
 ٤٧

On Training Of Artificial Neural Networks

L.N.M.Tawfiq & R.S.Naoum

College of Education Ibn Al-Haitham, Baghdad University

 المستخلص
يتضمن البحث مناقشة أنواع مختلفة من خوارزميات تدريب الشبكات العصبيـة ذات التغذيـة

 التقدميـة
وفي كل تلك الخوارزميات استخدمنا مشتقـة دالـة الطاقـة لتحديد كيفيـة ضبط الأوزان بحيث

ـد لزي ادة ت صبح دال ـة الطاق ـة أص غر م ا يمك ن و لق د استخدمن ـا خوارزمي ـة الانت شار المرت
تختل ف الخوارزمي ات أع لاه ف ي ح ساباتها و ل ذلك نح صل عل ى ص يغ .سرع ـة الت دريب

متنوع ـة ف ي اتج اه التفت يش و الخ زن ال ذي تقت ضيه فق د أثبت ت النت ائج العملي ة ب أن أي ا م ن
الخوارزميات أع لاه لا تمتل ك خ واص رئي سية مث ل الاس تقرارية و التق ـارب و الت ي تجعله ا

 . لمسائـل مناسبـة لكل ا
Abstract

In this paper we describe several different training algorithms

for feed forward neural networks. In all of these algorithms we use the

gradient of the performance function, energy function, to determine

how to adjust the weights such that the performance function is

minimized, where the back propagation algorithm has been used to

increase the speed of training. The above algorithms have a variety of

different computation and thus different type of form of search

direction and storage requirements, however non of the above

algorithms has a global properties which suited to all problems.

INTRODUCTION

Back propagation(BP)process can train multilayer FFNN’s.

With differentiable transfer functions, to perform a function

approximation to continuous function f ∈ Rn, pattern association and

 ٤٨

pattern classification. The term of back propagation to the process by

which derivatives of network error with respect to network weights

and biases, can be computed. This process can be used with a number

of different optimization strategies.

 There are two different ways in which BP algorithms can be

implemented; incremental mode and batch mode. All of algorithms, in

this paper, operate in the batch mode and are invoked using certain

type of training.

1.GRADIENT(STEEPEST) DESCENT(TRAINGD)

A standard back propagation algorithm is a gradient descent

algorithm (as in the Widrow-Hoff learning rule) .For the basic steepest

(gradient) descent algorithm, the weights and biases are moved in the

direction of the negative gradient of the performance function . For the

method of gradient descent, the weight update is given by: w(k+1)

= w(k) + αk(−gk) …………………..….(1)

where αk regulates the learning rate and gk is the gradient of the error

surface at w(k).

If the learning rate is made too large the algorithm become

unstable. If the learning rate is set too small, the algorithm will take a

long time to converge. Then the convergence condition is satisfied by

choosing: 0 < αk <
.max2

1
λ

where λmax. is the largest eigenvalue of weight matrix [1].

 ٤٩

2. GRADIENT DESCENT WITH MOMENTUM(TRAINGDM)

There is another training algorithm for FFNN that often

provides faster convergence. The weight update formulas for gradient

descent with momentum is given by:

w(k+1) = w(k) + αk(−gk) + µ(w(k) − w(k−1))

that is: w(k+1) = w(k) + αk(−gk) + µ∆w(k)

………………………………….…………………(2)

where the momentum parameter µ is constrained to be in the range (0,

1). Momentum allows the ANN to make reasonably large weight

adjustments, while using a smaller learning rate to prevent a large

response to the error from any one of training pattern .

3. FASTER TRAINING

In this section, we will discuss several high performance

algorithms fall into two main categories. The first category uses

heuristic techniques, which were developed from an analysis of the

performance of the standard gradient descent algorithm. Another

heuristic modification is the momentum technique, variable learning

rate and resilient back propagation.The second category of fast

algorithms uses standard numerical optimization techniques such as:

conjugate gradient, quasi-Newton and Levenberg-Marquardt.

3.1.Variable Learning Rate

 ٥٠

 With standard gradient descent, the learning rate is held

constant through out training. The performance of the algorithm is

very sensitive to the proper setting of the learning rate. If the learning

rate is set too high, the algorithm become unstable. If the learning rate

is too small, the algorithm will take too long to converge. Our

numerical results shows that it is not practical to determine the

optimal setting for the learning rate before training and, in fact, the

optimal learning rate changes during the training process, as the

algorithm moves across the performance surface.

 We now describe in some detail one-dimensional search

procedure that is guaranteed to find a learning rate satisfying the

strong Wolfe conditions (3). As before, we assume that ρ is a search

direction and that f is bounded below along the direction ρ. The

algorithm has two stages. The first stage begins with a trial estimate

α1, and keeps increasing it until it finds either an acceptable learning

rate or an interval of desired learning rates. In the latter case, the

second stage is invoked by calling a function called zoom (Zoom

Algorithm), which successively decreases the size of the interval until

an acceptable learning rates is identified. Now we introduce Strong

Wolfe Conditions:

f(wk + αkρk) ≤ f(wk) + 10−4αk∇ T
kf ρk........(3a)

|∇f(wk + αkρk) ρk| ≤ 0.1|∇ T
kf ρk|............. (3b)

Variable Learning Rate Algorithm

 ٥١

Set α0 ← 0, choose α1 > 0 and αmax.;

i ← 1;

repeat

Evaluate φ(αi);

If φ(αi) > φ(0) + 10−4αiφ′(0) or [φ(αi) ≥ φ(αi−1) and i > 1]

α* ← zoom (αi−1, αi) and stop;

Evaluate φ′(αi);

If| φ′(αi)| ≤ −0.1φ′(0)

Set α* ← αi and stop;

If φ′(αi) ≥ 0

Set α* ← zoom(αi-1, αi) an stop;

Choose αi+1 ∈ (αi, αmax)

i ← i + 1,

end (repeat).

Note that, the sequence of trial learning rates {αi} is

monotonically increasing, but that the order of the arguments supplied

to the zoom function may vary. The procedure uses the knowledge

that the interval (αi−1, αi) contains learning rate satisfying the strong

Wolfe conditions if one of the following three conditions is satisfied:

(i) αi violates the sufficient decrease condition;

(ii) φ(αi) ≥ φ(αi−1);

(iii) φ′(αi) ≥ 0.

 ٥٢

The last step of the algorithm performs extrapolation to find

the next trial value αi+1. To implement this step, we can use

approaches like the interpolation procedures above, or we can simply

set αi+1 to some constant multiple of αi.

We now specify the function zoom, which will requires a little

explanation. The order of its input arguments is such that each call has

the form zoom (αLo, αhi), where:

(a) The interval bounded by αLo and αhi contains learning rates

that satisfy the strong Wolfe conditions;

(b) αLo is among all learning rates generated so far and satisfying

the sufficient decrease condition, the one giving the smallest

function value; and

(c) αhi is chosen so that φ′(αlo)(αhi − α 10) < 0.

Each iteration of zoom generates an iterate αj between αLo and

αhi, and then replaces one of these end points by αj in such a way that

the properties (a), (b) and (c) continue to hold.

Zoom Algorithm
Repeat

Interpolate (using quadratic, cubic, or bisection) to

find a trial learning rate αj between αlo and αhi;

Evaluate φ(αj);

If φ(αj) > φ(0) + 10−4φ′(0) or φ(αj) ≥ φ(αlo)

αhi ← αj;

 ٥٣

else

evaluate φ′(αj);

if| φ′(αj)| ≤ −0.1φ′(0)

set α* ← αj and stop;

if φ′(αj)(αhi − αlo) ≥ 0

αhi ← αlo;

αlo ← αj;
end (repeat).

 If the new estimate αj happens to satisfy the strong Wolfe

conditions, then Zoom has served its purpose of identifying such a

point, so it terminates with α* = αj. Otherwise, if αj satisfies the

sufficient decrease condition and has a lower function value than αLo,

then we set αLo ← αj to maintain condition (b). If this results in a

violation of condition (c), we remedy the situation by setting αhi to the

old value of αLo.

3.2.Resilient Back Propagation (TRAINRP)

The resilient back propagation training algorithm eliminates

the harmful effect of having a small slope at the extreme ends of

sigmoid transfer functions in hidden layers. Only the sign of the

derivative of the transfer function is used to determine the direction of

the weight update: the magnitude value of the derivative has no effect

on the weight update. Our results shows the resilient back propagation

is generally much faster than the standard gradient descent algorithm.

 ٥٤

Also it has a nice property that it requires only a modest increase in

memory requirements, and thus we do need to store the update values

for each weight and bias.

3.3.Quasi-Newton Algorithms

Quasi-Newton (or secant) methods are based on Newton’s

method but dont require calculation of second derivatives (at each

step). They update an approximate Hessian matrix at each iteration of

the algorithm.

The optimum weight value can be computed in an iterative

manner by writing:

w(k+1) = w(k) − αkH−1g……………………….(4)

where αk is the learning rate, gk is the gradient of the error surface

with respect to the w(k) and H is the Hessian matrix (second

derivatives of the error surface with respect to the w(k)). We can show

that the Quasi-Newton’s method converges to the optimal weight w*.

Now rewrite the equation of Newton’s method as: w *= w(k) −

1
2

H−1gk ……………………………………………………………….………………….….(5)

Therefore, from eqs.(4) and (5), we get :w(k+1) = w(k) − 2αk(w(k) −

w*) = w(k)(1 − 2αk) + 2αkw*

Starting with an initial weight of w(0), we get:

 ٥٥

 w(1) = w(0)(1 −2αk) + 2αkw* = w* + (1 − 2αk)(w(0) −w*)

w(2) =w(1)(1 −2αk) + 2αkw* = w(0)(1 −2αk)2 + 2αkw*(1 −2αk) +

2αkw*

 = w* + (1 −2αk)2(w(0) −w*)

w(k) = w* + (1 −2αk)m(w(0) − w*)

Since w(0) − w* is fixed, w(k) converges to w*, provided: 0 < 2αk ≤

1, i.e., 0 < αk ≤ ½.

We see that in the quasi-Newton method the steps do not

proceed along the direction of the gradient . Now we introduce two

quasi-Newton algorithms :

3.3.1.BFGS Quasi-Newton Algorithm (TRAINBFG)

This algorithm requires more computation for each iteration

and our results shows more storage require than the CG methods,

although, generally, converges in fewer iterations. For a very large

ANN it may be better to use resilient back propagation or one of the

CG algorithms. For smaller ANN, however, BFGS quasi-Newton

algorithm can be used as an efficient training function.

3.3.2.One Step Secant Algorithm (TRAINOSS)

Since the BFGS algorithm requires more storage and

computation in each iteration than the CG algorithms, there is need for

a secant approximation with smaller storage and computation

 ٥٦

requirements. The one step secant (OSS) method is an attempt to

bridge the gap between the CG algorithms and the quasi-Newton

(secant) algorithms .

This algorithm does not store the complete Hessian matrix; it

assumes that at each iteration the previous Hessian was the identity

matrix. This has the additional advantage that the new search direction

can be calculated without computing a matrix inverse .

3.4.Levenberg-Marquardt Algorithm (TRAINLM)

The Levenberg-Marquardt algorithm was designed to

approach second order training speed without having to compute the

Hessian matrix. When the performance function has the form of a sum

of squares, then the Hessian matrix can be approximated as H = JTJ

and the gradient can be computed as g =JTe, where J is the Jacobian

matrix, which contains first derivatives of the network errors with

respect to the weights and biases, and e is a vector of network errors.

The Levenberg-Marquardt algorithm uses this approximation to the

Hessian matrix in the following Newton update: w(k+1) = w(k) − [JTJ

+ µI]−1JTe

 when the scalar µ = 0, this is just Newton’s method. When µ

is large, this becomes gradient descent with a small step size.

3.5.Conjugate Gradient Algorithms (TRAINCG)

 ٥٧

The conjugate gradient algorithms perform a search along

conjugate directions, which produces generally faster convergence

than gradient descent directions [Hagan and Beale, 1996]. The CG

algorithms start out by searching in the gradient descent direction

(negative of the gradient) on the first iteration ،ρ0 = −g0. Then the next

search direction is determined so that it is conjugate to previous search

directions, that is:

w(k+1) = w(k) + αkρk . Where ρk = −gk + βkρk−1.

The various versions of CG are distinguished by the manner in

which the βk is computed.

In this paper, we will present six different variations of CG

algorithms with a comparison between them. In most of the training

algorithms a learning rate is used to determine the length of the weight

update (step size).

In most of the CG algorithms, the step size is adjusted at each

iteration. A search is made along the CG direction to determine the

step size, which will minimize the performance function along that

line search. The CG algorithms that usually used in ANN as a training

algorithm is much faster than variable learning rate back propagation,

and are sometimes faster than Resilient back propagation, although the

results will vary from one problem to another.

3.5.1.FLETCHER-REEVES UPDATE (TRAINCGF)

 ٥٨

 The general procedure for determining the new search direction

is to combine the new gradient descent direction with the previous

search direction: ρk = −gk + βkρk−1

For Fletcher-Reeves update procedure [2] : βk =
1k

T
1k

k
T
k

gg
gg

−−

The training parameters for traincgf are: epochs, show, goal, time,

min-grad, srchFcn.

The training status will be displayed every show iterations of

the algorithm. The other parameters determine when the training is

stopped. The training will stop when the number of iterations exceeds

an epochs, if the performance function drops below goal, if the

magnitude of the gradient is less than mingrad or if the training time is

longer than time in seconds. The parameter srchfcn is the name of the

line search function. traincgf generally converges in fewer iterations

than Resilient back propagation (TRAINRP) (although there is more

computation required in each iteration).

3.5.2.POLAK-RIBIERE UPDATE (TRAINCGP)
 Another version of the conjugate gradient algorithm was
proposed by Polak and Ribiere[3].

For the Polak-Ribiere update, the constant βk is computed

from: βk =
1k

T
1k

k
T

1k

gg
gg

−−

−∆

 ٥٩

The traincgp routine has performance similar to traincgf. It is

difficult to predict which algorithm will perform best on a given

problem. The storage requirements for Polak-Ribiere (four vectors)

are slightly larger than for Fletcher-Reeves (three vectors).

3.5.3.DXON UPDATE (TRAINCGD)

We propose another version of the conjugate gradient

algorithm, which derive from classical method proposed by Dixon [4].

For the Dixon update, the constant βk is computed by: βk =

1k
T

1k

k
T
k

g
gg

−−ρ

−

The training parameters for traincgd are: epochs ،show ،goal ،time ،

min-grad, max-fail, srchFcn, scal-tol, alpha, beta, delta, gama, low-

lim, up-lim, maxstep, minstep, bmax.

The training status will be displayed every show iterations of

the algorithm. The other parameters determine when the training is

stopped. The training will stop if the number of iterations exceeds

epochs, if the performance function drops below goal, if the

magnitude of the gradient is less than mingrad, or if the training time

is longer than time seconds, max-fail which is associated with the

early stopping technique.

 ٦٠

The parameter srchFcn is the name of the line search function.

The remaining parameters are associated with specific line search

routines. The default line search routine srchcha is used.

The traincgd routine has performance, which is some what

better than traincgp for some problems, although performance on any

given problem is difficult to predict.

The storage requirements for the Dixon algorithm (three

vectors).

3.5.4.AL-ASSADY AND AL-BAYATI UPDATE (TRAINCGA)

We use another version of the conjugate gradient algorithm,

when the classical method proposed by Al-Assady and Al-Bayati [5].

 For the Al-Assady and Al-Bayati update, the constant βk is

computed by: βk =
k

T
1k

1k
T
k

g
gg

−

−

ρ

∆−

The training parameters for traincga are: epochs, show, goal, time,

min-grad, max-fail, srchFcn. The storage requirements for the Al-

Assady and Al-Bayati algorithm (four vectors)

3.5.5.HESTENES-STIEFEL UPDATE (TRAINCGH)

We will consider another version of the CG algorithm, when

the classical method proposed by Hestenes-Stiefel [6].

 ٦١

 For the Hestenes-Stiefel update, the constant βk is

computed by: βk =
1k

T
1k

1k
T
k

g
gg

−−

−

∆ρ

∆

The traincgh routine has performance similar to traincgd.

The storage requirements for the Hestenes-Stiefel algorithm

(four vectors)

3.5.6.REYADH-LUMA UPDATE (TRAINCGR)

We propose a new version of the CG algorithm when the

search direction at each iteration is determined by: ρk = − gk + βkρk−1

Where the constant βk is computed by: βk =
1k

T
1k

1k
T
k

g
gg

−−

−

ρ

∆

The training parameters for traincgr are: epochs, show, goal,

time, min-grad, max-fail, sigma, lambda.

We have previously discussed the first six parameters and the

parameter sigma determines the change in the weight for the second

derivative approximation .The parameter lambda regulates the

indefiniteness of the derivative.

The storage requirement for Reyadh-Luma (four vectors)

Remark

1. For all CG algorithms, the search direction will be periodically

reset to the negative of the gradient. The standard reset point

 ٦٢

occurs when the number of iterations is equal to the number of

ANN parameters (weights and biases).

2. For all CG algorithms, the parameters show and epoch set to 5

and 300, respectively.

3. Each of the CG algorithms, which we have discussed so far,

requires a line search at each iteration. This line search is

computationally expensive, since it requires that the ANN response

to all training inputs which should be computed several times for

each search. But the other hand one can designed an algorithm to

avoid the time consuming for performing line search.

4.Newton’s method has a quadratic convergence property , that is

|en+1| ≤ ε |en|2 and thus often

 converges faster than CG methods. Unfortunately, it is expensive

because we need to compute the

 Hessian matrix (second derivatives of the error surface with respect to

the weight).

3.5.7.LINE SEARCH ROUTINES (SRCHCHA)

The method of srchcha was designed to be used in a

combination with a CG algorithm for ANN training. We have used

this routine as the default search for most of the CG algorithms, since

it appears to produce excellent results for many different problems. It

does require the computation of the derivatives (back propagation) in

 ٦٣

addition to the computation of performance function, but it over

comes this limitation by locating the minimum with fewer steps.

4.SPEED AND MEMORY COMPARISON

It is very difficult to know which training algorithm will be the

fastest for a given problem. It will depend on many factors including

the complexity of the problem, the number of data points in the

training set, the number of weights and biases in the ANN, the error

goal, and whether the ANN is being used for pattern recognition

(discriminant analysis) or function approximation (regression).

In general, on ANN’s which contain up to a few hundred

weights the Levenberg-Marquardt algorithm will have the fastest

convergence. The trainrp function is the fastest algorithm on pattern

recognition problems. However, it does not perform well on function

approximation on problems. The CG algorithms, in particular

traincgp, seem to perform well over a wide variety of problems,

particularly for ANN’s with a large number of weights. The traincgr

algorithm is almost as fast as the Levenberg-Marquardt algorithm on

function approximation problems (faster for large ANN’s) and is

almost as fast as trainrp on pattern recognition problems. The CG

algorithms have relatively modest memory requirements.

The trainbfg performance is similar to that of trainlm. It does

not require as much storage as trainlm, but the computation required

does increase geometrically with the size of the ANN, since the

 ٦٤

equivalent of a matrix inverse must be computed at each iteration. Of

the CG algorithms, the traincgd requires the most storage, but usually

has the fastest convergence. The traincgh and traincga have easily

implemented for large problem.

The variable learning rate algorithm traingdx is usually much

slower than the other methods and has about the same storage

requirements as trainrp but it can still be useful for some problems.

For most situations, we recommend that we try to use the Levenberg -

Marquardt algorithm first, if this algorithm requires too much

memory, then try traincgp or traincgr or trainbfg algorithm. The

following table gives some example convergence times for the various

algorithms on one particular regression problem. In this problem a 1-

15-1 FFNN’s was trained on a data set with 41 input/output pairs until

a mean square error performance of 0.008 was obtained. Twenty

different test runs were made for each training algorithm to obtain the

average numbers shown in the table.

Function Technique Time(sec) Epochs
Trainrp Rprop. 12.95 185

Traincgh Hestenes-stiefel CG 27.22 112
Traincgf Fletcher-Powell CG 18.03 94
Traincgp Polak-Ribiere CG 18.66 79
Traincgd Dixon CG 24.52 101
Traincgr Reyadh-Luma CG 14.98 58
Trainbfg BFGS quasi-Newton 9.76 38
Trainlm Levenberg-Marquardt 2.07 8

 ٦٥

Traingdx Variable learning rate 63.17 124
Traincga Al-Assady and Al-Bayati CG 71.36 54

Now we introduce the following problem. 1-5-1 network, with tansig
transfer functions in the hidden layer and a linear transfer function in
the output layer, is used to approximate a single period of a sine
wave. The following table summarizes the results of training the
ANN using nine different training algorithms. Each entry in the table
represents 30 differ- ent trials,where different random initial weights
are used in each trial.In each case,theANN is trained until the squared
error is less than 0.002. The fastest algorithm for this problem is the
Levenberg-Marquardt algorithm.On the average,it is over four times
faster than thenext fastest algorithm. This is the type of problem for
which the LM algorithm is best suited -- a function approximation
problem where the network has less than one hundred weights and the
approximation must be very accurate.

Algorithm Mean.Time(s) Min.Time(s) Max.Time(s)
LM 1.14 0.65 1.83
BFG 5.22 3.17 14.38
RP 5.67 2.66 17.24

CGF 7.86 3.57 31.23
CGP 8.24 4.07 32.32
OSS 9.64 3.97 59.63
CGR 5.92 2.31 16.47
CGA 27.69 17.21 258.15
CGD 6.09 3.18 23.64
CGH 6.61 2.99 23.65

 The performance of the various algorithms can be affected
by the accuracy required of the approximation. This is demonstrated
in the following figure, which plots the mean square error versus
execution time (averaged over 30 trials) for several representative
 algorithms. Here we can see that the error in the LM algorithm
decreases much more rapidly with time than the other algorithms
shown.

 ٦٦

 The relationship between the algorithms is further illustrated
in the following figure, which plots the time required to converge
versus the mean square error convergence goal. We can see that
as the error goal is reduced the improvement provided by LM
algorithm becomes more pronounced Some algorithms perform better
 as the error goal is reduced (LM and BFG), and other algorithms
degrade as the error goal is reduced (OSS and CGA).

5.LIMITATIONS AND CAUTIONS

The gradient descent algorithm is generally very slow, because

it requires small learning rates for stable learning. The momentum

variation is usually faster than simple gradient descent, since it allows

higher learning rates while maintaining stability, but it is still too slow

 ٦٧

for many practical applications. These two methods would normally

be used only when incremental training is desired. Multi-layered

networks are capable of performing just about any linear or non-linear

computation, and can approximate any reasonable smooth function

arbitrarily well. Such networks overcome the problems associated

with the feed forward and linear networks.

Picking the learning rate for a non-linear network is still an

open problem. As with linear networks, a learning rate that is too large

leads to unstable learning. Conversely, a learning rate that is too small

results in incredibly long training times. Unlike linear networks, there

is no easy way of picking a good learning rate for non-linear

multilayer networks.

The error surface of a non-linear network is more complex

than the error surface of a linear network. The problem is that non-

linear transfer function in multilayer networks introduce many local

minima in the error surface. Settling in a local minimum may affect

the convergence and depending on how close the local minimum is to

the global minimum and how low an error is required. In any case, be

cautioned that although a multilayer back propagation network with

enough neurons can implement just about any function, back

propagation will not always find the correct weights for the optimum

solution.

 ٦٨

References

[1] B. Yegnanarayana, Artificial Neural Networks, Newdelhi,

2000.

[2] R. Fletcher and C.M. Reeves, Function Minimization by

Conjugate Gradients, Computer Journal, Vol. 7, P. 149 – 154,

1964.

[3] E. Polak and G. Ribiere, Note sure La Convergence does

methods Directions Conjugate, Rev. Fr. Infr, Rech open, 16-

R1, 6, 1969.

[4] L.G. Dixon, Conjugate Gradient algorithms quadratic

termination with out linear search, Jor. of Tnst. of Math. and

its applications, Vol. 15, 1975.

[5] A. Al - Bayati and N. Al - Assady, Conjugate Gradient

Methods, Technical Research Report, NO.1, School of

Computer Studies, Leeds University, U. K., 1996.

[6] M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradient

for Solving linear System, J. Res. NBS, Vol. 49, 1952.

