Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

EXPERIMENTAL AND NUMERICAL SIMULATION FOR SHALLOW AND DEEP FOUNDATIONS IN LAYERED SOIL SUBJECTED TO EARTHQUAKE LOADING

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

BY

Afnan Hussein Ali

(B.Sc. Civil Engineering, 2019)

Supervised by

Prof. Dr. Hassan Obiad Abbas

Prof. Dr. Safa Hussain Abid Awn

September 2022

IRAQ

Safar 1444

سورة الرحمن (الأية 1-4)

CERTIFICATION OF THE SUPERVISOR

We certify this thesis entitled "Experimental and Numerical Simulation for Shallow and Deep Foundations in Layered Soil Subjected to Earthquake Loading" was prepared by "Afnan Hussein Ali" under our supervision in the Department of Civil Engineering at the University of Diyala in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering - Soil and Foundation Engineering.

Signature:

Name: Prof. Dr. Hassan Obaid Abbas (Supervisor)

Signature:

Name: Prof. Dr.Safa Hussain Abid Awn

(Co-Supervisor)

Date: / / 2022

COMMITTEE DECISION

We certify that we have read the thesis (Experimental and Numerical Simulation for Shallow and Deep Foundations in Layered Soil Subjected to Earthquake Loading), we have examined the student (Afnan Hussein Ali) in its content and what is related with it and in our opinion: it is adequate as a thesis for the degree of Master of Master of Science in Civil Engineering - Soil and Foundation Engineering.

.

Examination Committee	Signature
1- Prof. Dr. Hassan Obaid Abbas	(Supervisor)
2- Prof. Dr.Safa Hussain Abid Awn	(Co-Supervisor)
3- Prof. Dr. Jassim Muhammed Abba	s (Member)
4- Asst. Prof. Dr.Qutaiba Gazi Majeeo	d (Member)
5- Prof. Dr. Bushra Suhail Zbar	(Chairman)
Prof. Dr. Wissam D.Salman	(Head of Department)
The theorie was notified at the Council of	College of Engineering/ University

The thesis was ratified at the Council of College of Engineering/ University of Diyala.

Signature: Name: Prof. Dr. Anees Abdullah Khadom Dean of College,of Engineering / University of Diyala

Date: / / 2022

SCIENTIFIC SERTIFICATE

We certify this thesis entitled "Experimental and Numerical Simulation for Shallow and Deep Foundations in Layered Soil Subjected to Earthquake Loading" presented by "Afnan Hussein Ali" has been evaluated scientifically; therefore, it is suitable for debate by the examining committee.

Signature:

Name:

Title:

Address:

Date: / / 2022

LINGUISTIC CERTIFICATE

We certify this thesis entitled "Experimental and Numerical Simulation for Shallow and Deep Foundations in Layered Soil Subjected to Earthquake Loading" presented by "Afnan Hussein Ali" has been corrected linguistically; therefore, it is suitable for debate by the examining committee.

Signature: Name: Asst. Prof. Ahmed Adel Nouri Title: Address: Date: / / 2022

Dedication

To my model and hero, the pure spring, my tree that does not wither, and the shade that I shelter in at all times....My dear father

To the fount of my affectionateness, the sun of my Wishes, and the flower of my dreams...My dear mother

To those who are for my heart and for my life the best companionship and joy....My sisters and brother

To the soul, who wished to realize this dream of completing a master's degree...My college mate (Leith Essam)

To my friends and everyone, who wishes me success in my life.

I dedicate this humble work.

Afnan Hussein Ali

2022

Acknowledgments

Many thanks and praise are due first and above all to my Creator, Almighty "ALLAH", the Most Beneficent, the Most Gracious, and the Most Merciful, who gave me the ability and the desire to complete this work despite all the hurdles and constraints in the way of its completion.

First, my deepest thanks are presented to my supervisor *Prof. Dr. Hassan Obed Abbas and Prof. Dr. Safa Hussein Abid* for their supervision, advice, insightful criticisms, patient encouragement, and great efforts to explain things clearly aided in writing this thesis in innumerable ways. So, I feel deeply indebted and grateful to them.

I thank all the people who helped me, especially *Asst. Prof. Dr. Waad A. Zakaria*, a faculty member in the Civil Engineering Department-College of Engineering- University of Diyala, for his valuable opinions and efforts throughout the preparation of this research.

Appreciation and thanks are also extended to the all staff of the College of the Engineering/ University of Diyala and especially the Department of Civil Engineering(Geotechnical Specialization) and Engineering Consulting Bureau for soil investigation reports.

Finally, I would like to express my love and respect for my family; no words can express how grateful I am for their patience and encouragement in the thesis preparation.

Afnan Hussein Ali

2022

Experimental and Numerical Simulation for Shallow and Deep Foundations in Layered Soil Subjected to Earthquake Loading By Afnan Hussein Ali Supervised by: Prof.D. Hassan O.Abbas Prof.D. Safa H.Abid Awn ABSTRACT

Governorate of Diyala (Baqubah City, Iraq) is considered an affected area by seismic activity, and this is due to geological characterization, which is located along the earthquake line that runs between the Arab and Iranian plates. It is critical to investigate two different foundation systems (soil-raft and soil-pile system) on the given soil conditions of Baquba soil properties under real earthquake records. Especially after the Halabja earthquake in 2017, near the Iranian-Iraqi border.

The 3-D seismic behavior of piles and raft foundations is experimentally and numerically investigated in this study using the finite element program PLAXIS3D v20.Twenty models are performed to highlight the vertical settlement, horizontal displacement, bending moment, and pore water pressure under El-Centro, Halabja, and Ali-Gharbi earthquakes. A raft model of a fourstorey building was simulated with (18.5x18.5 m) dimensions and different thicknesses (0.8,1,1.2,1.4,and1.6m), and change the raft with a pile foundation with different diameters(0.5,0.7,1m) and length 19m. An experimental model was developed using shaking table to analyze a verification case similar to the domain problem of raft foundation under the Halabja earthquake. It found the numerical analytical results to the experimental results are extremely well matched, in the term that the maximum settlement obtained numerically is more than the experimental work is about 8%.

The results raft foundation showed the vertical settlement decreases as the thickness increases from 0.8m to1.6m, and the percentage of reduction ranged between 5% at 1.4m to 17% at 1m, (7% to8%) at 1.6m, and (19% to21%) at 1.4m, while the horizontal displacement with the percentage of reduction is about 39.49%, 43%, and 45.17% under the El-Centro, Halabja, and Ali AL-Gharbi earthquakes, respectively. The maximum bending moment distribution at the raft foundation under the different earthquakes appeared the same behavior with the change of thickness and decreases about 87% with an increase the thickness to 1.4m and 85% at 1.6m.

From the pile foundation simulation, it observed the vertical settlement and horizontal displacement similar to the edge, exterior, and interior piles which means the diameter of the pile did not affect the displacements. On the other hand, the percentage difference in the maximum settlement ranged between (0.5-3)% under the Halabja and the Ali Al-Gharbi earthquakes. While the lateral displacement increase with the direction of the earthquake from the right to the left side of the pile-soil system. The maximum bending moment along pile foundations occurred at a depth of 10m of the interior pile has the largest diameter of the group model with a range between (40-59)% more than the corner, and exterior piles for all earthquakes applied. In general, the highest values of the settlement and displacements were under the Halabja earthquake with a percentage increase of (85-89)% and 44% over the El-Centro and Ali Al-Gharbi earthquakes, respectively. while under Ail Al-Gharbi increase of (73-80)% over the El-Centro earthquake.

Finally, In the case of comparison between the overall response of raft and groups pile subjected to the same load and factor safety under the El-Centro earthquake, it is clear the settlement with in the rate of 18% and horizontal displacement with68% for raft foundation more than pile foundation.

TABLE OF CONTENTS

No.	Detail	Page
	ABSTRACT	VII
	CONTENTS	IX
	LIST OF FIGURES	XIV
	LIST OF TABLES	XX
	LIST OF NOTATIONS AND SYMBOLS	XXI
	LIST OF ABBREVIATIONS	XXII
CHAPTER ONE	INTRODUCTION	
1.1	Introduction	1
1.2	Statement of the Problem	1
1.3	Objectives of the Study	4
1.4	Layout of the Study	4
CHAPTER TWO	REVIEW OF LITERATURE	
2.1	Introduction	6
2.2	Earthquakes Definition and Their Causes	6
2.2.1	Body Waves	9
2.2.1.1	P-Wave	9
2.2.1.2	S-Wave	9
2.2.2	Surface Waves	9
2.2.2.1	Rayleigh Waves	9
2.2.2.2	Love Waves	10

2.3	Earthquakes Measurement Principles	10
2.4	Earthquakes Destructive Effects in the Geotechnical	11
	Field	
2.5	Historical View of Earthquakes in Iraq	13
2.6	Seismic History of Diyala	16
2.7	Raft Foundation	19
2.8	Pile Foundation	19
2.9	The Response of Shallow Foundations Under	21
	Earthquake (Numerical and Experimental Studies)	
2.9.1	Numerical Studies of Raft Foundation	22
2.9.2	Experimental studies of Raft Foundation	30
2.10	The Response of Deep Foundations Under Earthquake	34
	(Numerical and Experimental Studies)	
2.10.1	Numerical Studies of Pile Foundation	36
2.10.2	Experimental Studies of Foundation	43
2.11	Summary	44
CHAPTER THREE	FINITE ELEMENT MODELING AND	
	EXPERIMENTAL WORK	
3.1	Introduction	46
3.2	Components of Experimental Testing (General	47
	Description)	
3.2.1	Material Used	48
3.2.1.1	The Clay Soil	48
3.2.1.2	Soil Box Model	52

3.2.1.3	Raft Foundation Used	53
3.2.1.4	Instrumentation	53
32141	Data Acquisition	53
5.2.1.4.1		55
3.2.1.4.2	Linear Variable Differential Transformer (LVDT)and	55
	Settlement Measurement	
3.2.2	Sample Preparation	55
3.2.2.1	Preparation of Sandy Soil	55
3.2.2.2	Preparation of Clay Soil	56
3.2.3	Test Procedures	58
3.3	Results	59
3.4	Basic Equations of Continuum Deformation	61
3.5	The Basic Equation of Dynamic Behavior	62
3.5.1	Damping of Propagating Waves in the Model	62
3.6	Formulation of Finite Element	63
3.7	Methodology Plaxis 3D 2020 Software	64
3.7.1	Graphical Input of Geometry Projects	65
3.7.2	Elements and Nodes	65
3.7.2.1	Soil Element	65
3.7.2.2	Interface Element	67
3.7.2.3	Embedded Pile Element	68
3.7.2.4	Plate Elements	69
3.7.3	Constitutive Models for Simulating Material	70
3.7.3.1	Linear Elastic Model (LE)	70

3.7.3.2	Mohr- Coulomb Model (MC)	71
3.7.3.2.1	Soil Profile of Baqubah City (Iraq,Case Study)	72
3.8	Generation of Models	74
3.8.1	Construction of Model Geometry	74
3.8.2	Raft Modeling	76
3.8.3	Embedded Piles and Pile's Cap Modeling	76
3.8.4	Boundary Conditions of the Models	78
3.8.5	Earthquake Modeling	78
3.9	Mesh Generation	81
3.10	Performing Calculations	82
CHAPTER FOUR	RESULTS AND DISCUSSION	
4.1	Introduction	84
4.1 4.2	Introduction Influence Of Earthquake Loads On The Behavior Of Paft And Pile Foundation	84 84
4.1 4.2	Introduction Influence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.	84
4.1 4.2 4.2.1	Introduction Influence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation. Effect of Raft Thickness on Vertical Settlement	84 84 85
4.1 4.2 4.2.1 4.2.2	IntroductionInfluence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.Effect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Horizontal Displacement	84 84 85 90
4.1 4.2 4.2.1 4.2.2 4.2.2 4.2.3	IntroductionInfluence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.Effect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Horizontal DisplacementEffect of Raft Thickness on the Bending Moment	 84 84 85 90 93
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	IntroductionInfluence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.Effect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Horizontal DisplacementEffect of Raft Thickness on the Bending MomentVariation of Pore Water Pressure Under Raft	 84 84 85 90 93 94
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	IntroductionInfluence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.Effect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Horizontal DisplacementEffect of Raft Thickness on the Bending MomentVariation of Pore Water Pressure Under Raft Foundation	 84 84 85 90 93 94
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3	IntroductionInfluence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.Effect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Horizontal DisplacementEffect of Raft Thickness on the Bending MomentVariation of Pore Water Pressure Under Raft FoundationInfluence of the Earthquake on the Behavior of Pile	 84 84 85 90 93 94 98
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3	IntroductionInfluence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation.Effect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Vertical SettlementEffect of Raft Thickness on Horizontal DisplacementEffect of Raft Thickness on the Bending MomentVariation of Pore Water Pressure Under Raft FoundationInfluence of the Earthquake on the Behavior of Pile Foundations	 84 84 85 90 93 94 98
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3	Introduction Influence Of Earthquake Loads On The Behavior Of Raft And Pile Foundation. Effect of Raft Thickness on Vertical Settlement Effect of Raft Thickness on Horizontal Displacement Effect of Raft Thickness on the Bending Moment Variation of Pore Water Pressure Under Raft Foundation Influence of the Earthquake on the Behavior of Pile Foundations The Influence of Pile Support Conditions	 84 84 85 90 93 94 98 98

4.3.3	Influence on Pile's Horizontal Displacement	105
4.3.4	Influence on Bending Moment along the Length of Piles	108
4.3.5	Influence on Axial Force along the Length of Piles	110
4.3.6	Variation Pore Water Pressure of pile Group Model	113
4.4	Comparison Between Raft and Pile Foundation	116
	Perfermence Under Sciencia Land	
	Performance Under Seismic Load	
CHAPTER FIVE	CONCLUSIONS AND RECOMMENDATIONS	
CHAPTER FIVE 5.1	CONCLUSIONS AND RECOMMENDATIONS Conclusions	122
CHAPTER FIVE 5.1 5.2	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendation For Further Studies	122 125
CHAPTER FIVE 5.1 5.2	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendation For Further Studies REFERENCES	122 125 127
CHAPTER FIVE 5.1 5.2	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendation For Further Studies REFERENCES Appendix A	122 125 127

LIST OF FIGURES

No.	Title	Page
1.3	Damages To Different Structures In Iraq Due To The Halabja Earthquake,	3
	2017 (After Al-Taie And Albusoda, 2019)	
2.1	Body Waves Travel Through A Medium. (Animation By Larry Braile	9
	2000-2006)	
2.2	Surface Waves, (Animation By Larry Braile 2000-2006)	10
2.3	Geographic Location of The Iraq Seismic Network (Isn), Six Stations	14
	(Black Triangles), And Seismic Epicenters Of Earthquakes In The Study	
	Area (After Mohammed And Faraj, 2016)	
2.4	Faults In The Diyala Governorate And The Surrounding Areas (Abdulnaby Et Al., 2016).	16
2.5	Graphical Descriptions Of The Six Swarms Of Diyala City During 10	18
	Years (2004–2014), Red Column Depicts The Day Of The Main Shock	
	(Abdulnaby Et Al., 2016).	
2.6	Types Of Raft Foundations, (After Gupta, 1997)	19
2.7	Conditions That Require The Use Of Pile Foundations (After Das, 2010)	20
2.8	Changing Of (Tan Aae) With Kh* And Φ (After Richards Et Al., 1993)	22
2.9	Fe Mesh And Boundary Conditions. (After Elia And Rouainia, 2014)	23
2.10	(A) Vertical Displacement (B) Horizontal Displacement At The End Of	24
	The Ant#0.3131 Analysis Mw=6.3 (After Elia And Rouainia, 2014)	
2.11	A 3-D Finite Element Mesh For Model Components, (After Kotb Et Al.,	25
	2018)	
2.12	Vertical Displacement Via Time (A) At The Center Raft And (B) At The	26
	Corner Raft (After Kotb Et Al., 2018)	
2.13	(A) Geometry And Soil Layers Model (B) Embedded Raft Foundation,	26

	Point Load, And The Prescribed Displacement. (Shafiqu And Abdulrasool,	
	2018)	
2.14	(A) Vertical Settlement At Raft Foundation In Varied Foundation	27
	Thickness And Different Sites (B) Various Seismic Waves Have Different	
	Effects On Raft Foundation Vertical Settling (C) Dynamic Time Versus	
	Lateral Displacement In Soil For Different Seismic Waves (After Shaniqua	
	And Abdulrasool, 2018)	
2.15	Various Thicknesses Of Footings Placed On A Soil Layer With Different	29
	Depths Show Lateral Displacement Over Time ;(A) D=10m, (B) D=20m,	
	(C) D=40m (Al-Ameri, Et Al., (2020)	
2.16	View Of The Model Before And After The Base Motion (After Tutunchian	31
	Et Al., 2011).	
2.17	Variation Of Foundation Settlement At Different Relative Densities Of The Soil And Different Acceleration Factor (After Al Sammaraev 2018)	32
2.10	The Son And Different Acceleration Paciol (After Al-Saminaraey, 2018)	22
2.18	General View Of Testing Model And Instruments (After Hanash Et Al.,	33
	2019)	
2.19	Variation Of Maximum Total Settlement With Embedment Depth Under	33
	(A) 1hz And (B) 2 Hz (After Hanash Et Al., 2019)	
2.20	Pile Foundation Damage Due To Strong Earthquakes (After Teguh, 2006)	35
2.21	Current Understanding Of Pile Failure, (After Finn And Thavaraj, 2001)	36
2.22	Earthquake Ground Motion Direction (Ali And Abdul Rahman, 2017).	37
2.23	Pile And Pile Cap Model (Ali And Abdul Rahman, 2017)	37
2.24	Model Geometric (A) Horizontal Surface, L/D 33 (B) Slope Ground	38
	1v:1.5h, L/D 33(After Deendayal And Nigitha, 2017)	
2.25	Maximum Displacement Vs Depth Curve With Varying Slopes For	38
	L/D=33 (After Deendayal And Nigitha, 2017)	
2.26	Connectivity Plot And Finite Element Mesh For The Piled Raft In The S10	39

	Site (After Shafiqu And Saur, 2018)	
2.27	Bending Moments Along With Piles A, B, C, And D At The E1and E2 Site (After Shafiqu And Saur, 2018)	40
2.28	Relative Displacement Along Pile-Soil System UNDER Earthquakes (Albosuda Et Al., 2020)	41
2.29	Proposed Finite Element Model. (A) 3d Model, (B) 3d Mesh (After Khalil Et Al., 2020)	42
3.1	Laboratory Model For Soil Layers	48
3.2	Hydrometer Test Curve For Clay Soil	49
3.3	Compaction Test Curve For Clay Soil.	49
3.4	Consolidation Test Curve For Soft Clay Soil.	49
3.5	Grain Seize Distribution Of Sand Soil.	50
3.6	Saturated Net With Gravel Filter Layer Under The Soil Sample	52
3.7	An Overview Of The Testing Model.	53
3.8	Shaking Table Devices Manufactured	54
3.9	Testing Instruments	54
3.10	Sand Preparation Within The Steel Box	56
3.11	The Relationship Between The Undrained Shear Strength And Water Content Of Clay Soil	57
3.12	Mix And Initialize The Clay Soil	58
3.13	The Relationship Between Time And Settlement Of Raft Foundation	59
3.14	Flow Chart Of Finite Element Modeling	60
3.15	3-D Soil Element 10-Node Tetrahedron (Brinkgreve Et Al., 2013	66
3.16	Local Numbering And Positioning Of Nodes (•) And Integration Points (X) Of A 16-Node Interface Element (After Brinkgreve Et Al, 2013)	67

3.17	Illustration Of The Embedded Beam Element Denoted By The Solid Line, The Blank Grey Circles Denote The Virtual Nodes Of The Soil Element (After Brinkgreve Et Al, 2013).	68
3.18	Basic Idea Of The Elastic Perfectly Plastic Model (After Brinkgreve Et Al, 2013)	71
3.19	Geometry Model With, Surface Load, And Load Multiplier Of The Earthquake (A) Pile Foundation And (B) Raft Foundation	75
3.20	The Geometry Of Soil Layers	76
3.21	Geometric Model Of The Group Pile	77
3.22	Time History For El-Centro, Halabja, And Ali-Gharbi Earthquakes	79
3.23	Acceleration Time-History Of The El-Centro Earthquake	81
3.24	Mesh Generation Of Pile Group Foundation	82
3.25	Mesh Generation Of Raft Foundation	82
4.1	The Selected Point For Raft Calculation	85
4.2	Vertical Settlement Versus Dynamic Time For Raft Foundation With Different Thicknesses Under El-Centro Earthquake	87
4.3	Vertical Settlement Versus Dynamic Time For Raft Foundation With Different Thicknesses Under Halabja Earthquake	87
4.4	Vertical Settlement Versus Dynamic Time For Raft Foundation With Different Thicknesses Under Ali Al-Gharbi Earthquake	88
4.5	Variation Of Maximum Settlement Of Raft Foundations With Different Thicknesses Under Each Of The Earthquakes Of Halabja, El-Centro, And Ali Al-Gharbi	89
4.6	Horizontal Displacement Versus Dynamic Time For Raft Foundation With Different Thicknesses Under El-Centro Earthquake	90
4.7	Horizontal Displacement Versus Dynamic Time For Raft Foundation With Different Thicknesses Under Halabja Earthquake	91
4.8	Horizontal Displacement Versus Dynamic Time For Raft Foundation With Different Thicknesses Under Ali Al-Gharbi Earthquake	91
4.9	Variation Of Maximum Lateral Displacement Of Raft Foundations With Different Thicknesses Under Each Of The Earthquakes Of Halabja, El- Centro, And Ali Al-Gharbi	92

4.10	Variation Of Maximum Bending Moment Of Raft Foundations With Different Thicknesses Under Each Of (A) The El-Centro Earthquake (B) The Halabja Earthquake And (C) The Ali Al-Gharbi Earthquake	94
4.11	Pore Water Pressure For Soil Cross-Section With Raft Foundation Under Static Loading	96
4.12	Pore Water Pressure For Soil Cross-Section With Raft Foundation Under El-Centro Earthquake Loading	96
4.13	Pore Water Pressure For Soil Cross-Section With Raft Foundation Under Halabja Earthquake Loading	97
4.14	Pore Water Pressure For Soil Cross-Section With Raft Foundation Under Ali Al-Gharbi Earthquake Loading	97
4.15	The Group Pile With The Floating Condition	98
4.16	Piles A, B, C, And D Are Selected From The Group Of Pile Model	101
4.17	Vertical Settlement Versus Dynamic Time For Group Pile Embedded In Soil Layers Under El-Centro Earthquake	102
4.18	Vertical Settlement Versus Dynamic Time For Group Pile Embedded In Soil Layers Under Halabja Earthquake.	103
4.19	Vertical Settlement Versus Dynamic Time For Group Pile Embedded In Soil Layers Under Ali Al-Gharbi Earthquake	103
4.20	Variation Of Maximum Settlement Of Piles, B, C, And D With A Different Diameter Under Each Of The Earthquakes Of Halabja, El-Centro, And Ali Al-Gharbi	104
4.21	Horizontal Displacement Versus Dynamic Time For A Group Of Piles Embedded In Soil Layers Under The El-Centro Earthquake	105
4.22	Horizontal Displacement Versus Dynamic Time For A Group Of Piles Embedded In Soil Layers Under The Halabja Earthquake.	106
4.23	Horizontal Displacement Versus Dynamic Time For A Group Of Piles Embedded In Soil Layers Under The Ali Al-Ghrbi Earthquake	106
4.24	Variation Of Horizontal Displacement Of Piles, B, C, And D With A Different Diameter Under Each Of The Earthquakes Of Halabja, El- Centro, And Ali Al-Gharbi	107
4.25	Bending Moment Along Piles A, B, C, And D Of The Group Model Under The El-Centro Earthquake	109
4.26	Bending Moment Along Piles A, B, C, And D Of The Group Model Under	109

	The Halabja Earthquake	
4.27	Bending Moment Along Piles A, B, C, And D Of The Group Model Under The Ali Al-Gharbi Earthquake	110
4.28	Axial Force Distribution Curve Of Plies A, B, C, And D With The Static Load	111
4.29	Axial Force Distribution Curve Of Plies A, B, C, And D Under El-Centro Earthquake	112
4.30	Axial Force Distribution Curve Of Plies A, B, C, And D Under Halabja Earthquake	112
4.31	Axial Force Distribution Curve Of Plies A, B, C, And D Under The Ali Al- Gharbi Earthquake	113
4.32	Pore Water Pressure For Soil Cross-Section With Pile Foundation Under Static Loading	114
4.33	Pore Water Pressure For Soil Cross-Section With Pile Foundation Under El-Centro Condition	114
4.34	Pore Water Pressure For Soil Cross-Section With Pile Foundation Under Halabja Condition	115
4.35	Pore Water Pressure For Soil Cross-Section With Pile Foundation Under Ali Al- Gharbi Condition	115
4.36	Modeled Of Pile Foundation System	116
4.37	Modeled Raft Foundation System (Section View)	117
4.38	Vertical Settlement With Time For Group Piles A, B, C, And D Embedded In Soil Layers Under The El-Centro Earthquake.	119
4.39	Horizontal Displacement With Time For Group Piles A, B, C, And D Embedded In Soil Layers Under The El-Centro Earthquake	120
4.40	Settlement With Time For Raft Foundation Embedded In Soil Layers Under The El-Centro Earthquake	120
4.41	Horizontal Displacement With Time For Raft Foundation Embedded In Soil Layers Under The El-Centro Earthquake	121

No.	Title	Page
2.1	History Of Earthquakes In Iraq For The Period 820-2018 (After Abdul Rahman, 2017)	15
3.1	Physical and Mechanical Properties of Clay Soil	50
3.2	Physical and Mechanical Properties of Sand Soil	51
3.3	The maximum vertical displacement of the raft foundation for	60
	both experimental and numerical simulations	
3.4	Material Properties Of The Foundations	70
3.5	Parameters Of Soil Used For The Numerical Analysis	73
3.6	The Data Of Earthquakes	80
4.1	The Results Of The Maximum Total Settlement And The	99
	Horizontal Displacement With A Variation Of Earthquake	
	Excitation (Pile Group, D=0.4m, And L=12m)	
4.2	The Results Of The Maximum Total Settlement And The	99
	Horizontal Displacement With A Variation Of Earthquake	
	Excitation (Pile Group, D=0.5m, And L=16m)	
4.3	Maximum Settlement And Horizontal Displacement For Raft	121
	And Pile Foundations under El-Centro Earthquake.	

LIST OF TABLES

LIST OF NOTATIONS AND SYMBOLS

Symbol	Term
С	Cohesion
С	The damping matrix
Cc	Compression Index
CL	Lean Clay
Cs	Swelling index
Cu	Undrained Shear Strength
C _v	Coefficient of Consolidation
D	pile Diameter
Е	Young's modulus
e _{max}	Maximum void ratio of soil
e _{min}	Minimum void ratio of soil
Gs	Specific Gravity
Hz	Unit of frequency
I.P	Plasticity Index
K	The stiffness matrix
L.L	Liquid Limit
Μ	The mass matrix
Mw	Richter magnitude
Ni	The shape function matrix
O.M.C	Optimum Moisture Content
P.L	Plastic Limit
SM	Slity Sand
SP	Poorly graded Sand
u	The displacement
ú	The Velocity
ű	The acceleration

u _x	Horizontal displacement in x-direction
u _y	Horizontal displacement in y-direction
uz	Vertical displacement in z-direction
<u>V</u>	The nodal displacement
Vp	compression wave velocity
Vs	Shear wave velocity
Wc	Water Content
α	The mass-proportional coefficient
β	The stiffness-proportional coefficient
ν	Poisson's ratio
ξ	Damping ratio
Ϋ́d	Dry unit weight
Ƴsat	Saturated unit weight
Ψ	Dilatancy angle
$\mathbf{\Phi}^{\circ}$	Angle of internal friction

LIST OF ABBREVIATION

Abbreviation	Term
ASTM	American Society For Testing and Materials
DAQ	Data Acquisition
LVDT	Linear Variation Displacement Transducer
USCS	Unified Soil Classification System

CHAPTER ONE

INTRODUCTION

1.1Introduction

The phenomenon of earthquakes is considered one of the most dangerous natural disasters that occur without warning and causes damage to any building or structure through settlement, ground cracking, and loss of bearing capacity of soil- foundation system (Sadiq and Albusoda, 2020). The foundation is the lowest part of the structure that comes into direct contact with the soil media and is placed on or beneath the ground surface to transfer all of the loads from the structure to the underlying soil. In addition to the static loads, the foundation must be constructed to withstand the dynamic loads induced by earthquakes.

Generally, the foundations can be divided into two categories, shallow and deep foundations. The first category consists of spread footing, wall footing, combined footing, and raft footing. The second category is piers, cassations, drilled-shaft-foundations, and piles (Aung and Tun, 2012). As a result, foundation engineers must keep abreast of technological advancements in these domains, or be well informed in these fields, to achieve cost-effective and safe designs. There is still a lot of work to be done in developing methodologies to evaluate seismic bearing capacity and earthquake-induced permanent displacements in shallow and deep foundations (Fattah et al., 2016).

1.2 Statement of the Problem

Rapid progress is the means to develop the cities, as a Baqubah area, which calls for construction actions of many modern facilities for different

Chapter One

loads in values between the medium to heavy that supported with various types of shallow and deep foundations. Also, the natural soil area that are form weak to medium-soft soil with a high percent of silt extends over large sites in this city, and up to thickness ranging from (0.5m to 18,20,24m) according to the soil investigation for the governorate reports.

The foundations of any building or structure must be designed to withstand all vertical and lateral loads imposed, safely without impairing stability or causing excessive movement to that building. Seismic risk mitigation is one of the most difficult challenges in civil engineering, and geotechnical earthquake engineering can make an important contribution to this challenge. (Kulkarni and Sambre, 2015). Shallow foundations are subjected to lateral forces induced by earthquake movements, which may be dominant in some structures, and buildings with these foundations may overturn under earthquake load. Deep foundation design for dynamic load resistance is primarily based on limiting deflection criteria that take into account the safe operation of the superstructure. As a result, a careful engineering analysis of the behavior of pile foundations under anticipated static and dynamic working loads becomes a critical step in the satisfactory performance of pile foundations (Boominathan and Ayothiraman, 2007).

Tectonically Iraq is located in a relatively active seismic zone at the northeastern boundaries of the Arabian Plate. The Arabian Plate in the southwest is connected to the Iranian in the notheast and Anatolian Plates by the Zagros-Taurus Belts. The annual seismic activity of various strengths is declared in seismic history (Al-Taie and Albusoda, 2019). Especially, active seismic activity was recorded with varying intensities in 2017 and 2018, and with magnitude ranged between 4.0 and 7.3 on the Richter scale, (Al-Taie, 2015) and (Albusoda, 2016). Figure (1.3) depicts some of the damage to

several Iraqi structures. As Iraq's seismicity has increased in a general and discernible way from south to north and west to east (Abd Alridha and Mohammed, 2015). The Zagros-Taurus active mountain belt, which is entrapped between two plates, the Arabian and the Iranian, has a relatively extensive zone of compressional deformation on the eastern side of the study region (Jasim, 2013). Since the Baqubah city is located in this geographical area, which made it is sensitive to earthquakes.

In the last few decades, most researchers have undertaken the fundamental characteristics of foundations under dynamic loads, but the study of the behavior of shallow foundations and deep foundations under earthquakes has little been reported. According to the above-mentioned problems, the experimental work and numerical model of the raft-soil system and the pilesoil system will be built in this study with FEM **PLAXIS-3D**, and their dynamic response will be analyzed by inputting Halabjah, Ali-Gharbi, and El-Centro seismic waves.

Figure (1.3): Damages to different structures in Iraq due to the Halabja earthquake, 2017 (after Al-Taie and Albusoda, 2019).

<u>1.3 Objectives of the Study</u>

The main objective of this study is to assess the behavior of the shallow (raft foundation) and deep foundation (Pile foundation) under earthquakes excitation including the stronger earthquakes that struck Iraq in late past years, " El-Centro, Halabjah and Ali Al-Gharbi" according to the soil properties of Baqubah city. The simulation was made experimentally using a shaking table model and numerically through a three-dimension finite element approach (PLAXIS- 3D 2020). The objectives of this study can be presented in the following points:

- 1. Studying the dynamic behavior of raft-soil under seismic loading system experimentally and numerically through settlement.
- 2. Investigating the influence of thickness on the dynamic behavior of raft foundations under different excitation frequencies.
- 3. Investigating the influence of pile length on the dynamic behavior of pile foundations under different excitation frequencies.

1.4 Layout of the Study

The research work is presented in five chapters as summarized below:

• Chapter One: introduces a general introduction to the type of foundations and the effects of the earthquake. In addition to a general overview of the goals of this study.

• **Chapter Two:** includes a brief description of the earthquakes and seismic waves. Also contains history view of the earthquake in Iraq and the geology of Diyala city. Moreover, a review of the researchers related to the behavior of the shallow and deep foundations under dynamic loadings.

• **Chapter Three:** contains a finite element modeling using **PLAXIS 3D 2020** program and checking the accuracy of this software by comparison with experimental work performed to study the validity of numerical analysis of the soil-raft system under earthquake action.

• **Chapter Four:** investigated the dynamic behavior including the horizontal displacement, vertical settlement, bending moment, and pore pressure for both raft-soil system and pile-soil system built-in layered soils of Baquba city under the influence of the real earthquake acceleration.

• Chapter Five: displays a summary of the main conclusions of the current study and covers the recommendations for further research on the related topic.