On Singular Sets and Maximal topologies

ر فعت زيدان خلف جامعة ديالي/ كلية العلوم جميل محمود جميل جامعة ديالي / كلية العلوم

Abstract:

In this Work , we study The concept of maximal topologies and its relation with Singular sets , furthermore we study the spaces which are maximal with respect to semi- regular property and we proved that if τ is sub maximal has property P then τ is maximal P if and only if τ is non singular (with respect to P) we prove that if P is contractive, semi – regular and τ is non Singular (with respect to P) then every τ_{s} - Singular set V U{x} such that $x \in Cl_{\tau} * V_i - Int_{\tau} * V_i$ is τ_s -open and we provide some theorems.

الملخص: درسنا في هذا البحث التوبولوجيات الاعظمية وعلاقتها بالمجموعات المنفردة بالإضافة إلى ذلك درسنا الفضاءات الاعظمية المعتمدة على خاصية شبه منتظم وبر هنا أذا كان τ اعظمي جزئي يمتلك الخاصية P فأن τ اعظمي P أذا وفقط أذا τ ليس منفرداً (بالاعتماد على الخاصية P) وبر هنا أذا كان P شبه منتظم، τ ليس منفرداً (بالاعتماد على الخاصية P) فان كل مجموعة منفردة - $\tau_{\rm s}$ (\mathbf{x}) منتوح - $\mathbf{x}_i^* V_i - Int_{\tau} V_i$ هذا بعض المبر هنات الأخرى.

- 115 -

1- Introduction:

The family of all topologies definable on an infinite set X is ordered by inclusion which is denoted by LT (X). A member τ of LT (X) is said to be Maximal with respect to p if τ has property p but no stronger member of LT (X) has property p. Recall that a τ -open set V is τ -regular open if V=int_{τ} cl_{τ} V. The topology generated by the family τ -regular open sets is called semi- regularization of τ and denoted by τ_s . A topological property p is called semi-regular when $\tau \in LT(X)$ is P if and only if $\tau_s \in LT$ (X) is P. Hausdorff and connectedness are the classic examples of semi-regular properties given $\tau \in LT$ (X) and a subset V of X the boundary of V, cl_{τ} V – int_{τ} V is denoted by $\Psi_{\tau}V$, if D is a family of subsets of X, the topology generated T \cup D is denoted by <TUD>, when D={A} for some A \subseteq X we write <TUD> as T(A).

The concept of maximal topologies was first introduced in 1943 by E. Hewitt when he showed that compact Hausdorff spaces are maximal compact In 1948 A.Ramanathan proved that a topological subsets are precisely the closed sets, In 1977 Guthrie and Stone introduced the concept of singular set to construct a maximal connected expansion of the real line. In 1986 Neumann-Lara and Wilson generalized the notion of a singular set to characterize T1 maximal connected spaces.

2 Preliminaries

Definition2.1[4]

Let (X, τ) b a o olo ical s ac \subseteq aXidhAt intersection of all closed super sets of A is called the closure of A which is denoted by Cl (A).

Definition2.2[4]

Let (X, τ) b a o olo ical s ac $\subseteq aXdA$ point $x \in X$ is said to be an interior point of A if and only if A is a neighborhood of x.

The set all interior points of A is called the interior of A which is denoted by Int(A).

- 116 -

Definition2.3[4]

Definition2.4[4]

Let (X, τ) b a o olo ical s ac \subseteq at A have say that A is regular open set if and only if A = Int (Cl(A)).

Definition2.5[4]

A o olo ical s ac $(X d\pi)$ oisbeasiemi- regular space if and only if every open set is union for regular open sets.

Definition2.6[4]

A o olo ical s ac $(X \tau)$ is said o b la if and only if fo every closed F and every $P \notin F$ there are disjoint open sets G and H in X such that $F \subset G, P \in H$.

Definition2.7[4]

A o olo ical s ac $(X \tau)$ is said o b disconn c d if and only if there are disjoint open sets G and H in X such that $X = G \cup H$, when no such disconnection exists, X is connected.

Definition2.8[4]

Let (X, τ) b a o old speace and A $\subseteq X$, we say that A is a singular set if either A is regular open or there exists $x \in A$ such that A- $\{x\}$ is regular open.

3 Singular sets and maximal topologies

Definition 3.1:[3]

Given $\tau \in LT(X)$, τ is sub maximal if every τ -dense set is τ -open.

Theorem 3.1[4]:

Given $T \in LT(x)$, the following statements are equivalent.

- 1) τ is sub maximal
- 2) The family of τ dense open sets is an ultra filter of τ s- dense sets.
- 3) For any $\alpha \in LT(X)$ such that $\tau \subset \alpha$, $\alpha_s \neq \tau_s$.
- 4) Every subset of X is the union of an open set and a closed set.
- 5) For every subset A of X which is not open, there are non empty proper closed sets B_1 , B_2 such that $B_1 \subseteq A \subseteq B_2$
- 6) Every subset of X is the intersection of an open and a closed set.
- 7) Every subset A of X, for which int $A=\phi$ is closed.
- 8) Every subset A of X, for which int $A=\phi$ is discrete
- 9) cl (A)-A is closed, for every subset A of X
- 10) cl (A)- A is discrete, for every subset A of X

Proof:[4]

Lemma 3.1:

If $\tau \in LT(X)$ is sub maximal and $B \subseteq X$ then $(int_{\tau} cl_{\tau} B) \cup \{x\}$ is τ (B)-open, for all $x \in B$ -int_{\tau}B.

Proof:

since (X-B) \bigcup (int_{\tau}B) $\bigcup\{x\}$ is τ -dense, so by hypothesis is τ -Open. Now

 $(int_{\tau}B) \cup \{x\}=B \cap [(X-B) \cup (int_{\tau}B) \cup \{x\}]$ and so is $\tau(B)$ -open thus $(int_{\tau}cl_{\tau}int_{\tau}B) \cup \{x\}$ is $\tau(B)$ -open

Definition 3.2[4]

Give $\tau \in LT(X)$ has property P, V is t- regular open and $x \in X$, then $V \bigcup \{x\}$ is said to be a τ - singular (with respect to P) set at x, if τ $(V \bigcup \{x\})$ has property P.

- 118 -

Example 3.1:

consider the real line with usual topology let V be the following union of open intervals $(-1,0) \cup \left\{ \bigcup_{n=1}^{\infty} \left(\frac{1}{2n+1}, \frac{1}{2n} \right) \right\}$ then $V \cup \{0\}$ is a singular (with respect to connectedness) set at 0, but is not an open set.

Definition 3.3[4]

Give $\tau \in LT(X)$, t is called non-singular (with respect to p) if τ has property P and every singular (with respect to P)set is τ - open. Theorem 3.2:

let $\tau \in LT(X)$ is sub maximal and P, if τ is maximal P then τ is non singular (with respect to P).

Proof:

suppose τ is P but not maximal P. then there is a set B⊂X such that $\tau \subset \tau$ (B). so there is a point $x \in B$ - $int_{\tau}B$. Now $V=int_{\tau}cl_{\tau}B$ is τ -regular open, since τ is sub maximal and $int_{\tau}BU\{x\}=(VU\{x\}\cap[int_{\tau}BU(X-cl_{\tau}B)U\{x\}]$ then V is not τ -open. But by lemma 1, $VU\{x\}$ is $\tau(B)$ -open and so any weaker than $\tau(B)$ has property P, $\tau(VU\{x\})$ is P that is $VU\{x\}$ is a τ -singular (with respect to P) set which is not τ -open. Lemma 2.3:

Suppose $\tau \in LT(X)$ is P, A $\subseteq X$ and β_x is a filter base of τ -singular (with respect to p) sets at x, when $x \in X$. let $\tau^* = \langle \tau U \beta_x \rangle$ then the τ^* - closure of A is described by

$$\bar{A}^* = \begin{cases} \bar{A} \text{ if } x \epsilon \overline{(B - \{x\}) \cap A} \text{ for every } B \in \beta_x \\ \bar{A} - \{x\} \text{ if } x \notin \overline{(B - \{x\}) \cap A} \text{ for every } B \in \beta_x \end{cases}$$

Proof:

Let $y \in \overline{A} - \{x\}$ then a $(\tau^* \cdot \tau)$ neighborhood of y contains a set of the form $G \cap B$ when $y \in G \in \tau$ and $y \in B \in \beta_x$. by definition of a singular set,

- 119 -

either B or B-{x} is τ -regular open so that G \cap B is τ -neighborhood of y but $y \in \overline{A}$, so G \cap B \cap A= ϕ that is $y \in \overline{A}^*$ Hence $\overline{A} - \{x\} \subseteq \overline{A}^* \subseteq \overline{A}$. finally it is clear that $x \in \overline{A}^*$ if and only if $X \in (\overline{B - \{x\} \cap A})$ for every $B \in \beta_x$.

Lemma 3.3[4]

suppose $\tau \in LT(X)$ is P and β_x is a filter base of τ -singular (with respect to P) sets at x, where $x \in X$. let $\tau^* = \langle \tau U \beta_x \rangle$ if $G \in \tau^*$ and $x \notin G$ then $G \in \tau$.

Definition 3.4[4]

A topological property P is called contractive if for a given member τ of LT (X) with property P any weaker member of LT (X) has property P.

Lemma 3.4:

suppose $\tau \in LT(X)$ has property P and that every singleton τ -Singular Set is τ -open, while β_x is an ultra filter of τ -singular (with respect toP) sets at x, where $x \in X$, let $\tau = \langle \tau \ U \beta_x \rangle$ if τ has property P then every τ - singular set at x is τ - open.

Proof:

Suppose Y $\bigcup\{x\}$ is τ '- singular at x but is not τ '- open, so we assume that V is τ '- regular open and the $x \in \Psi_{\tau}$ 'V, by lemma 3,V is τ open and by lemma 3.2 $cl_{\tau}V = cl_{\tau}V$, since $\tau \subseteq \tau$ ', $V \subseteq int_{\tau'1} V \subseteq int_{\tau'} cl_{\tau'}$ V=V and therefore V is τ -regular open. Now for each $B \in \beta_x$, BU $(V \cup \{x\}) \neq \phi$ because $x \in \Psi_t$ and also $\tau(B \cap (V \cup \{x\}) \subseteq \tau' (V \cup \{x\})$ But p is contractive and the intersection of any two regular open sets is regular open thus VU {x} meets eac m mb x attfabt-singular set at

- 120 -

x, since $VU{x} \notin \tau'$ then $VU{x} \notin \beta_x$ that is β_x is not an ultra filter of τ -singular sets at x.

Theorem 3.3:

Suppose P is a semi – regular property and that $\tau \in LT$ (X) is p and every singleton τ -singular set is τ -open. Let D be an ultra filter of τ dense sets. Given $x \in X$, 1_x be anltra filter of τ -singular (with respect to P) sets of x. Let $\tau = \langle \tau UDU | (U_{x \in X} \beta_x) \rangle$ is τ has property p, then τ is a maximal P.

Proof:

Let $\tau^* = \langle \tau UD \rangle$ which is sub maximal so τ is sub maximal suppose VU{x} is τ – singular at x but is not τ -open. As every singleton t-singular set τ -open is BU{x} $\in \beta_x$ then $x \in cl_{\tau}B$ and so $x \in cl_{\tau}B$ thus int_{$\tau^*}V is <math>\tau^*$ - regular open and so must be τ -regular open, Now τ^* is sub maximal and (int_{$\tau^*}V) U{x}=(VU{x})\cap[((int_{t^*}V)U{X-V}U{x}])$ we have $\langle \tau^*U\beta_xU$ {(int_{$t^*}V) U{x}} \subseteq \tau$ (VU{X}) But P is contractive, and V U{x} is τ -singular, so $\langle \tau U \beta_xU$ {(int_{$\tau^*}V) U{x}}$ is P, Now (int_{$t^*}V) U{x} can not be <math>\langle \tau U \beta_x \rangle$ - regular open (other wise, VU{X} is τ^* -open) so by lemma 3.3 int τ^*V is $\langle \tau U \beta_x \rangle$ - regular open and there fore (int τ^* V) U{x} is $\langle \tau U \beta_x \rangle$ - singular set at x, which is not $\langle \tau U \beta_x \rangle$ open (since VU{x} is not τ -open) which is a contradiction with lemma 3.4</sub></sub></sub></sub></sub>

Theorem 3.4 :

Suppose P is contractive, semi-regular, and that $T \in LT(X)$ is non singular (with respect to P), then every τ_s singular set V U{x} such that $x \in \Psi_{T*}$ V is τ_s - open.

- 121 -

Proof:

Suppose τ_s (VU{X}) has property P where V is τ_s —regular open and x $\in \Psi_{\tau s}$ V, V is τ - regular open and $\Psi_{\tau s}$ V= Ψ_{τ} V now $\tau = \langle \tau_s$ UD>, where D is a filter base of τ_s (VU{x})- dense sets , and because P is semi- regular

 $<\tau_s \cup U \{v \cup \{x\} > = \tau(v \cup \{x\})$ is also P, Hence VU $\{x\}$ is τ - singular at x, and so by hypothesis is τ - open but $x \in \Psi V$ so x $\in V$, that is V $\cup \{x\} = V \in \tau_s$

Definition 3.5 [6]

 τ is feebly compact (Quasi – H – closed) if every countable open filter base has a cluster point.

Definition 3.6 [6]

let $h \in X$ we say that h is an almost H- point if there is accountable filter base of non empty T - regular open sets such that $\{h\} = \cap \{ Cl_{\tau}W \colon W \in \hat{W} \}$

Definition 3.7 [6]

A topological Space (X, τ) is an almost H – space (almost E_1 – space) if every point is an almost H – point (almost E_1 - point).

Theorem 3.5 :

Suppose $\tau \in LT(X)$ is feebly compact if V is a τ - regular open and x is non – isolated in the subspace X-V Then V U {x} is not singular if and only if x is an almost H-point (almost E₁-point) in the Subspace X-V.

<u>proof</u>:

Let $\tau^* = \tau(VU\{X\})$ is not feebly compact if and only if There is a τ^* - open filter base $\zeta = \{G_i: i \in I\}$ such that $\cap \{cl\tau^* G_i: i \in I\} = \phi$. Now that is some $G \in \zeta$ such that $x \notin G$, and so for any $i, j \in I$, $G_i \cap G_j \neq \{x\}$ (other wise $G \cap G_i \cap G_j = \phi$) By lemma 3.3 for each $i \in I$, $G_i^- \{x\} \subseteq int_{\tau}G: \subseteq Gi$, so $\zeta = \{int \tau G_i: i \in I\}$ in a filter base of τ - open sets, But τ is feebly compact so ζg , Then there is as et $G_0 \in \zeta$ Such that $h \in (cl\tau G_0) - (cl\tau^*G_0, so by Lemma 3.4 h=x and there is a <math>\tau$ - nieghbour hood N of x Such that $N \cap V \cap G_0 = \phi$ Now G_0 Since $x \in cl\tau G_0$, and because V is τ -regular open, $G_0 \cap (X \cdot cl\tau V) \neq \phi$, if follows that for all $i \in I$, $(int_{\tau} G_i) \cap (X \cdot cl_{\tau} V) \neq \phi$ and so that $H = \{(int_{\tau}G_i) \cap (X - cl\tau V) \neq \phi : i \in I\}$ is a τ - open filter base and that x is the only τ - cluster point of H furthermore $\{x\} = \cap\{cl\tau int\tau cl\tau [G_i \cap (X \cdot cl\tau V)]: i \in I\}$ so that x is an H-point.

The main result

- 1) If P is a contractive semi-regular property then a maximal P topology is sub maximal.
- 2) Given $\tau \in LT(X)$ is sub maximal and has property P then τ is non singular if τ is maximal P.

3) If τ	`= <'	τUI	DU (I	$\bigcup_{x \in X}$	$(\beta_x) >$	where	eτa	0	olo	У	as	0		y P, D
b	an	1	a	fil	- dens	eosfets	and	$\beta_x b$	an	1		a fil	_	of τ
sin		la	(wi		S	c`	is a	non aPx) in	nal P	enp	ansi	on of τ		

- 123 -

References:

- 1- Hadi J. Mustafa and Jamil M. Jamil , on maximal feebly compact spaces, Al Mustansiray University, Education college (to appear).
- 2- Layth abd latif, on maximal topologies, Diala university, Education college,13(2005).
- 3- A.V. Arkhangelski I and P J Collins, On S b maximal S ac s, To Appl., 64 (1995) ,219- 241.
- 4- N. Bourbaki, Èlèments de Mathèmatique, Topologies Gènèral 3rd ed,Her mann, paris, 1961.
- 5- J. R. porter, R.M. Stephenson and R. G. Woods, maximal pseudo compact spaces, comment, Math. Univ. Carolinas (35) (1993).
- 6- J. R. porter , R. G. woods , Extension and absolutes of Hausdorff spaces , Springer- Verlag, New York –Berlin- Heidelberg, 1988.

- 124 -