
 

 406

The Existence of the Approximate Solution for the Hamilton_Jacobi 

equation by Using the Dual Dynamic Programming 

 

BY 

Entisar A. Ali. 

University of Diyala , College of Science, Department of Mathematics 

 

ABSTRACT 

 

Stability of an approximation of a minimum for a control problem of Bolza is 

investigated. The dual dynamic programming method is used. Anε -value function and a dual 

ε -value function are defined. Several properties of these functions are presented. The 

verification theorems are proved.  

 

في هذا البحث تم تفحص استقراراية الحل التقريبي لمش�كلة ب�ولزا والت�ي ه�ي اح�دى مش�اكل نظري�ة الس�يطرة المثل�ى  -:الملخص

  . عن طريق استخدام طريقة جديدة للتفحص هي طريقة البرمجة الديناميكية المواجهة

  .قدييم خواص جديدة لتلك الدوالوتم ت ε-value function duleوكذلك   ε-value functionكما تم تعريف الدوال  

  .واخيراً تم برهان المبرهنة الاساسية في هذا البحث

 

Keywords: Calculus of variations and optimal control. Approximate minimum, dual dynamic 

programming, dualε - value function.  

 

1. Introduction 

We shall study the Bolza functional 

( ) ( ) ( )( ) ( )( ) )1(,,, ∫ +=
b

a

bxdttutxtLyxJ l  

where the absolutely continues trajectory [ ] ,,: n
Rbax → the Lebesgue measurable control 

function [ ] ,,: m
Rbau → and l  is not identically to ∞+  are subject to 
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                         ( )( ( ))tutxtfx ,=&   a.e. in [ ] )2(, ba  

                         ( ) ( )tUtu ∈ ,                [ ] )3(, bat ∈
           (C) 

                        ( ) cax = .                                 )4(  

Here [ ] [ ] ,,:,,: RRRbaLRRRbaf
mnnmn →××→×× are given functions; 

[ ] ,,:
n

Rbax → is absolutely continuous functions; [ ] ( ),,: tUbau → is a measurable function 

and ( )tU  is the set of controls with the initial condition ( ) cax = which is defined as:  

( )tU = ( ){ tu  measurables; such that [ ]bat ,∈  and ( ) Ktu ∈ , where K is compact subset of 

}m
R . 

       Throughout the paper we shall assume the following hypothesis:         

(Z) 
( ) ( )uxtfuxt ,,,, →  and ( ) ( )uxtLuxt ,,,, → are continuous and bounded     

        functions on [ ] KRba
n ××, ;they are Lipschitz functions with respect to uxt ,, . 

A pair )(),( tutx  is admissible if it satisfies (2),(4), and ( ) ( )( )tutxtL ,, is assumable 

function; then the corresponding trajectory ( )tx will simply be called admissible. 

      We are looking for an admissible pair  ( ),txε  ( ),tuε  [ ]bat ,∈ , ( ) cax =ε  such that 

                   ( ) ( ) ( )abuxJuxJ −+≤ εεε ,inf,                         (5)  

Where the infimum is taken over all admissible pairs satisfying (4) and 0>ε  is any given 

number. 

     It is clear that such a pair ),(txε  ),(tuε satisfying (5) always exists if  ( ) −∞>uxJ ,inf . 

     The main problem considered in the literature is how to existence of an approximate solution 

for the Hamilton-Jacobi (H-J) equation for the optimality problem by using the non-classical 

approach to dynamic programming (the dual dynamic programming) (see Nowakowski A. [7]). 

The first answer for the first problem, at least partially belongs to Ekeland [3,4]. He formulated it 

in the form of the variational principle and it corresponds to the first variation in the ordinary 

extremum problem, i.e. for (1)-(4) it is simply the ε -maximum pontryagin principle. 
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      However, from this principle we cannot infer that a pair satisfying it satisfies also (5). The 

situation is even worse: not every pair satisfying (5) satisfies the ∈-maximum pontryagin 

principle.Nowakowski (1998-1990) there are described theories, basing an generalizations of 

filed of extremals and Hilbert’s independence integral, which allow us to state, under additional 

geometrical assumptions, that  a pair )(txε , )(tuε  satisfying the ε -maximum principle 

satisfies (5) with some extra term on the right hand side. 

The aim of this article is to descrbe the noclassical dynamic programming method for an 

approximate minimum of the Bolza functional and to use this method in order to existence of an 

approximate solution for the Hamilton-Jacobi equation. 

The remainder of the paper is organized as follows: 

     In section 2 we propose the dual dynamic programming method (see, Nowakowski, (1990)). 

We define a dual ε -value function in the dual space and show that it has properties analogous to 

the dual value function. Next we describe the necessary method used for the construction of dual 

ε - value function which is an approximation to the dual value function. Throughout the 

construction process we check whether the function under construction is a solution of the 

Hamilton – Jacobi equation.    

   

2. The Dual Dynamic Programming Approach   

Let Τ be a set covered by  graphs of admissible trajectories but not necessary with 

nonempty interior. Next consider a set 
2+⊂Ρ n

R  of points ( ) ( ),,,, 0 Ptyyt = ,00 ≤y  with 

nonempty interior and a function ( )ptx ,  defined in P such that ( )( ) Tptxt ∈,,  for ( ) ;, Ppt ∈  

and assume that satisfies the following:  

 Define in P  the dual value function as        

        ( ) )6(.}))(()))(),(,(inf{, 00

∫ −−=
b

t
D bxydssusxsLyptS l   

where the infimum is taken over admissible pairs ( ) ( ) [ ]btssusx ,,, ∈  whose trajectories 

start at ( )( )ptxt ,,  and their graphs are contained inΤ.We assume further that ( )ptx ,  is a Borel 

measurable, locally bounded, Lipschitz function, and such that for each admissible trajectory 

( )tx  lying inΤ there exists an absolutely continuous function ( ) ( )( )tyytp ,0=  lying in P  
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such that ( ) ( )ptxtx ,=  and, if all trajectories  ( )tx  start at the same ( ),, 00 xt  then all the 

corresponding ( )tp  have the same first coordinate .0y  

Now, since ( ) ( )( ) ( ) [ ]btPptptxtSyptSD ,0,,,,,, 0 ∈∈−=   is a lipschitz function for 

Ppt ∈),(  and is a solution for the Hamilton-Jacobi equation (see,Nowakowski A., 1992) 

( )( ) ( )( ) ( )( ){ ),,,,,min,, 00 uptxtfptxtSyptxtSy
xt

−+− ( )( ) } 0,,,,0 =∈− KuuptxtLy   

                                                                            
( )( ) ( ) )7(,0,,,.,. btTptxtea ∈∈  

with the boundary condition  

( )( )( ) ( )( ),,, 00 bxybpbxbSy l−=−  for all ( )( )( ) )8(,, Tbpbxb ∈   

By dual ε - value function we mean any function ( )ptS
D

,
ε

 satisfying  

          ( ) ( ) ( ) )9(),(,, 0
abyptSptSptS DDD −−≤≤ ε

ε
 

         ( ) ( )( ) ( ) )10(,,, 0
PpbbxypbS D ∈−= lε   

We see that if ( )xtS ,ε  is an  ε - value function then ( )( )ptxbSy ,,0

ε−   is a dual   ε - value 

function. Thus we see that the dual ε - value function has properties analogous toε - value 

function (see Nowakowski A., 1995). An admissible trajectory [ ] xtxbtssx =∈ )(,,,)( εε  is 

called an ε -optimal trajectory if there exists an absolutely continuous 

function ( ) ( )( ) [ ] ( ) ptpbtssyysp =∈= εεε ε ,,,,
0 , lying in P, such that 

( ) ( )( ) [ ]btsspsxsx ,,, ∈= εε  and  

( ) ( ) ( )( ) ( )( )∫ −≥
b

t

o

D bxydssusxsLyptS εεεεεε l
0,,,   

for a given fixed ( )ptS D ,ε . 

       According to Nowakowski A. and Jacewicz E., in the nonclassical dynamic programming 

the sufficient condition for optimality of the solution to the considered problem is expressed as 

the solution to the Hamilton-Jacobi equation so the following Theorem 2.1 holds. 

Theorem 2.1: Let ( ) ( ) [ ]batPptptV ,,,,, ∈∈ , be a Lipschitz function satisfying the dual 

partial differential inequality of dynamic programming  
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( ) ( )( ) ( )( ) ( ){ }tUuuptVtLyuptVtyfptV yyt ∈−+−+≤ :,,,,,,sup,0 0
 

                                                                                )11(
2

1
εoy−≤   

 Let E denoted a subset of [ ]ba,  such that if Et ∈0 then for all ( ) ( )ptVPpt p ,,, ∈ exists. 

We assume that meas EbabE ∈−= ,   and that ( )ptV ,  satisfies the boundary condition 

( ) ( )( ) ( ) PpbpbVypbVy yy
∈−= ,,,, 00

0 l  and the relation 

                ( ) ( ) ( ) ( ) )12(.,,,
2

1
,, 0

PptEttbypptVptV p ∈∈−−= ε  

 Let )(),( tutx  be an admissible pair whose graph of the trajectory ( )tx  is contained in the 

closure T  of  ( ) ( ) ( ){ }PptEtptVxxtT
y

∈∈−== ,,,,:,  and such that there is a 

function of bounded variation ( ) ( )( )tyytp ,0=  lying in P , and satisfying 

( ) ( )( )tptVtx y ,−=  for Et ∈ . 

Assume further that then ( )( )tptV
t

,  exists for almost every t . Then 

( )( ) ( ) ( )( ) ( )( )+−≤+− ∫ 22

00

11

0 ,,,,
1

0 tptVydttutxtLytptVy
b

t yy
o  

                            ( ) ( )( ) ( ) )13(,, 00

2

abydttutxtLy
b

t
−−∫ ε    

for all btta ≤≤≤ 21 . Let ( ) ( ) [ ] ( ) caxbattutx =∈ εεε ,,,,  be an admissible pair with 

( )txε  lying in  T and let ( ) ( )( ) [ ]battyytp ,,,0 ∈= εεε  , be a nonzero absolutely continuous 

function lying in P such that ( ) ( )( )tptVtx
y εε ,−=  for all Et ∈ . Suppose that, for almost all 

t in[ ]ba, , 
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( ) ( )( ) ( )( ) ( )( ) ( )( )tutptVtLytutptVtftytptV yyt εεεεεεε ,,,,,,))(,(0
0 −+−+≤   

                                                         )14(
2

1 o
yε−≤  

Then ( )txε  is an ε -optimal trajectory for the dual ε -value function ( ) ( )ptVyptS
yD ,, 0

0

εε −=  

relative to all admissible pairs ( )tx , ( )tu , [ ] ,,bat ∈  ( ) cax = , whose graphs of trajectories 

are contained in T and where the  corresponding function 

( ) ( )( ) ( ) ( )( )( )EttptVtxtyytp y ∈−== ,,,0

ε  is of bounded variation.  

Moreover ( )( ) ( )ptVyptxtSy
y

,,, 0

00

εεε −=− with ( ) ( ).,, ptVptx
y

−=  

Proof: see (Nowakosk; A. and Jacewicz .E, 1995). 

        It can be seen that some regularity of the function ( ) ( )( )tptSpt
D εεε ,, → , being the 

solution to the dual partial differential inequality of dynamic programming (DPDIDP)(12), is 

required it must be at least a Lipsohitz function (see Theorem 2.1). 

 

3. Approximating The S Dε (t,p) Function 

     This section presents some definitions and Lemmas which will be used in the proof the main 

theorem in this section. 

Let us define the set W as follows: 

( ){ ( )( )ptxtWyptHW ,,, 0

εεε−==  is a Lipschitz for 

 ( ) [ ] ( )( ) ;,,,,0,,;, TptxtbtPptpt ∈∈∈ ε  with the boundary condition 

( ) ( )( ) ( )( )bxypbxbWypbH 000 ,,, εεεεε l−≤−=  for all ( ) ( ) ;,,, PptTptx ∈∈ εε  and  

( ) ( )( ) ( ){ ( )( )ptxtWxyptxtWty ,,min,, 00

εεε ∂∂−+∂∂−≤−                  

( )( ) } )15(0:,,,)),,(,( 0 ≤∈− KuuptxtLyutxxtf  

And we define on the set W the lowing partial ordering: 

( ) ( ) ( ) [ ] .ˆ,,,0,,,,ˆ,ˆ WHHbtPptptHptHHH ∈∀∈∈≤⇔≤   
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      Note, from the definition of the function ( ) ( ) ,,,, PptptS D ∈ε in (9)we observe that the 

dual ε -value function ( ) ( )( ) ( ) PptptxtSyptS
D

∈−= ,,,,, 0

εε  belongs to the set W of all 

Lipschitz solutions for the dual  partial differential inequality of dynamic programming 

(DPDIDP)(15), when there exists ( ) ( )( ) ( ) ,,,, Ppttptxtx ∈= εεε lying in T, as a multiplied 

solution for Bolza problem (C). 

      Now, let us formulate and prove three lemmas (3.1,3.2,3.3), which will simplify and shorten 

the proof of the main theorem in this section that the dual ε -value function 

( ) ( ) PptptS
D

∈,,,ε  defined in (9) is  

( ) ( ) ( ) ( ),,,, ptHptStbptH
D

≤≤−− εε for all WH ∈ . 

To formulate these lemmas, let us assume that bt <0 and consider 0>δ such that the interval 

[ ]δδ −+ bt ,0  has a nonempty interior. 

     Now let ( ) ( )( )000000 , tptxtx εεε =  be arbitrary and let it belong to T, ( ) ( ).tUu ∈⋅  

     Since ( ) ( )uxtfuxt ,,,, →  and ( ) ( )uxtLuxt ,,,, →  satisfy assumption ( )Z , and since 

( ) ( ) Pptptx ∈εε ,,,  is bounded and Lipschitz with respect to ( ) εε uptxt ,,, in KT × , 

when ( ) Ppt ∈ε, . 

      Therefore the response of the system ( ) ( )( ) [ ]btttptxtxt ,,, 0∈=→ εε  with 

( ) ( )( )00000 , tptxtx εε = , lying in T is bounded, i.e., ( )( ) Qtptx ∈εε , , for all 

( )( ) Qtpt ˆ, ∈ε , [ ]btt ,0∈ , where Q  and Q̂  are compact subsets of T and P respectively. 

Now we define a set Q  as follows: ( )2

1
ˆ ++= n

RBQQ , where ( )2

1

+nRB  is the sphere 

centered at the origin having a radius of  1. 

      For shorter and simpler definition, we propose the following notations: 

                              ( ) ( )( )uptxtfuptf ,,,,,
~

ε=    

                              ( ) ( )( )uptxtLuptL ,,,,,
~

ε=                       (16)        
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Since [ ] nn RKRbaf →××,:   and [ ] RKRbaL
n →××,:  are Lipschitz  satisfies  

assumptions (Z), and ( )ptx ,ε   is a Lipschitz function for ( ) ,, Ppt ∈ε  then we deduce 

that ( )uptf ,,
~

 and ( )uptL ,,
~

 are also lipschitz functions in KP×  . 

And since ( ) ( )( ) ( ) PptptxtWyptH ∈−= ,,,,, 0

εε  then the dual partial differential inequality 

of dynamic programming (15) becomes 

( ) ( ) ( ) ( ){ } 0:,,
~

,,
~

,min, 0 ≤∈−+≤− KuuptLyuptfptHptH xtε   

                                                                             a.e., ( ) [ ] )17(,,0,, btPpt ∈∈    

with the boundary condition 

        ( )( ) ( )( ) ( ) .,,, 0 PpbbxybpbH ∈−≤ εε l  

       Now we propose the function ( ) ( )ptFpt ,, →   which is defined as: 

( ) ( ) ( ) ( ) ( ){ } )18(:,,
~

,,
~

,min,, 0
KuuptLyuptfptHptHptF xt ∈−+=  

Since the function ( ) ( ) ( ) ( ) ( ) ( )uptLuptanduptfuptptHpt t ,,
~

,,,,
~

,,,,, →→→  

which are used in the definition of the above function ( ) ( )ptFpt ,, →  are continuous, and 

since K is a compact set, then we deduce that ( ) ( )ptFpt ,, →  is continuous. 

      Then according to the basis of the weierstrass’s theorem of ( ) ( )ptFpt ,, →  bounded on 

the set Q̂ . By denoting the infimum and supremum of ( ) ( )ptFpt ,, →  over Q̂  by l
h and u

h  

respectively. We can estimate the value of the function ( ) ( )ptFpt ,, →  by:     

                                 ( ) ,,
u

hptFh ≤≤
l

 for all ( ) Qpt ˆ, ∈                (19) 

        The function ( ) ( )ptFpt ,, →  may take values of different signs, and we are looking for 

dual −ε value function which must satisfy the dual partial differential inequality of dynamic 

programming (15) (see Nowakowski. A and Jacewicz.E, 1995). So we have to define a new 

function ( ) ( )ptHpt
j

,, ,1→  which depends on the function (.,.),H  where 

( ) ( )ptHpt
j

,, ,1→  should enable us to estimate non-positive close to zero values of a new 
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function  ( ) ( )ptFpt
j

,, ,1→   which is constructed in a similar way to ( ) ( )ptFpt
j

,, ,1→ .The 

function ( ) ( )ptFpt
j

,, ,1→  should also satisfy (15). 

       Now a new function ( ) ( ) { } { } ,,,,...,11,...,,,, ,1 NrqrqjptHpt
j

∈∪−−→  must be 

defined on disjoint subsets  jQ̂  which covers completely the compact set .Q̂  

 First, the domain of this function must be constructed. We shall divide the interval [ ] Rhh
u

⊂,
l

  

which is the set of values of function ( ) ( )ptFpt ,, →  in to rq +  subintervals.  

The points of the partition are determined as follows: 

(a) if infimum 
l

h and supremum u
h are of different signs, then:    

          
urrqq

hzzzzzzzh =<<<<<<<<= −−+−− 11011 ......
l

 , 

      where  00 =z  and ;, Nrq ∈  

(b) if infimum 
l

h  is non – negative, then: 

        urr
hzzzhz =<<<<≤= −110 ...0

l
,   

      where  ;Nr ∈  

(c) if supremum u
h  is not positive then:  

        
uqq

hzzzzh =−+−− <<<<= 011 ...
l

, 

       where .Nq ∈  

We will take into consideration the first case (a) where 
l

h  and u
h  are of different signs, 

while the other two cases (b) and (c) are not considered since they are simpler.  

     As in the definition of a Lebesgue integral, we will define subsets of  :Q̂  

( ) ( ){ } { }1,...,,,:ˆ,ˆ
1 −−∈<≤∈= + qjzptFzQptQ jjj    

( ) ( ){ } 1,,:ˆ,ˆ
1 =≤≤∈= − jzptFzQptQ jjj  

( ) ( ){ } { }.,...,2,,:ˆ,ˆ
1 rjzptFzQptQ jjj ∈≤<∈= −  

        It is easily seen that the sets ,ˆ
jQ { } { }rqj ,...,11,..., ∪−−∈  are disjointed for  



 

 415

all { } { } ,,,...,11,...,, jirqji ≠∪−−∈  and they cover whole set .Q̂  

      Morever let 
jQ  denotes the closures of the sets { } { }.,...,1,...,,ˆ riqjQj ∪−−∈  On such 

subsets { } { }rqjQ j ,...,11,...,,ˆ ∪−−∈  of Q̂ ,we construct a new 

function ( ) ( ).,, ,1 ptHpt
j

→   

     Since the function ( ) ( )ptFpt ,, →  may have values of different signs in ,Q̂  we have to 

consider the following two cases: 

I. let ( ) ( ) { },,...,1,ˆˆ,,0, rjQQptptF
j

∈⊂∈≥  which means that  

        ( ) ( ) ,ˆˆ,,,1 QQpthzptFzh jujj ⊂∈≤≤<≤ −l
 { }rj ,...,1∈                (20)   

We define on { }rjQQ j ,...,1,ˆˆ ∈⊂ , a new function by shifiting the function ( ) ( )ptHpt ,, →  

as follows: 

                             ( ) ( ) ( )tbzptHptH
jjj

−+= α,,,1
                               (21) 

 where ( ) { }rj
j

,...,1,1,0 ∈∈α  are chosen to enable us estimate non-negative close to zero 

values of the new function ( ) ( )ptFpt
j

,, ,1→  defined on { }rjQQ j ,...,1,ˆˆ ∈⊂  by the 

following formula: 

( ) ( ) ( ) ( ){ }KuuptLyuptfptHHptF jxjtj ∈−+= :,,
~

,,
~

,min, 0

,1,1,1                     (22)                             

 where ( ) ( ) ( ) ( )uptfuptptHpt j ,,
~

,,,,, ,1 →→  and ( ) ( )uptLupt ,,
~

,, →  be as defined in 

(21), and (16) respectively. 

      By using (22) of ( ) ( )ptFpt
j

,, ,1→  and (21) of ( ) ( )ptHpt
j

,, ,1→ ,we obtain the 

following formula which shows the relation between the functions ( ) ( )ptFpt ,, →  and 

( ) ( )ptFpt
j

,, ,1→  where both functions are defined on { }rjQQ j ,...,1,ˆˆ ∈⊂ The following 

formula shows this relation: 

( ) ( ) ( ){ }KuuptLyuptfHzHptF xjjtj ∈−++= :,,
~

,,
~

min,,1

oα                                                       

                 ( )
jj

zptF α−= ,     
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       From inequality (20) and the above formula it follows that the following estimation holds: 

                ( ) ( ) { } )23(,...,1,ˆ,,,,1 rjQptptF jjjj ∈∈−≤≤− ηµ  

 where  { }.,...,1,21,,1 rjzzzz
jjjjjjjjj

∈<<−=−−=− − ααηαµ     

       It is obvious that this estimation will be better if we choose the numbers 
j

α sufficiently 

close to 1, i.e. 01.1=
j

α . 

       It is easily seen that the function ( ) ( )ptHpt
j

,, ,1→  is defined and continuous on 

{ }rjQ j ,...,1,ˆ ∈ , so it may be extended in to { }rjQQj ,...,1,ˆ ∈⊂  by putting  

                   ( ) ( ) ( )tbptHptH
jj

−+= α,,,1
 

for each ( ) { }rjQQpt jj ,...,1,ˆ\, ∈∈  and ( ).2,1∈
j

α  

     Certainly such an extended function ( ) ( )ptHpt
j

,, ,1→  is also absolutely continuous in 

QQj
ˆ⊂ , { }rj ,...,1∈ , since the function ( ) ( )ptHpt ,, →  is absolutely continuous. 

Furthermore we have noticed that ( ) ( )uptfupt ,,
~

,, →  and ( ) ( )uptLupt ,,
~

,, →  are 

continuous functions in ,ˆ KQ j ×  so we deduce that ( ) ( )ptFpt
j

,, ,1→  is also continuous on 

jQ . 

II. Let ( ) ( ) { },1,...,,ˆˆ,,0, −−∈⊂∈< qjQQptptF j  which means that  

           ( ) { }.1,...,,ˆˆ, −−∈⊂∈ qjQQpt j
( ) ,, 1 ujj hzptFzh ≤<≤≤ +l         (24) 

     Likewise as in the previous case we define on { }1,...,,ˆˆ −−∈⊂ qjQQ j  a new function by 

shifting the function ( ) ( )ptHpt ,, →  as follows: 

        ( ) ( ) ( )tbzptHptH jjj −+= +1,1 ,, γ                        (25) 

where the function ( ) ( )ptHpt ,, →  was chosen earlier and can be seen in the definition of the 

function ( ) ( )ptFpt ,, →  satisfying (24). 
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Negative numbers { }1,...,, −−∈ qjz
j

 are the points from the division of the interval 

[ ] Rhh
u

⊂,
l

. The numbers 10 <<
j

γ  were chosen estimate the non egative values, close to 

zero, of a new function ( ) ( )ptFpt
j

,, ,1→ . This new function is defined in subset 

{ }1,...,,ˆ −−∈ qjQ j  as follows: 

( ) ( ) ( ) ( ) ( ){ uptLyuptfptHptHptF jxjtj ,,
~

,,
~

,min,, 0

,1,1,1 −+= }Ku ∈;    (26) 

where ( ) ( ) ( ) ( )uptfuptptHpt j ,,
~

,,,,, ,1 →→ and ( ) ( )uptLupt ,,
~

,, →  be as defined in 

(25) and (16) respectively. 

By using (26) of ( ) ( )ptFpt
j

,, ,1→  and (25) of ( ) ( )ptHpt
j

,, ,1→ , we obtain the following 

formula which shows the relation between the functions ( ) ( )ptFpt ,, →  

and ( ) ( )ptFpt
j

,, ,1→  where both functions are defined on { }1,...,,ˆˆ −−∈⊂ qjQQ j . 

The following formula shows this relation: 

( ) ( ) ( ) ( ) ( ){ }KuuptLyuptfptHzptHptF xjjtj ∈−+−= + ;,,
~

,,
~

,min,, 0

1,1 γ            

               ( )
1, +−= jj zptF γ  

From inequality (24) and the above formula it follows that the following estimation holds:  

               ( ) ( ) { }1,...,,ˆ,,,,1 −−∈∈−≤≤− qjQptptF jjjj ηµ                 (27) 

where 10,, 111 <<−=−−=− +++ jjjjjjjjj zzzz γγηγµ . 

    Notice that this estimation will be better if we choose the numbers 
j

γ  sufficiently close to 1, 

i.e. 
j

γ =0.99. 

     It is easily seen that the function ( ) ( )ptHpt
j

,, ,1→  is defined and continuous on 

{ }1,...,,ˆ −−∈ qjQj  so it may extended into { }1,...,,ˆ −−∈⊂ qjQQ jj  by putting 

             ( ) ( ) ( ),,, 1,1 tbzptHptH
jjj

−−= +γ   

for each ( ) { }1,...,,ˆ/, −−∈∈ qjQQpt jj  and ( )1,0∈
j

γ  . 
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Certainly such an extended function ( ) ( )ptHpt
j

,, ,1→  is also lipschitz 

function { }1,...,, −−∈ qj , since the function ( ) ( )ptHpt ,, →  is a lipschitz function. 

 Furthermore we have noticed that ( ) ( )uptfupt ,,
~

,, →  and ( ) ( )uptLupt ,,
~

,, →  

 are continuous in ,ˆ KQ ×  so we deduce that ( ) ( )ptFpt
j

,, ,1→ is also continuous function on 

{ }1,...,,ˆˆ −−∈⊂ qjQQ j .  

       In the first step of our work, we have constructed the function ( ) ( )ptHpt
j

,, ,1→  on all 

subset { } { }rqjQQj ,...,11,...,,ˆ ∪−−∈⊂  and ( ) ( )ptFpt
j

,, ,1→   defined on the same domain 

and take only non-positive values which are close to zero, so ( ) ( )ptHpt
j

,, ,1→  is 

approximating the dual −ε value function. 

       Thus we can estimate the values of the function ( ) ( )ptFpt
j

,, ,1→ as follows: 

                  ( ) ( ) QQptptF jjjj
ˆˆ,,,,1 ⊂∈−≤≤− ηµ                    (28) 

where                      

               { }rjifzz jjj ,...,11 ∈+− − α                           { }rjifzz
jjj ,...,1∈+− α                

 =
j

µ                                                                        =
j

η                  

               { }1,...,1 −−∈+− + qjifzz jjj γ ,                   { }1,...,11 −−∈+− ++ qjifzz jjj γ    

where 21 <<
j

α  for { } 10,,...,1 <<∈
j

rj γ  for { }1,...,−−∈ qj . If all the numbers 
j

α and 

j
γ are sufficiently close to 1, then the numbers 

j
µ and 

j
η  are non- positive and close to zero. 

       As the estimation of the values of the function ( ).,.,1 j
F  given by (28) is valid, the function 

( ).,.,1 j
H  defined by (21)and (25) and being used in formula (22)and (26) for the function 

( ).,.,1 j
F  would satisfy the dual dynamic programming inequality (15), i.e., it would approximate 

the dual −ε  value function for the Bolza problem (C), if only it had been at least of a Lipschitz 

function. So the construction would have been finished. 
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      Althought the function ( ).,.,1 j
H  is defined and continuous on 

{ } { }rqjQQ
j

,...,11,...,, ∪−−∈⊂  and even continuous on their closures, they are only 

piecewise continuous in set Q  and thus it could not be sufficiently regular. 

     In order to make the function ( ).,.,1 j
H  sufficiently regular, we have to define new function 

using convolution of the function ( ).,.,1 j
H  with a function of class ( )2+∞ n

o
RC  having a 

compact support. 

      So we will define a new function 

( ) ( )ptHpt
i

j
,, ,

,2

β→ , { } { },,...,11,..., rqj ∪−−∈ ( ) [ ]δδ −+∈⊂∈ bttQQpt j ,,ˆˆ, 0 for 

arbitrary fixed ( ) { }.3,2,1,0/,,1min Ni ∈< δβ To define new function 

( ) ( )ptHpt
i

j
,, ,

,2

β→  we convolute a 

function ( ) ( )ptHpt
j

,, ,1→ { } { }rqj ,...,11,...,, ∪−−∈  with a function 

( ) ( )ptpt ,, βρ→  of class ( )2

0

+∞ nRC  having compact support and then translating the 

convolution to the left as shown below:
 

( ) ( ) ( ) QQpttbiiptHptH jjj

i

j ⊂∈−−−∗= ,,)2(,)(),( ,1

,

,2 ηρβ
β

         (29) 

where the function ( ) ( )ptHpt
j

,, ,1→  as defined in (21) and (25), 

{ } { }rqj
j

,...,11,...,, ∪−−∈η , is the upper bound of the function ( ) ( )ptFpt
j

,, ,1→  as in 

(27), { }3,2,1,0/Ni ∈ , when +∞→i , then 1)2( →− ii ; RRR n →× +1

1 :ρ  is a function 

of class ( )1

0

+∞ nRC  having compact support; ( )∫ + =2 1,1n
R

dpdtptρ ; 

( ) ( ) ( ) ( ) ;sup;,)1(, 2

11

2

01

2 ++∞+ ⊂∈= nnn RBRCptpt ρββρβρ β ( )2

1

+n
RB  is a 

sphere centered at the origin having a radius of 1. 

      As in the previous parts of construction we define a new function  

( ) ( )ptFpt
i

j
,, ,

,1

β→ , { } { }rqj ,...,11,..., ∪−−∈ , ( ) { }3,2,1,0/,,1min Ni ∈< δβ , 

on 
j

Q  as follows:    
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( ) ( ) ( ) ( ) ( ){ uptLyuptfptHxptHtptF i

j

i

j

i

j ,,
~

,,
~

,)(min,)(, 0,

,2

,

,2

,

,1 −∂∂+∂∂= βββ

}Ku∈: (30)             

where the function ( ) ( )ptHpt
i

j ,,
,

,2

β→  is defined by (29). Clearly, this function 

( ) ( )ptHpt
i

j ,,
,

,2

β→  will also be a Lipschitz function, because the function ( )( ).,.,1 βρ∗
j

H  

is Lipschitz for t,p. 

We deduce that
 

( ) ( )ptFpt i

j ,, ,

,2

β→ ,
 

{ } { }rqj ,...,11,..., ∪−−∈  

( ),,1min δβ < { }3,2,1,0/Ni ∈  is continuous on QQ j
ˆˆ ⊂ ,since 

( ) ( )ptHpt i

j ,, ,

,2

β→  and ( )ptHt i

j ,)( ,

,2

β∂∂  are continuous on jQ̂ , and since 

( ) ( )uptfupt ,,
~

,, →  and ( ) ( )uptLupt ,,
~

,, →  are continuous on KQ × . 

     In the next part of this paper we will estimate the values of the function ( ).,.,

,2

i

jF
β

. It will 

apper that these values are close to zero, but of different signs. So the function ( ).,.,

,2

i

jH
β

 satisfy 

the DPDIDP(15). Thus, we will obtain a new function ( ).,.,

,2

i

jH
β

 that will approximate the dual 

ε -value function. 

      Let us formulate and prove three lemmas, which will simplify and shorten the proof of 

Theorem 3.1.  

       Because in theorem 3.1 we will make use of the fact that the functions ( ).,.,.
~0 Ly−  and 

( ) ( ).,.,.
~0

βρ∗− Ly  have values arbitrary close to each other is needed. 

Therefore lemma 3.1 should be proved first. This gives an estimate of the difference of the 

values between these two functions by arbitrary close to zero 

on KQ j × , { } { }rqj ,...,11,..., ∪−−∈ . 

Lemma 3.1: Let ( ).,.,.
~
L  be a function as defined in (16) and satisfying the assumptions (Z), and 

( ).,.βρ  be the function of class ( )2

0

+∞ nRC  defined above. Then for arbitrary { }3,2,1,0/Ni ∈  

and ,
j

η  { } { }rqj ,...,11,..., ∪−−∈  described during construction of the function 
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( ),.,.,1 j
H there exist 0>j

i
β such that for any ,j

i
ββ ≤  and for all 

( ) [ ]δδ −+∈×∈ bttKQupt j ,,ˆ,, 0  { } { }rqj ,...,11,..., ∪−−∈  the following estimation holds: 

                             

( ) ( ) ( ) .
1

,,
~

,,
~ 00

j
i

uptLyuptLy ηρ β <∗−−−   

Proof: For ( ) KQupt j ×∈ ˆ,, , the following estimation holds: 

          ( ) ( ) ( )uptLyuptLy ,,
~

,,
~ 00

βρ∗−−−  

                           =
 

( ) ( ) ( )uptLuptLy ,,
~

,,
~0

βρ∗−−   

                          = ( ) ( )[ ] ( )∫
+

′′′−−−−
)(

0

2

,,,
~

,,
~

n
RB

pddspsuppstLuptLy

β

βρ   

                          ( ) ( )[ ] ( )∫
+

′′′−−−−≤
)(

0

2

,,,
~

,,
~

n
RB

pddspsuppstLuptLy

β

βρ  

                         ( ) ( ) ,,,
~

,,
~

sup0
uppstLuptLy ′−−−−≤  

                                                       Ku∈  

                                             ( ) jQpt ˆ, ∈ , [ ]δδ −+∈ btt ,0
 

                                                ( ) ( )2, +∈′ n
RBps β

 

because the function ( ).,.,.
~
L  is uniformly continuous in the compact sets [ ]btKQ j ,0, ∈×  

                

                

  ( ) ( ) ,00,,
~

,,
~

sup0 →→′−−−− βasuppstLuptLy  

                          Ku ∈  

             
  ( ) jQpt ˆ, ∈ , [ ]δδ −+∈ btt ,0

 

                      
( ) ( )2, +∈′ nRBps β

 

and consequently, 

                ( ) ( ) ( )) .00,,
~

,,
~ 00 →→∗−−− βρβ asuptLyuptLy  
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Hence, for an arbitrary { }3,2,1,0/Ni ∈  and ,
j

η  { } { }rqj ,...,11,..., ∪−−∈  where 

exists 0>j

i
β  such that for every 

j

i
ββ ≤  and for all ( ) ,ˆ,, KQupt j ×∈ [ ]δδ −+∈ btt ,0  

the following holds: 

              ( ) ( ) ( )
j

i
uptLyuptLy ηρβ

1
,,

~
,,

~ 00 <∗−−− .          

The fact that the functions ( ) ( ).,.,.
~

.,.)( ,

,2 fHx i

j

β∂∂ and ( )( )[ ] ( ).,..,.,.
~

)( ,1 βρ∗∂∂ fHx j
 

have values arbitrarily close will be needed in the proof of theorem 3.1, so lemma 3.2 must be 

proved. This gives an estimate of difference between the values of these two functions by a real 

number arbitrarily close to zero. 

Lemma 3.2: Let ( ) ( ).,.,.,.
,

,2,1

i

jj HH
β  and βρ (.,.) be functions defined 

in { } { }rqjQ j ,...,11,...,,ˆ ∪−−∈  (see (29)) and let ( ).,.,.
~
f  be a function as defined in (16) 

satisfying the assumptions (Z). Then for an arbitrary number { }3,2,1,0/Ni ∈  and 

{ } { }rrq
j

,...,1,...,, ∪−−∈η  described during the construction of the function ( ),.,.,1 j
H  there 

exists 0
~

>j

iβ  such that for all j

iββ
~

≤  and for all 

( ) ,ˆ,, KQupt j ×∈ { } { }rqj ,...,11,..., ∪−−∈ , [ ]δδ −+∈ btt ,0  the following 

inequality hold: 

( ) ( )−∂∂ uptfptHx
i

j ,,
~

,)( ,

,2

β ( )( )[ ]( ) jj
i

ptufHx ηρβ

1
,.,.,

~
)( ,1 <∗∂∂  

Proof: Since the function ( ).,.,1 j
H  is a Lipschitz function, then it is satisfies the Lipschitz 

condition, i.e.,  

( )
jj MHx ,1,1 .,.)( ≤∂∂  for some constant 0,1 >

j
M . Thus for all ( ) KQupt j ×∈ ˆ,, , 

[ ]δδ −+∈ btt ,0 , and by using the definitions of ( ).,.,

,2

i

jH
β

 and the convolution, the 

following holds: 

( ) ( )−∂∂ uptfptHx
i

j ,,
~

,)( ,

,2

β ( )( )[ ] ( )ptufHx j ,.,.,
~

)( ,1 βρ∗∂∂  
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= ( ) ( )−∗∂∂ uptfptpHx j ,,
~

),()( ,1 β ( )( )[ ] ( )ptufHx j ,.,.,
~

)( ,1 βρ∗∂∂  

 

= ( )
( ) ( ) ( ) −′′′−−∂∂∫ ++

pddspsuptfppstHx j
RB n

,,,
~

,)( ,12 βρ
β

 

 

( ) ( ) ( )
( )∫ +

′′′−−′−−∂∂
2

,,,
~

,)( ,1nRB
j pddspsuppstfppstHx

β
βρ

 

 

( )
( )

( ) ( ) ( ) pddspsuppstfuptfppstHx
nR

j
′′′−−−′−−∂∂≤ ∫ +

,,,
~

,,
~

,)(
2 ,1 β

β
ρ

β
 

 

( ) ( ).,,
~

,,
~

sup,1 uspstfuptfM j −−−≤
 

                                 Ku ∈  

                        ( ) jQpt ˆ, ∈
, [ ]δδ −+∈ btt ,0

 

                          ( ) ( )2
,

+∈′ n
RBps β

 

   Since the function ( ).,.,.
~
f  is uniformly continuous on the compact [ ]btKQ j ,0, ∈×  , then 

we obtain the last inequality tends to zero as ,0→β  that is 

              

               ( ) ( ) 0,  as0,,
~

,,
~

sup →→−−− βuspstfuptf   

                Ku ∈  

     
( ) jQpt ˆ, ∈

, [ ]δδ −+∈ btt ,0  

            ( ) ( )2, +∈′ n
RBps β  

and consequently, 

( ) ( )−∂∂ uptfptHx
i

j ,,
~

,)( ,

,2

β ( )( )[ ] ( ) 0,.,.,
~

)( ,1 →∗∂∂ ptufHx j βρ   as 0→β   
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     Thus, for arbitrary { }3,2,1,0/Ni ∈  and 
j

η , { } { }rqj ,...,11,..., ∪−−∈  there exists 

0
~

>j

iβ such that for all j

iββ
~

≤ ,and for all 

( ) [ ]δδ −+∈×∈ bttKQupt j ,,ˆ,, 0 , { } { }rqj ,...,11,..., ∪−−∈  , the following holds: 

( ) ( )uptfptHx
i

j ,,
~

,)( ,

,2

β∂∂ ( )( )[ ] ( ) jj
i

ptufHx ηρβ

1
,.,.,

~
)( ,1 ∗∂∂− .   

           In the proof of theorem 3.1, the uniform convergence of the sequence 

( ) } ( ){ ptHtoptH
j

i

j
,, ,1

,

,2

β  as β  converges to zero, for all ( )
jQpt ˆ, ∈ , 

{ } { }rqj ,...,11,..., ∪−−∈ , [ ]δδ −+∈ btt ,0  is also required as is shown in the 

following result. 

Lemma 3.3: Let ( ).,.,1 j
H , ( ).,.,

,2

i

jH
β

 and ( ).,.βρ  be functions defined in 

jQ̂ { } { }rqj ,...,11,..., ∪−−∈  (see (29)). Then for all ( )
jQpt ˆ, ∈ , 

{ } { }rqj ,...,11,..., ∪−−∈ , [ ]δδ −+∈ btt ,0 , we have  

                     ( ) ( )ptHptH j

i

j
o

,,lim ,1

,

,2 =
→

β

β
,  

and this convergence is uniform. 

Proof: By definition of uniformly convergent sequence of functions to prove that this lemma 

holds, it is sufficient to show that for arbitrary 0>
j

ε , { } { }rqj ,...,11,..., ∪−−∈  a 

0>j

i
β  exists such that for every 

j

i
ββ <  and for all ( )

jQpt ˆ, ∈ , 

{ } { }rqj ,...,11,..., ∪−−∈ , [ ]δδ −+∈ btt ,0  the following holds: 

                           ( ) ( ) jj

i

j ptHptH εβ ≤− ,, ,1

,

,2  

 Now by using the definitions of the function ( ).,.,

,2

i

jH
β

 and the convolution, for all ( )
jQpt ˆ, ∈ , 

{ } { }rqj ,...,11,..., ∪−−∈ , [ ]δδ −+∈ btt ,0 , the following holds:  

 ( ) ( )ptHptH j

i

j ,, ,1

,

,2 −β
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                                      = ( ) ( ) ( )ptHptH jj ,, ,1,1 −∗ βρ  

                                     

( )[ ]
( )∫ +

′′−′−−=
2

),(),(, ,1,1nRB
ji pddspsptHppstH

β
βρ  

                                    ( ) ( )
( )

( ) pddspsptHppstH
n

RB
jj

′′−′−−≤ ∫ +
,,,

2 ,1,1 βρ
β

 

                       

 

                                    
( ) ( ) .,,sup ,1,1 ptHppstH jj −′−−≤  

                                                     Ku∈  

                                           ( ) jQpt ˆ, ∈
, [ ]δδ −+∈ btt ,0

 

                                               ( ) ( )2, +∈′ nRBps β

 

Since the function ( ).,.,1 j
H  is uniformly continuous in the compact 

{ } { }rqjQ j ,...,11,...,, ∪−−∈ , then we have 

             

                       ( ) ( ) .00,,sup ,1,1 →→−′−−≤ βasptHppstH jj   

                                         Ku∈  

                               ( ) jQpt ˆ, ∈ , [ ]δδ −+∈ btt ,0  

                                   ( ) ( )2, +∈′ nRBps β  

Consequently, 

( ) ( ) .00,, ,1

,

,2 →→− ββ
asptHptH j

i

j   

Therefore, for an arbitrary 0>
j

ε  a  0>j

i
β  exists such that for all 

j

i
ββ ≤  and for all 

( )
jQpt ˆ, ∈ , { } { }rqj ,...,11,..., ∪−−∈  , [ ]δδ −+∈ btt ,0 the following holds: 

                              ( ) ( ) jj

i

j ptHptH εβ ≤− ,, ,1

,

,2      

The main result of this work is formulated in theorem 3.1, which ensures that the dual ε  -value 

function ( )ptS D ,ε , ( )pt,  belongs to set W and satisfies 
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                   ( ) ( ) ( ) ( )ptHptStbptH Di ,,, ≤≤−+ ευ           for all WH ∈ . 

Theorem 3.1: The dual ε  -value function ( )ptS D ,ε , ( ) Ppt ∈,  , [ ]bt ,0∈ , for problem (C) 

(see (9) and (10)) satisfies the following 

( ) ( ) ( ) ( )ptHptStbptH Di ,,, ≤≤−+ ευ , ,
4

ji
i

i
ηµυ

−
+−= { } { }rqj ,...,11,..., ∪−−∈  

for all ( ) WptH ∈, , ( ) Ppt ∈,  . 
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