then

$$
\begin{gather*}
v(\alpha)=\int_{\alpha}^{\beta} r(\sigma) z(\sigma) d \sigma \tag{2.41}\\
z(t) \leq v(t) \tag{2.42}\\
z^{\prime}(t) \leq A_{6}(t)+\frac{1}{p} g(t) v(t) \tag{2.43}
\end{gather*}
$$

Differentiating both sides of (2.40) and using (2.42) and (2.43), We get:
$v^{\prime}(t)=z^{\prime}(t)+k(t, t) z(t) d \sigma+\int_{\alpha}^{t} k_{t}(t, \sigma) z(\sigma) d \sigma$

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
$\leq A_{6}(t)+\frac{1}{p} g(t) v(t)+k(t, t) v(t) d \sigma+\int_{\alpha}^{t} k_{t}(t, \sigma) v(\sigma) d \sigma$
then

$$
\begin{equation*}
v^{\prime}(t) \leq A_{6}(t)+B_{6}(t) v(t) \tag{2.44}
\end{equation*}
$$

Integrating both sides of (2.44) from α to t, for $t \in I$, and using (2.42), we get:

$$
\begin{equation*}
z(t) \leq v(\alpha) \exp ^{\int_{\alpha}^{t} B_{6}(\xi) d \xi}+\int_{\alpha}^{t} A_{6}(\eta) \exp ^{\int_{\eta}^{t} B_{6}(\xi) d \xi} d \eta \tag{2.45}
\end{equation*}
$$

from (2.45) and (2.41), one can get:

$$
\begin{aligned}
& v(\alpha)\left[1-\int_{\alpha}^{\beta} r(\sigma) \exp p_{\alpha}^{\sigma} B_{6}(\xi) d \xi\right. \\
& \\
& \leq \int_{\alpha}^{\beta} r(\sigma) \int_{\alpha}^{\sigma} A_{6}(\eta) \exp \int_{\eta}^{\sigma} B_{6}(\xi) d \xi \\
& d \eta d \sigma
\end{aligned}
$$

from (2.20) which implies

$$
\begin{equation*}
v(\alpha) \leq M_{3} \tag{2.46}
\end{equation*}
$$

The required inequality (2.21) follows from (2.46), (2.45) and (2.9). From the hypotheses, we observe that $\alpha^{\prime}(t) \geq 0$ for $t \in I_{1}$.

3. Iterated Retarded Integral Inequalities

In this section we prove obtain explicit bounds to unknown functions in the some iterated retarded integral inequalities , in the following theorem we take the single integral inequalities and in another theorem we take the double and triple integral inequalities.

Theorem : (3.1)
Let $u(t), f(t), a(t), g(t)$ and $h(t) \in C\left(I, \mathbb{R}_{+}\right), k(t, s) \in C\left(I^{2}, \mathbb{R}_{+}\right)$for
$\$ t_{\mathrm{s}} \leq s \leq t \leq T, \alpha(t) \in C^{1}(I, I)$ be non-decreasing with $\alpha(t) \leq t$ on I and $p>1$ be real constant.
(c_{1})
If

$$
u^{p}(t) \leq
$$

$a(t)+\int_{\alpha\left(t t_{0}\right)}^{\alpha(t)} f(s)\left\{u^{p}(s)+\int_{\alpha(t s)}^{s} k(s, \sigma) u(\sigma) d \sigma\right\} d s$
for $t \in I$, then

$$
\begin{equation*}
u(t) \leq\left[a(t)+\int_{\alpha(t))}^{\alpha(t)} D_{1}(s) \exp ^{\alpha_{s}^{\alpha(t)} E_{1}(\hbar) d \xi} d s\right]^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

for $t \in I$, where

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{aligned}
& D_{1}(t)=f(t)\left[a(t)+\int_{\alpha\left(t_{0}\right)}^{t} k(t, \sigma)\left[\frac{p-1}{p}+\frac{a(\sigma)}{p}\right] d \sigma\right] \quad \text { and } \\
& E_{1}(t)=f(t)\left[1+\int_{\alpha\left(t_{0}\right)}^{t} \frac{k\left(t_{,} \sigma\right)}{p} d \sigma\right]
\end{aligned}
$$

(c_{2})

Let $c(t)$ be real-valued positive continuous and nondecreasing function defined in I.
If

$$
\begin{gather*}
u^{p}(t) \leq \\
c^{p}(t)+\int_{\alpha(t \cdot)}^{\alpha(t)} f(s)\left\{u^{p}(s)+\int_{\alpha(t \cdot)}^{s} k(s, \sigma) u(\sigma) d \sigma\right\} d s \tag{3.3}
\end{gather*}
$$

for $t \in I$, then

$$
\begin{equation*}
u(t) \leq c(t)\left[1+\int_{\alpha(t)}^{\alpha(t)} D_{2}(s) \exp ^{\int_{s}^{\alpha(t)}} E_{2}(\xi) d \xi, d s\right]^{\frac{1}{p}} \tag{3.4}
\end{equation*}
$$

for $t \in I$, where

$$
\begin{array}{r}
D_{2}(t)=f(t)\left[1+\int_{\left.\alpha(t)^{2}\right)}^{t} k(t, \sigma) c^{1-p}(\sigma) d \sigma\right] \quad \text { and } \\
\quad E_{2}(t)=f(t)\left[1+\int_{\left.\alpha(t)^{t}\right)}^{t} \frac{k(t, \sigma) c^{1-p}(\sigma)}{p} d \sigma\right] .
\end{array}
$$

Proof :

(c_{1})
Define a function $z(t)$ by $z(t)=\int_{\alpha(t))}^{\alpha(t)} f(s)\left\{u^{p}(s)+\int_{\left.\alpha(t)_{0}\right)}^{s} k(s, \sigma) u(\sigma) d \sigma\right\} d s$.
Then $z\left(t_{0}\right)=0$ and as in the proof of part $\left(a_{1}\right)$, we get

$$
\begin{align*}
& z^{\prime}(t) \leq\left[f (\alpha (t)) \left\{a(\alpha(t))+\int_{\alpha(t)}^{\alpha(t)} k(\alpha(t), \sigma)\left[\frac{p-1}{p}\right.\right.\right. \tag{3.5}\\
&\left.\left.\left.+\frac{a(\sigma)}{p}\right] d \sigma\right\}\right] \alpha^{\prime}(t) \\
&+f(\alpha(t))\left\{1+\int_{\left.\alpha(t)^{\prime}\right)}^{\alpha} \frac{k(\alpha(t), \sigma)}{p} d \sigma\right\} \alpha^{\prime}(t) z(t) .
\end{align*}
$$

Therefore, $t \leq \eta \leq t \leq T$, one can have:
$\frac{d}{d \eta}\left[z(\eta) \exp \int^{\int_{\eta}^{\mathrm{t}} f(\alpha(\tau))\left\{1+\int_{\alpha(t)]}^{\alpha(\tau)} \frac{k(\alpha(\tau), \sigma)}{p} d \sigma\right\} \alpha^{I}(\tau) d \tau}\right]$

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
$\leq f(\alpha(\eta))\left\{a(\alpha(\eta)) \int_{\alpha(t s)}^{\alpha(\eta)} k(\alpha(\eta), \sigma)\left[\frac{p-1}{p}\right.\right.$
$\left.\left.+\frac{a(\sigma)}{p}\right] d \sigma\right\} \alpha^{\prime}(\eta) \exp \int_{\eta}^{\int_{\eta}^{t} f(\alpha(\tau))\left\{1+\int_{\alpha(\tau))}^{\alpha(\tau) k(\alpha(\tau), \sigma)} \frac{p}{p} d \sigma \alpha^{\prime}(\tau) d \tau\right.}$
Integrating both side of the above inequality from $t_{\text {s }}$ to $t, t \in I$ and by making the change of variables we get:

$$
\begin{equation*}
z(t) \leq \int_{\alpha(t s)}^{\alpha(t)} D_{1}(s) \exp ^{\int_{s}^{\alpha(t)}} E_{1}(\xi) d \xi \quad d s \quad \text { for } t \in I . \tag{3.6}
\end{equation*}
$$

Using (3.6) in (2.8), yields the required inequality in (3.2).u

(c_{2})

Since $c(t)$ is positive continuous and nondecreasing function for $t \in I$, then inequality (3.3) can be written as

$$
\begin{gathered}
{\left[\frac{u(t)}{\varepsilon(t)}\right]^{p} \leq} \\
1+\int_{\alpha(t)}^{\alpha(t)} f(s)\left\{\left[\frac{u(s)}{\sigma(s)}\right]^{p}+\int_{\alpha(t))}^{s} k(s, \sigma) c^{1-p}(\sigma)\left[\frac{u(\sigma)}{\sigma(\sigma)}\right] d \sigma\right\} d s .
\end{gathered}
$$

Now an application of the inequality given in ($\boldsymbol{c}_{\mathbf{1}}$) yields desired result in (3.4).
Theorem : (3.2)
Let
$u(t), g(t) \in C\left(I_{1}, \mathbb{R}_{+}\right), k(t, s), b(t, s), c(t, s) \in C\left(D_{1}, \mathbb{R}_{+}\right)$,
$h(t, s, \sigma) \in C\left(E_{1}, \mathbb{R}_{+}\right)$and $a(t), a^{\prime}(t) \in C\left(I_{1}, \mathbb{R}_{+}\right), p>1$
be a real constant, $\alpha(t) \in C^{1}\left(I_{1}, I_{1}\right)$ be nondecreasing with $\alpha(t) \leq t$ on I_{1}.
$\left(d_{1}\right)$
Let $\phi(t) \in C\left(I_{1}, \mathbb{R}_{+}\right)$and
$u^{p}(t) \leq a(t)+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} \phi(s) u(s) d s$
$+\int_{\substack{\alpha(t s) \\ \alpha(t)}}^{\alpha(t)} \int_{\substack{\alpha(t s) \\ s}}^{s} k(s, \tau) u(\tau) d \tau d s$
$+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} \int_{\alpha\left(t_{0}\right)}^{s} \int_{\alpha\left(t_{0}\right)}^{\tau} h(s, \tau, \sigma) u(\sigma) d \sigma d \tau d s$
$+\int_{\alpha\left(t_{0}\right)}^{\beta} \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s$,

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
for $t \in I_{1}$. If

$$
\begin{equation*}
q_{1}=\frac{1}{p} \int_{\left.\alpha(t)^{2}\right)}^{\beta} \int_{\alpha(t)]}^{s} c(s, \tau) \exp ^{\int_{\alpha(t)}^{\alpha(\tau)} E_{s}(\theta) d \theta} d \tau d s<1 \tag{3.8}
\end{equation*}
$$

then
$u(t) \leq$

for $t \in I_{1}$, where

$$
\begin{aligned}
D_{3}(t)= & \frac{1}{p}\left\{\phi(t)[(p-1)+a(t)]+\int_{\left.\alpha(t)^{2}\right)}^{t} k(t, \tau)[(p-1)\right. \\
& +a(\tau)] d \tau+\int_{\alpha\left(t_{0}\right)}^{t} \int_{\alpha\left(t_{0}\right)}^{\tau} h(t, \tau, \sigma)[(p-1) \\
& +a(\sigma)] d \sigma d \tau\}, \\
E_{3}(t)= &
\end{aligned}
$$

$\frac{1}{p}\left\{\phi(t)+\int_{\alpha\left(t_{0}\right)}^{t} k(t, \tau) d \tau+\int_{\alpha\left(t_{0}\right)}^{t} \int_{\alpha\left(t_{0}\right)}^{\tau} h(t, \tau, \sigma) d \sigma d \tau\right\}$
and

$$
\begin{aligned}
& N_{1}=\frac{1}{1-q_{1}}\left\{\frac{1}{p} \int_{\alpha(t)}^{\beta} \int_{\alpha(t,)}^{s} c(s, \tau)[(p-1)+a(\tau)\right. \\
&+\int_{\alpha(t s)}^{\alpha(\tau)} D_{3}(\psi) \exp ^{\int_{\psi}^{\alpha(\tau)}} E_{3}(\theta) d \theta \\
&d \psi] d \tau d s
\end{aligned}
$$

(d_{2})

Let $k(t, s), b(t, s), h(t, s, \sigma)$ are nondecreasing in $t \in I_{1}$, for each $s \in I_{1}$ and $u^{p}(t)$

$$
\begin{aligned}
& \leq a(t)+\int_{\left.\alpha(t)^{2}\right)}^{\alpha(t)} k(t, \tau) u(\tau) d \tau \\
& +\int_{\alpha\left(t_{s}\right)}^{\alpha(t)} \int_{\alpha\left(t_{0}\right)}^{s} h(t, s, \sigma) u(\sigma) d \sigma d s+ \\
& \quad \int_{\alpha\left(t_{0}\right)}^{\beta} b(t, s) \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s,
\end{aligned}
$$

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

For $t \in I_{1}$. If

$$
\begin{equation*}
q_{2}=\frac{1}{p} \int_{\alpha(t o)}^{\beta} b(t, s) \int_{\alpha(t o)}^{s} c(s, \tau) \exp \int_{\alpha(t,)^{E_{4}} E_{4}(\theta) d \theta}^{\alpha(\tau)} d \tau d s< \tag{3.10}
\end{equation*}
$$

1
,
then

$$
\begin{equation*}
u(t) \leq \tag{3.11}
\end{equation*}
$$

$\left[a(t)+N_{2} \exp ^{\int_{\alpha(t))^{\alpha(t)} E_{4}(\theta) d \theta}+\int_{\alpha(t \cdot)}^{\alpha(t)} D_{4}(\psi) \exp ^{\int_{\psi}^{\alpha(t)}} E_{4}(\theta) d \theta} d \psi\right]^{\frac{1}{p}}$
for $t \in I_{1}$, where

$$
\begin{aligned}
& D_{4}(\psi)=\frac{1}{p}\left\{k(t, \psi)[(p-1)+a(\psi)]+\int_{\alpha\left(t_{0}\right)}^{\psi} h(t, \psi, \sigma)[(p\right. \\
& -1)+a(\sigma)] d \sigma\}, \\
& E_{4}(\theta)=\frac{1}{p}\left\{k(t, \theta)+\int_{\alpha(t,)}^{\theta} h(t, \theta, \sigma) d \sigma\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N_{2}=\frac{1}{1-q_{2}}\left[\frac{1}{p} \int_{\alpha\left(t_{0}\right)}^{\beta} b(t, s) \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau)[(p-1)+a(\tau)\right. \\
&+\int_{\alpha\left(t_{0}\right)}^{\alpha(\tau)} D_{4}(\psi) \exp ^{p p_{\psi}(\tau)} E_{4}(\theta) d \theta \\
&d \psi] d \tau d s] .
\end{aligned}
$$

(d_{3})
Let $e(t, s) \in C\left(D_{1}, \mathbb{R}_{+}\right)$and if
$u^{p}(t) \leq a(t)+\int_{\alpha(t s)}^{\alpha(t)} g(s)\left\{u(s)+\int_{\alpha(t))}^{s} k(s, \sigma) u(\sigma) d \sigma+\right.$
$\left.\int_{\left.\alpha(t)_{2}\right)}^{\beta} e(s, \sigma) u(\sigma) d \sigma\right\} d s$
for $t \in I_{1}$. Then

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{equation*}
u(t) \leq\left[a(t)+\int_{\alpha(t)}^{\alpha(t)} D_{5}(\psi) \exp ^{\int_{\psi}^{\alpha(t)} E_{5}(\theta) d \theta} d \psi\right]^{\frac{1}{p}} \tag{3.14}
\end{equation*}
$$

For $t \in I_{1}$, where

$$
\begin{aligned}
D_{5}(t)=\frac{1}{p} g(t) & \left\{(p-1)+a(t)+\int_{\alpha\left(t_{0}\right)}^{t} k(t, \sigma)[(p-1)\right. \\
& \left.+a(\sigma)] d \sigma+\int_{\alpha\left(t_{0}\right)}^{\beta} e(t, \sigma)[(p-1)+a(\sigma)] d \sigma\right\}
\end{aligned}
$$

and
$E_{5}(t)=\frac{1}{p} g(t)\left[1+k(t, \sigma) d \sigma+\int_{\alpha\left(t_{0}\right)}^{\beta} e(t, \sigma) d \sigma\right]$.
Proof:
$\left(d_{1}\right)$
Define a function $z(t)$ by

$$
\begin{align*}
z(t)= & \int_{\alpha(t)^{2}}^{\alpha(t)} \phi(s) u(s) d s+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} \int_{\alpha\left(t_{0}\right)}^{s} k(s, \tau) u(\tau) d \tau d s \\
& +\int_{\left.\alpha(t)^{2}\right)}^{\alpha(t)} \int_{\left.\alpha(t)^{2}\right)}^{s} \int_{\left.\alpha(t)_{0}\right)}^{\tau} h(s, \tau, \sigma) u(\sigma) d \sigma d \tau d s \\
& +\int_{\alpha\left(t_{0}\right)}^{\beta} \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s \tag{3.15}
\end{align*}
$$

Then $z(t) \geq 0, z(t)$ is nondecreasing for $t \in I_{1}$

$$
\begin{equation*}
z\left(t_{0}\right)=\int_{\alpha\left(t_{0}\right)}^{\beta} \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s \tag{3.16}
\end{equation*}
$$

Then as in the proof of part $\left(a_{1}\right)$, from (3.15) we see that the inequalities (2.8) and (2.9) hold. Differentiating (3.15) and using (2.9) and the fact that $z(t)$ is nondecreasing in t, we get:

$$
\begin{gathered}
z^{\prime}(t)=\phi(\alpha(t)) u(\alpha(t)) \alpha^{\prime}(t)+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} k(\alpha(t), \tau) u(\tau) d \tau \alpha^{\prime}(t) \\
+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} \int_{\alpha\left(t_{0}\right)}^{\tau} h(\alpha(t), \tau, \sigma) u(\sigma) d \sigma d \tau \alpha^{\prime}(t)
\end{gathered}
$$

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{aligned}
\leq \frac{1}{p}\{\phi(\alpha(t)) & {[(p-1)+a(\alpha(t))] } \\
& +\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} k(\alpha(t), \tau)[(p-1)+a(\tau)] d \tau \\
& +\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} \int_{\alpha\left(t_{0}\right)}^{\tau} h(\alpha(t), \tau, \sigma)[(p-1) \\
& +a(\sigma)] d \sigma d \tau\} \alpha^{\prime}(t) \\
& +\frac{1}{p}\left\{\phi(\alpha(t))+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} k(\alpha(t), \tau) d \tau\right. \\
& \left.+\int_{\alpha\left(t_{0}\right)}^{\tau} \int_{\alpha\left(t_{0}\right)}^{\tau} h(\alpha(t), \tau, \sigma) d \sigma d \tau\right\} \alpha^{\prime}(t) z(t) .
\end{aligned}
$$

Therefore, $t \leq \leq \eta \leq t \leq \beta$, one can have:

$$
\begin{aligned}
& \leq \frac{1}{p}\{\phi(\alpha(\eta))[(p-1)+a(\alpha(\eta))] \\
& +\int_{\alpha(t) 0}^{\alpha(\eta)} k(\alpha(\eta), \tau)[(p-1)+a(\tau)] d \tau \\
& +\int_{\alpha\left(t_{0}\right)}^{\alpha(\eta)} \int_{\alpha\left(t_{0}\right)}^{\pi} h(\alpha(\eta), \tau, \sigma)[(p-1) \\
& +a(\sigma)] d \sigma d \tau\} \\
& \exp ^{\int_{\eta p}^{t 1}\left[\phi(\alpha(\xi))+\int_{\alpha(t)}^{\alpha(\xi)} k(\alpha(\xi), \tau) d \tau+\int_{\alpha(t))^{\alpha(\xi)}}^{\alpha(\xi)} \int_{\alpha(t))^{\tau}}^{h(\alpha(\xi), \tau ; \sigma) d \sigma d \tau] \alpha^{\prime}(\xi) d \xi} \alpha^{\prime}(\eta)\right.}
\end{aligned}
$$

Integrating both sides of the above inequality from $t=t, t \in I_{1}$ and by making the change of variables, we get:

$$
\begin{equation*}
z(t) \leq z\left(t_{\mathrm{a}}\right) \exp ^{\int_{\alpha(t))^{\alpha}}^{\alpha(t)} E_{\mathrm{a}}(\theta) d \theta}+\int_{\alpha(t)^{\alpha(t)}}^{\alpha} D_{3}(\psi) \exp ^{\int^{\alpha(t)} \psi E_{\mathrm{a}}(\theta) d \theta} d \psi \tag{3.17}
\end{equation*}
$$

from (3.17), (2.9) and (3.16), we get:

$$
\begin{aligned}
& z\left(t_{0}\right) \leq \int_{\alpha\left(t_{0}\right)}^{\beta} \\
& \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) \frac{1}{p}[(p-1)+a(\tau) \\
&+z\left(t_{0}\right) \exp \int_{\alpha(t,)^{\left(E_{\mathrm{s}}\right.}(\theta) d \theta}^{\alpha(\tau)} \\
&\left.+\int_{\alpha\left(t_{0}\right)}^{E_{3}(\tau)} D_{3}(\psi) \exp ^{\int_{\psi}^{\alpha(\tau)} E_{\mathrm{s}}(\theta) d \theta} d \psi\right] d \tau d s,
\end{aligned}
$$

then

$$
\begin{aligned}
& z\left(t_{\mathrm{o}}\right)\left[1-\frac{1}{p} \int_{\alpha\left(t_{0}\right)}^{\beta} \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) \exp \int_{\alpha(t(t))_{\mathrm{s}}(\theta) d \theta}^{\alpha\left(E_{s}\right)} d \tau d s\right] \\
& \leq \int_{\alpha(t s)}^{\beta} \int_{\alpha(t)}^{s} c(s, \tau) \frac{1}{p}[(p-1)+a(\tau) \\
& \left.+\int_{\alpha\left(t_{0}\right)}^{\alpha(\tau)} D_{3}(\psi) \exp ^{\int_{\psi}^{\alpha(\tau)} E_{3}(\theta) d \theta} d \psi\right] d \tau d s .
\end{aligned}
$$

from (3.8) we obtain that

$$
\begin{equation*}
z\left(t_{0}\right) \leq N_{1} . \tag{3.18}
\end{equation*}
$$

The required inequality (3.9) follows from (3.18), (3.17) and (2.8).

(d_{2})

Fix any $T, t_{0} \leq T \leq \beta$, then for $t \leq \leq t \leq T$, we have

$$
\begin{align*}
& u^{p}(t) \leq a(t)+\int_{\left.\alpha(t)^{2}\right)}^{\alpha(t)} k(T, \tau) u(\tau) d \tau \\
& \\
& \quad+\int_{\left.\alpha(t)^{2}\right)}^{\alpha(t)} \int_{\alpha\left(t t_{0}\right)}^{s} h(T, s, \sigma) u(\sigma) d \sigma d s \tag{3.19}\\
& \quad+\int_{\alpha(t,)}^{\beta} b(T, s) \int_{\left.\alpha(t)^{2}\right)}^{s} c(s, \tau) u(\tau) d \tau d s
\end{align*}
$$

Define a function $z(t, T), t_{0} \leq t \leq T$ by

$$
\begin{align*}
& z(t, T)= \\
& \int_{\alpha(t,)}^{\alpha(t)} k(T, \tau) u(\tau) d \tau+\int_{\alpha(t))}^{\alpha(t)} \int_{\alpha(t,)}^{s} h(T, s, \sigma) u(\sigma) d \sigma d s+ \\
& \int_{\left.\alpha(t)^{2}\right)}^{\beta} b(T, s) \int_{\left.\alpha(t)_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s \tag{3.20}
\end{align*}
$$

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
Then $z(t, T) \leq 0, z(t, T)$ is nondecreasing for $t \in I_{1}$,

$$
\begin{equation*}
z\left(t_{0}, T\right)=\int_{\alpha\left(t_{0}\right)}^{\beta} b(T, s) \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s \tag{3.21}
\end{equation*}
$$

and inequality (3.10) can be written as

$$
\begin{equation*}
u^{p}(t) \leq a(t)+z(t, T), \quad t \leq \leq t \leq T \tag{3.22}
\end{equation*}
$$

Then as in the proof of part (a_{1}), from (3.22) we see that the inequalities (3.23) hold.

$$
\begin{equation*}
u(t) \leq \frac{(p-1)}{p}+\frac{a(t)}{p}+\frac{z(t, T)}{p}, \quad t_{0} \leq t \leq T \tag{3.23}
\end{equation*}
$$

Differentiating (3.20) and using (3.23) and the fact that $z(t, T)$ is nondecreasing in t, we get: $z^{\prime}(t, T)=k(T, \alpha(t)) u(\alpha(t)) \alpha^{\prime}(t)$

$$
+\int_{\alpha}^{t} h(T, \alpha(t), \sigma) u(\sigma) d \sigma \alpha^{\prime}(t)
$$

$\leq \frac{1}{p}\{k(T, \alpha(t))[(p-1)+a(\alpha(t))]$

$$
\begin{align*}
& \left.+\int_{\left.\alpha(t)^{2}\right)}^{\alpha(t)} h(T, \alpha(t), \sigma)[(p-1)+a(\sigma)] d \sigma\right\} \alpha^{\prime}(t) \\
& +\frac{1}{p}\left\{k(T, \alpha(t))+\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} h(T, \alpha(t), \sigma) d \sigma\right\} \alpha^{\prime}(t) z(t, T), \tag{3.24}
\end{align*}
$$

for $t_{0} \leq T$ by setting $t=\xi$ in (3.24) and integrating it with respect to ξ from t_{0} to T and by making change of variables we get:
$z(T, T)$
$\leq z\left(t_{0}, T\right) \exp ^{\int_{\alpha(T(t) 1 p}^{\alpha(}\left[k(T, \theta)+\int_{\alpha[(t))^{h}}^{h(T, \theta, \sigma) d \sigma] d \theta}, ~\right.}$

$$
+\int_{\alpha\left(t_{0}\right)}^{\alpha(T)} \frac{1}{p}\{k(T, \psi)[(p-1)+a(\psi)]
$$

$$
\left.+\int_{\alpha\left(t_{0}\right)}^{\psi} h(T, \psi, \sigma)[(p-1)+a(\sigma)] d \sigma\right\}
$$

$\exp ^{\left.\int_{\alpha(T)}^{\alpha(T)}\right) p}\left[k(T, \theta)+\int_{\alpha(t))^{\theta}}^{h(T, \theta, \sigma) d \sigma] d \theta} d \psi\right.$.
Since T is arbitrary from (3.25), (3.23), (3.22) and (3.21) with T replaced by t, one can get:

DIVALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
$z(t, t) \leq z\left(t_{0}, t\right) \exp ^{\left.\int_{\alpha(t)}^{\alpha(t)]}\right)}\left[k(t, \theta)+\int_{\alpha[t, 0}^{\theta}\right)^{h(t, \theta, \sigma) d \sigma] d \theta}+$
$\int_{\alpha\left(t_{0}\right)}^{\alpha(t)} \frac{1}{p}\left\{k(t, \psi)[(p-1)+a(\psi)]+\int_{\alpha\left(t_{0}\right)}^{\psi} h(t, \psi, \sigma)[(p-1)+\right.$

$$
\begin{equation*}
u^{p}(t) \leq a(t)+z(t, t) \tag{3.26}
\end{equation*}
$$

and
$u(t) \leq \frac{1}{p}\{(p-1)+a(t)+z(t, t)\} \leq$
$\frac{1}{p}\left\{(p-1)+a(t)+z\left(t_{0}, t\right) \exp \int_{a[(t))^{\alpha(t)} E_{4}(\theta) d \theta}^{a x}+\right.$
$\left.\left.\int_{\alpha(t)}^{\alpha(t)} D_{4}(\psi) \exp ^{\alpha \mu(t)} E_{4}(\theta) d \theta\right) d \psi\right\}$,
and

$$
\begin{equation*}
z\left(t_{0}, t\right)=\int_{\alpha\left(t_{0}\right)}^{\beta} b(t, s) \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) u(\tau) d \tau d s \tag{3.29}
\end{equation*}
$$

from (3.29) and (3.28) one can get:
$z(t, t)$

$$
\begin{aligned}
=\int_{\alpha(t))}^{\beta} b(t, s) & \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) \frac{1}{p}\{(p-1)+a(\tau) \\
& +z\left(t_{0}, \tau\right) \exp \int_{\alpha(t)^{\alpha} E_{4}(\theta) d \theta}^{\alpha(\tau)} \\
& \left.+\int_{\alpha\left(t_{0}\right)}^{\alpha(\tau)} D_{4}(\psi) \exp ^{\int_{\psi}^{\alpha(\tau)} E_{4}(\theta) d \theta} d \psi\right\} d \tau d s .
\end{aligned}
$$

Since $z(t, T)$ is nondecreasing and nonnegative for $t \in I_{1}$ and $\tau \leq s \leq t \leq \beta$ then

DIYALA JOURNAL FOR PURE SCIENCES

Retarded Integral Inequalities with Iterated Integrals
Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

$$
\begin{aligned}
z\left(t_{0}, t\right)\left[1-\frac{1}{p}\right. & \int_{\alpha\left(t_{0}\right)}^{\beta} b(t, s) \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) \exp ^{\left.\int_{\alpha(t))^{\alpha(\tau)}}^{E_{4}(\theta) d \theta} d \tau d s\right]} \\
& \leq \int_{\alpha\left(t_{0}\right)}^{s} b(t, s) \int_{\alpha\left(t_{0}\right)}^{s} c(s, \tau) \frac{1}{p}\{(p-1)+a(\tau) \\
& \left.+\int_{\alpha\left(t_{0}\right)}^{s} D_{4}(\psi) \exp ^{\int_{\psi}^{\alpha(\tau)} E_{4}(\theta) d \theta} d \psi\right\} d \tau d s .
\end{aligned}
$$

From (3.11) which implies

$$
\begin{equation*}
z(t, t) \leq N_{2} \tag{3.30}
\end{equation*}
$$

The required inequality (3.12) follows from (3.30), (3.26), and (3.27).

(d_{3})

Define a function $z(t)$ by
$z(t)=\int_{\alpha\left(t t_{0}\right)}^{\alpha(t)} g(s)\left\{u(s)+\int_{\alpha\left(t t_{0}\right)}^{s} k(s, \sigma) u(\sigma) d \sigma+\right.$
$\left.\int_{\left.\alpha(t)_{2}\right)}^{\beta} e(s, \sigma) u(\sigma) d \sigma\right\} d s$

Then $z(t) \geq 0, z(t)$ is nondecreasing for $t \in I_{1}, z\left(t_{0}\right)=0$.
Then as in the proof of part (a_{1}), from (3.31) we see that the inequalities (2.8) and (2.9) hold.
Differentiating (3.31) and using (2.9) and the fact that $z(t)$ is nondecreasing in t, we get:

$$
\begin{aligned}
& z^{\prime}(t)=g(\alpha(t)) \\
& {\left[\begin{array}{l}
\alpha(\alpha(t))+\int_{\alpha(t))}^{\beta} k(\alpha(t), \sigma) u(\sigma) d \sigma \\
\left.\quad+\int_{\left.\alpha(t)^{2}\right)}^{\beta} e(\alpha(t), \sigma) u(\sigma) d \sigma\right] \alpha^{\prime}(t) \\
\leq \frac{1}{p} g(\alpha(t))\left\{(p-1)+a(\alpha(t))+\int_{\alpha(t))}^{\alpha(t)} k(\alpha(t), \sigma)[(p-\right. \\
\left.1)+a(\sigma)] d \sigma+\int_{\alpha(t))}^{\beta} e(\alpha(t), \sigma)[(p-1)+a(\sigma)] d \sigma\right\} \alpha^{\prime}(t)+ \\
\frac{1}{p} g(\alpha(t))\left\{1+\int_{\left.\alpha(t)^{2}\right)}^{\alpha(t)} k(\alpha(t), \sigma) d \sigma+\right. \\
\left.\int_{\left.\alpha(t)_{0}\right)}^{\beta} e(\alpha(t), \sigma) d \sigma\right\} \alpha^{\prime}(t) z(t)
\end{array}\right.}
\end{aligned}
$$

Retarded Integral Inequalities with Iterated Integrals
 Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$

Therefore, $t_{\mathrm{s}} \leq \eta \leq t \leq \beta$, one can have

$\left\{(p-1)+a(\alpha(\eta))+\int_{\alpha\left(t_{0}\right)}^{\alpha(\eta)} k(\alpha(\eta), \sigma)[(p-1)+a(\sigma)] d \sigma\right.$ $\left.+\int_{\alpha\left(t_{0}\right)}^{\beta} e(\alpha(\eta), \sigma)[(p-1)+a(\sigma)] d \sigma\right\}$
$\exp ^{\int_{\eta}^{t 1} \frac{1}{p} g(\alpha(\xi))\left[1+\int_{\alpha(t))^{\alpha(\xi)}}^{\left.k(\alpha(\xi), \sigma) d \sigma+\int_{\alpha[t)}^{\beta} \beta(\alpha(\xi), \sigma) d \sigma\right] \alpha^{\prime}(\xi) d \xi}\right.} \alpha^{\prime}(\eta)$.
Integrating both sides of the above inequality from t_{0} to $t, t \in I_{1}$, since $z\left(t_{0}\right)=0$, and by making the change of variables we get:

$$
\begin{equation*}
z(t) \leq \int_{\alpha\left(t_{0}\right)}^{\alpha(t)} D_{5}(\psi) \exp ^{\alpha \mu(t)} E_{5}(\theta) d \theta d \psi \tag{3.32}
\end{equation*}
$$

The required inequality (3.14) follows from (3.32) and (2.9).

4. Conclusions

We have constructed some iterated integral inequalities then extended to the iterated retarded integral inequalities. And also explicit bounds to unknown functions in each integral inequalities are given.

References

[1] Ali K., Several New Result on the Gronwall Delay Inequalities, Kurdistan Academicians Journal,8(1)(2010)part A(107-114).
[2] B.G. Pachpatte and Elsevier B.V., Integral and Finite Difference Inequalities and Applications, Amsterdam, Boston, London, New York, 2006.
[3] B.G. Pachpatte, On a Certain Retarded Integral Inequality and its Applications, J. Inequal. Pure and Appl. Math, 5(1)(2004),Art. 19.
[4] B.G. Pachpatte, On Some New Nonlinear Retarded Integral Inequalities, J. Inequal. Pure and Appl.math., 5(3)(2004),Art. 80.
[5] B.G. Pachpatte, Bounds on Certain Integral Inequalities, J.Inequal.Pure and Appl.
Math.,3(3)(2002),Art.47.[6] B.G. Pachpatte, Explicit Bounds on Certain Integral Inequalities, J.Math. Anal.Appl.,267(2002),48-61.
[7] B.G. Pachpatte, Inequalities for Finite Difference Equations, Marcel, Dekker Inc., New York, 2002.
[8] B.G. Pachpatte, On Some Retarded Integral Inequalities and Applications, J. Inequal. Pure and Appl. Math., 3(2)(2002), Art. 18.

Retarded Integral Inequalities with Iterated Integrals

Ali W.K. Sangawi ${ }^{1,2}$ and Sudad M. Rasheed ${ }^{1,2}$
[9] B.G. Pachpatte, On Some New Inequalities Related to a Certain Inequality Arising in the Theory of Differential Equations, J.Math. Anal.Appl., 251(2000),736-751.
[10] B.G. Pachpatte, Inequalities for Differential and Integral Equation, Academic Press,New York, 1998.
[11] Dragomir S. S., Some Gronwall type Inequalities and Application, Academic Press, New York, 2003.
[12] D.P. Mitrinovicetal and A. Fink, Classical and New Inequalities in Analysis, Kluer Academic Publishers,Dodrecht,Boston,London, 1993.
[13] D. Bainov and P. Simenove, Integral Inequalities and Applications, Kluer Academic Publish- ers, Dodrecht, 1992.
[14] D.S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
[15] Lakshmikantham V. and S. Leela, Differential and Integral Inequalities, Vols. I, II, Academic Press,New York, 1969.
[16] Qing-Hua Ma and Josip Pecaric, On Some New Nonlinear Retarded Integral Inequalities with Iterated Integrals and Their Applications , J. Korean Math.Soc. 45(2008),2, 331-353.

