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  :الخلاصة

م�ع مش�تقتها  CMلوحدانية من الدوال الص�حيحة الت�ي له�ا حص�ة قيم�ة واح�دة في هذا البحث، نحن نتعامل مع مسألة ا   

fومشتقتها  fبرهن الباحث انه اذا كانت دالة كلية غير ثابتة   .الاولى ′
)a)0لها حصة قيم�ة واح�دة   ≠  CM  وazf =)( 

azfعندما  =′′ ffعندئذ  )( ′≡   Jank- Muse- Volkmann .   هذه النتيجة لها علاقة بنتيجة  .

 

Abstract. 

 In this paper, we deal with the problem of uniqueness of entire functions that share one 

value CM with their first derivative. The author proves that if a non- constant entire function f  

and its derivative f ′
 share the value )0(≠a  CM and azf =)(  when azf =′′ )(  then ff ′≡ . 

This result is related to a result of Jank- Muse-Volkmann.     
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Introduction 

  In this paper, we assume that the reader is familiar with the standard notations and basic 

results of Nevanlinna’s value distribution theory (see [1], for example). In particular, ),( frS  

denote any quantity satisfying )),((),( frTofrS =  as ∞→r  except possibly for a set E  of r  

of finite linear measure 
U
∞

=

′⊆
1

],[(
n

nn rrE

 and

+∞<−′≤∑
∞

=1

)(
n

nn rrmesE

, or see [1, P.41]). We say 
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two non-constant entire functions f  and g  share the value a  IM (ignoring multiplicity) if f  

and g  have the same   a -points, and also they share the value a  CM (counting multiplicity), if 

f  and g   have the same a -points with the same multiplicity. Let k  be a positive integer, we   

denote by 

)
1

,()
af

rN k
−  and 

)
1

,(1(
af

rN k
−

+

 the counting function of a -points of  f  with 

multiplicity k≤  and > k , respectively In [2] Jank, Muse and Volkmann proved. 

 

Theorem A 

 Let f  be a non-constant entire function. If f  and f ′
 share the value )0(≠a  IM, and 

azf =′′ )(  when azf =)( , then ff ′≡ . 

    It is asked naturally whether the condition “ azf =′′ )(  when azf =)( ” in Theorem A can be 

replaced by the condition “ azf =)(  when azf =′′ )( ”. The answer is yes, in fact in this paper 

we shall prove the following theorem:    

    Theorem 1: Let f  be a non-constant entire function. If f  and f ′
 share the value  

)0(≠a CM, and azf =)(  when azf =′′ )( , then ff ′≡ .   

     

Remarks 

1. from the hypotheses of Theorem A, it follows readily that f  and f ′
 share the value )0(≠a  

CM. In view of this Theorem 1 says, in effect, that Theorem A is also true when reversed the 

condition. “ azf =′′ )(  when azf =)( ”  in  Theorem A. 

2. The following example shows that the condition “ azf =)(  when azf =′′ )( ” in Theorem 1 is 

necessary:    

    Example 1. Let 2
)( 2 a

ezf
z +=

, where a  is a non-zero constant. It is easy to know that f  and 

f ′
 share the value a  CM, but the conclusion of Theorem 1 is not valid; that is ff ′≡/ . 
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3. The method of proof of Theorem 1 can be used to prove Theorem A by considering 

)1)(1(

)(~

−−′

−′′′
=

ff

fff
F

 instead of )1)(1(

)(

−−′′

−′′′′
=

ff

fff
F

 in proof Theorem 1.  

 

The main result  

    Lemma 1[3]. Let f  be a non-constant entire function of finite order. If f and 
)(kf  

)1( ≥k share the value )0(≠a  CM, then  

)()( afcaf k −=− , 

For some nonzero constant c . 

     

Proof of Theorem 1 

Suppose 1=a  (the general case follows by considering 
f

a

1

 instead of f )  and  that ff ′≡/ . 

Set  

                                                  )1)(1(

)(

−−′′

−′′′′
=

ff

fff
F

,                                                (1) 

which can be written 

11
)

1
(

11 −′′

′′′
−

−

′′

′′

′′′
−

−′′

′′′
−

−

′
⋅

−′′

′′′
=

f

f

f

f

f

f

f

f

f

f

f

f
F

, 

from the fundamental estimate of logarithmic derivative, we find that  

)
11

,()
11

,(),(
−

′′
⋅

−′′

′′′
−+

−

′
⋅

−′′

′′′
≤

f

f

f

f
rm

f

f

f

f
rmFrm

    

             

4log)
1

,()
1

,( +
−′′

′′′
−+

−

′′
⋅

′′

′′′
+

f

f
rm

f

f

f

f
rm

    

             

4log),()
1

,(2)1,(2)
1

,()
1

,(3 +
′′

′′′
+

−

′′
+−+

−

′
+

−′′

′′′
≤

f

f
rm

f

f
rmrm

f

f
rm

f

f
rm

 

             4log),()1,(20)1,()1,(3 +′′+−++−+−′′= frSfrSfrSfrS  

             ),(4log),(),(3),(3 frSfrSfrSfrS =+++=                                             (2) 
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Suppose pz ′′
 is a 1-point of )(zf ′′

 of multiplicity )1(≥p . Then from the hypotheses of Theorem 

1, it follows that  

           

0,)(
)1)(2(

)(
2

1
)(1)( 22 ≠+′′−

++
+′′−+′′−+= +

p

p

p

p

pp azz
pp

a
zzzzzf L

,     (3) 

                                   

L+′′−
+

+′′−+=′ +1)(
1

)(1)( p

p

p

p zz
p

a
zzzf

,                            (4) 

                                             
L+′′−+=′′ p

pp zzazf )(1)(
,                                         (5) 

                                             
L+′′−=′′′ −1)()( p

pp zzpazf
,                                         (6) 

By using (3), (4), (5) and (6) in (1), we obtain
)1()( OzF p =′′

. Since 1 is a shared value of f  

and f ′
, we know that the 1-points of f  are simple. Similarly, if 1z  is a simple 1-point of )(zf , 

we obtain )1()( 1 OzF = . Thus 0),( =FrN , combining with (2) we get  

                                                       ),(),( frSFrT = .                                                 (7) 

    Since f  and f ′
 share the value 1 CM, there is entire function α  such that 

                                                      )1(1 −=−′ fef α

.                                                 (8) 

Differentiating (8) twice we obtain 

                                                  ])1([ ffef ′+−′=′′ αα

;                                            (9) 

And 

                                    ]2)1)([( 2 fffef ′′+′′+−′+′′=′′′ αααα

.                              (10) 

Let pz ′′
 be a 1-point of )(zf ′′

 of multiplicity )2(≥p , then from the hypotheses of Theorem 1, we 

get that 
1)()()( =′′′′=′′′=′′

ppp zfzfzf
 and 

0)( =′′′′′
pzf

. But using (10), we see 

that
01)(2 =+′′′

pzα
. If 012 ≡+′α , then 

czz +−=
2

1
)(α

 with c  constant. Substituting (8), (9) 

and (10) into (1) gives  

                               
)]

2

1
()

4

1

2

3
)(1[(

)]1()[1(
1

2 −−+−−

−−−
=−

GFGGGG

GGFG
f

,                           (11) 
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where

cz

ezG
+−

= 2

1

)( . Provided that none, and hence neither, of the numerator and denominator on 

the right of (11) vanishes identically. We now show that the above possibility cannot in fact 

arise. If it dose we have, 

                                     
0)

2

1
()

4

1

2

3
)(1( 2 ≡−−+−− GFGGG

,                                (12) 

and  

                                                     0)1( ≡−− GGF ;                                                 (13)  

and eliminating F  between  (12)  and  (13)  leads to 
0

4

1
≡−G

, which is impossible. Now from 

(11), 

)),((),( GrTOfrT =  for ∞→r , Er ∉ . 

This implies that f  has finite order. By Lemma 1 with 1=k  we have constG ≡  which is 

impossible. Therefore 012 ≡/+′α  and so  

              

)1(),()
12

1
,()

1

1
,(2( OrTrN

f
rN +′≤

+′
≤

−′′
α

α ),(),( frSerS =≤ α

.     (14) 

From (8), we find that  

                                                    11 −

′
−

−′

′′
=′

f

f

f

f
α

.                                               (15) 

Hence, by (3), (4), and (5) with 1=p , we have 

                                                     
)1(

2

1
)( 11 −=′′′ azα

.                                               (16) 

Again by using (3), (4), (5) and (6) with 1=p  in (1), we obtain 

                                                      
)1(

2

1
)( 11 −=′′ azF

.                                               (17) 

From (16) and (17), we see that )()( 11 zzF ′′′=′′ α . If α ′≡F , from (8) and (1) we get  

                                                      )1(1 α−−=−′′ ecf ,                                              (18) 

Where c  is a nonzero constant? Substituting (18) and (8) into (9) gives 
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                                             αα

ααα

′+

−−−
=−

−

e

ceee
f

))(1(
1

2

.                                     (19) 

It is clear that none, and hence neither of the numerator and denominator on the right of (19) 

vanishes identically. Since f  is an entire function, we know that either 1−≡′α  or c−≡′α . If 

1−≡′α , then (19) becomes  

                                                    )(1 2 ceef −−=− − αα

.                                           (20) 

Differentiating (20) twice we obtain 

                                                      )14( −=′′ −− αα ceef ,                                           (21) 

and eliminating f ′′
 between (18) and (21) leads to 04)1()1( 2 =−−−+ cecec αα

, from this we 

conclude that ),(),( αα erSerT =  and so α  is a constant which contradicts  with 1−≡′α . 

Similarly, if c−≡′α , then we have a contradiction. Therefore α ′≡/F  and so  

)
1

,()
1

,()
1

1
,()1

αα ′−
≤

′−
≤

−′′ F
rT

F
rN

f
rN

 

                                                        )1(),(),( OrTFrT +′+≤ α  

                                                         ),(),(),( frSerSfrS =+= α

, 

by (7). Combining with (14), we get

),()
1

1
,( frS

f
rN =

−′′ , from this and the second 

fundamental theorem for f ′′
 

),()
1

,(),()
1

1
,()

1
,(),( frS

f
rNfrS

f
rN

f
rNfrT +

′′
≤+

−′′
+

′′
≤′′

, 

we see that 

),()
1

,( frS
f

rm =
′′ . Hence  

                                  

),(),()
1

,()
1

1
,( frSfrS

f
rm

f
rm =+

′′
≤

− .                            (22) 

We deduce from (8) and (22) that  

                                                      ),(),( frSerT =α

.                                              (23) 

If we now eliminate ff ′′′,  and f ′′′
 between (1), (8), (9) and (10), we arrive at  
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])3()13()([)1( 2223 ααααααα ααααα ′+′′+′−′+′′−−′−−′+− eeeeFef

)1)(2( 2 −−′+= ααα α eFee .                                                                                     (24) 

In (24), if 

               0)3()13()( 2223 ≡′+′′+′−′+′′−−′−−′+ ααααααα αααα eeeeF ,       (25)       

Then 

                                                    022 ≡−′+ Fee
αα α ,                                             (26) 

And eliminating F  between (25) and (26) we find that 

),(),( αα erSerT = . 

This implies conste ≡α
. Hence (8) becomes  

                                                       )1(1 −=−′ fcf ,                                              (27) 

Where c  is a nonzero constant? If

0)
1

1
,( ≠

−′′f
rN

, 1=c  and so ff ′≡ . But this contradiction. 

Therefore

0)
1

1
,( =

−′′f
rN

, so that  

                                                           
βef =−′′ 1 ,                                                   (28) 

Where β  is a non-constant entire function? From (27) and (28), it is easy to know that 

const=β , which is a contradiction. Therefore, from (24) it follows that  

)),((),( αerTOfrT =  For ∞→r , Er ∉ . 

Combining with (23) we see that ),(),( frSfrT = . This is also a contradiction. The proof of 

Theorem 1 is complete. ■  
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