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ABSTRACT 

 

  Latent Heat Thermal Energy Storage (LHTES) based on Phase Change 

Material (PCM) provides an encouraging solution for the efficient utilization 

of discontinuous energy from the renewable such as wind, solar, and so on. 

Prospective applications of the PCMs in the fields of thermal management and 

thermal energy storage are well recognized. Nevertheless, the main problem of 

these materials is their poor thermal conductivity which necessitates the 

incorporation of thermal response enhancement techniques. Porous metal 

foam as an effective conductivity enhancement approach along with Triplex 

Tube Heat Exchanger (TTHX) thermal storage structure filled with PCM was 

used to enhance the PCM charging rate. An experimental investigation is 

carried out to establish a comparative performance assessment on two TTHX 

configurations: TTHX without foam (simple TTHX) and TTHX with copper 

foam (foamed TTHX) using water as a Heat Transfer Fluid (HTF). The 

numerical simulation was done using ANSYS Fluent. The heat transfer fluid 

(HTF) was water flowing through the heat exchanger tube at  oC,  oC, and 

 oC. The thermal behavior of two TTHX configurations Were investigated 

in terms of temporal variation of PCM temperature, PCM liquid fraction and 

energy stored for different opration condition of HTF inlet tempreture and 

mass flow rate . Experimental observations showed the foamed TTHX had a 

superior melting rate over the simple TTHX. For both TTHX configurations, 

the increasing of HTF temperature, the needed time for the process of 

charging decreases. effect of the temperature of HTF is significant for foamed 

TTHX, where the whole time of melting reduces for foamed TTHX and 

simple TTHX is (43%) and (34%) when the temperature of HTF is increased 

from (69ºC) to (75ºC). Furthermore, the overall enhancement can be 

performed with addition foam to LHTES of up to 44%, 36% and 33% 
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corresponding HTF flow rate compared with simple 

pure LHTES.further, The variation of flow rate has a little impact on thermal 

response for foamed THHX as compared with simple TTHX with 

consideration of flow rate variation. The highest accumulative energy stored 

enhancement reached up to (52%) was obtained by incorporating copper foam 

with TTHX at highest HTF temperature during melting process. 
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Chapter One 

Introduction 

1.1 Introduction 

 

The rise in prices and depletion of fossil fuel associated with increase in 

greenhouse gas emissions are indicated as the key driving forces behind 

efforts to successfully utilize several of renewable energy sources. Among the 

various types of renewable energy resources, solar energy being regarded the 

best promising energy source in different global parts. The characteristics of 

solar energy  like easily, directly, utilized, freely available abundant, 

environmentally friendly and safe, making it an interested replacement to the 

fossil fuels. Furthermore, solar energy suffers from the shortcoming of 

becoming intermittent with day time, seasons and weather. To overcome the 

mismatch between energy supply and demand, solar energy systems required 

Thermal Energy Storage (TES) [1]. 

As a result, the TES unit becomes a crucial component in solar thermal 

utilization systems to ensure that a solar energy system continues to work 

reliably and efficiently. Because of  their elevated thermal energy density per 

unit mass and volume, TES systems, especially latent Heat Thermal Energy 

Storage (LHTES), has recently attracted more attention [2]. 

LHTES based on Phase Change Materials (PCMs) are an important type of 

thermal energy storage, which are based on the capture and release of energy 

when a material undergoes a phase change from solid to liquid or liquid to gas 

or vice versa [3]. The thermal conductivity of the PCMs employed as a storage 

medium in TES system is low. This frequently  

leads to incomplete solidification and melting processes and also a 

considerable temperature difference within PCM resulting in materials failure 

that causes system overheating. PCMs are utilized in different engineering 
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applications like the thermal storages of equipment and building structures, 

involving heating and cooling systems, refrigerator and cold storage, domestic 

hot water, drying technology, electronic products, solar cookers and solar air 

collectors [4].  

1.2 Thermal Energy Storages  

Thermal energy can be stored in a liquid or solid medium as sensible 

heat. The total amount of energy stored and released depends on temperature 

of the storage medium. The thermal energy can be stored as latent heat as the 

material changes phases during the charging and discharging processes. 

During phase change, the temperature of these materials remains constant. 

This can also be stored as chemical energy or outcome from a reversible 

chemical reaction. According to [5], there are several advantages of 

employing TES systems, such as reducing the energy consumption, reducing 

costs, increasing flexibility of operation, enhancing indoor air quality, and 

decreasing initial and maintenance costs. These systems can also be classified 

in many categories depending on kinds of the storage medium namely 

Sensible Heat Thermal Energy Storage (SHTES) and latent thermal energy 

storage (LTES). Figure (1.1) summarizes the classifications of thermal energy 

storage types. 
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Figure (1.1): The classifications of thermal energy storage [6] 

1.2.1 Sensible Heat  Thermal Energy Storage  

Sensible Heat Thermal Energy Storage (SHTES) is the simplest method 

based on two storage mediums, including: liquid and solid medium. These 

mediums can be employed by increasing its temperature without phase-

change. for example, rock, Liquid mediums are also used as oil-based-liquids, 

including: water and molten salt. Water medium is considered as one of the 

most common storage mediums that employed to store the sensible heat 

energy. This is due to it is abundant and, cheap, has a high density and a high 

specific heat [6]. 

1.2.2 Latent Heat Thermal Energy Storage  

Latent Heat Thermal Energy Storage (LHTES) can be defined as the 

amount of heat absorbed or deliberated from the storage medium when the 

material is changed from phase to another. With sensible heat, the thermal 

storage process starts. Through this process, the material temperature changed 

from ambient temperature (initial temperature) to phase-transition temperature 

after this. The thermal storage material absorbs the heat energy received, and 

then completely transformed to another phase after losing its temperature [6]. 
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Thermal energy storage systems allow for the storage of large amounts 

of thermal energy, especially LHTES systems, which require a smaller volume 

and weight of material, compared with conventional SHTES systems. The 

LHTES system has also the ability to store fusion heat at a constant  value or 

near constant  temperature, which corresponds to the PCM temperature for 

phase-transition. 

1.3 Utilizations of LHTES 

As compared to SHTES, the method of latent heat thermal energy storage has 

proved to be a better engineering choice due to its different benefits, like a 

large storage of energy for a given volume, uniform energy storage/supply, 

compact ness etc. [4]. Therefore, different geometries of the systems of 

LHTES find their broad applications in various engineering fields such as the 

solar thermal applications, solar based dynamic space power generation, 

cooling of electronics, industrial waste heat recovery, passive heating building, 

Systems of air conditioning systems, and automobiles. The choice of a suitable 

PCM for any application needs the PCM to have the temperature of melting 

within the working range of application. Numerous uses are as have been 

proposed for the PCMs studied. It can be observed that the majority of 

researches on the problems of PCM have been conducted within the range of 

temperature (0 65oC) appropriate for the domestic heating/cooling application 

[4]. 
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1.4 Triplex Heat Exchangers 

 Triplex Tube Heat Exchanger (TTHX) is utilized in different products 

pharmaceutical beverage 

industries [7]. TTHX with PCMs in the middle tube can be employed as 

thermal energy storage to enhance the heat transfer area and improve the heat 

transfer process compared with other heat exchanger configurations as shown 

in Figure (1.2) [8]. As (HTF) flows from both sides, i.e., from the inner and 

outer tube, better heat transfer better heat transfer can be performed. 

could be performed.  

Figure (1.2): Triplex tube heat exchanger with PCM only [8] 

Majority of the PCMs have limited applications due to their low thermal 

conductivity. and, this leads to extend the period needed for the of process 

melting and solidification. Therefore,  to reduce the time needed 

for charging process by using enhancement heat transfer techniques.Metal 

foams are distinctive porous matrices with small openings called pores or 

voids. The use of metal foams offers remarkable solutions for heat transfer 

enhancement in various engineering applications due to their high thermal 

conductivity and large area-to-volume ratio, see Figure 1.3  

 [9] 
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Figure (1.3): Triplex heat exchanger with PCM and copper foam [9] 

1.5 Problem of study  

      

                  

                 Figure (1.2): Triplex tube heat exchanger with PCM and metal 

foam  

 

1.5 problem of study  

   A major issue with the application of PCMs in TES is the difficulty of heat 

transfer in charging as well as discharging the TES. Because of the low 

thermal conductivity of PCM, the time required to fully charging the thermal 

storage tanks longer duration. For efficient utilization of thermal energy 

storages, it is necessary to incorporate the transfer enhancement techniques to 

improve the thermal response of the (LHTES). The Presently development in 

PCM thermal energy storage have high tined the need for enhancement heat 

transfer techniques to reduce the time needed for phase change process. 

 As mentioned above, the traditional PCMs' thermal conductivity can be 

improved via utilizing elevated conductivity materials. The elevated 

conductivity materials application for enhancing the traditional PCMs' thermal 

conductivity has been treated within various techniques via investigators, 

which can be briefed as [4]: 

 The elevated conductivity porous material's impregnation with the PCM 

 The elevated conductivity particles' dispersal into the PCM 

 The metal structures' placement into the PCM. 

 The usage of elevated conductivity, low density materials. 
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Due to excellent properties, such as low weight, high energy absorption 

capacity, exceptional acoustic and thermal properties, etc., metal foams have 

received much attention in the last decades as a porous material having an 

elevated conductivity which can be impregnated with the PCM-LHTESs to 

enhance their performance. The influential thermal conductivity of the metal 

foam-PCM composite is higher than that of pure PCM. The higher influential 

thermal conductivity gives further dramatic outcomes if the LHTES thermal 

response is compared between the composite and the Pure PCM [10]. 

1.6 objective of the present study    

The major objective of the present study is to enhance the thermal 

performance of TTHX - LHTES by employing of high conductivity porous 

material with the PCM. Copper possesses an high  thermal conductivity 

among the metallic materials; thus, copper foam-PCM composite has been 

employed with in LHTES during charging process. The objectives of this 

study  can be summarized as follows:  

 

1. To investigate numerically the thermal performance of TTHX LHTES 

during the charging process using PCM only . 

2. To enhance the TTHX LHTES performance during the charging 

process employing copper foam-PCM composite. 

3. To investigate the effect of the operation parameters of  the thermal  

energy storage system including the (inlet temperature and flow rate of 

HTF ), on their  charging time, solid liquid interface and energy storage 

rate  . 

4. To fabricate TTHX LHTES to  investigate the thermal conduct of 

LHTES system as well as supporting the numerical result. 
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1.7 Thesis out line 

Basically, this thesis consists of six chapters and references. Each 

chapter can briefly be summarized as shown below: 

 Chapter One shows the background of the research work, the problem 

statement of the research work, the objective of the research work, and 

finally the outline of thesis. 

 Chapter Two provides the literature view of PCM and metal foam 

properties and the configurations of LHTES. Heat transfer enhancement 

techniques to improve the thermal response of LHTES are discussed. 

 Chapter Three introduces the numerical modelling and solution 

procedure for LHTES. physical configurations of the TTHX model have 

been simulated, including: The PCM-TTTX without foam (pure TTHX 

sample) and the PCM-TTHX with copper foam (foamed TTHX 

sample). Software Ansys Fluent 2020R1 has been used with the 

enthalpy porosity and the finite-volume methods. 

 Chapter Four presents the experimental setup of the LHTES system. 

The descriptions of the main components, instrumentations, and 

experimental procedure are presented in details.  

 Chapter Five clarifies the numerical results that were obtained from 

simulation work. The phase-transition characteristics and isothermal 

contours of the melting processed have been presented for both pure 

TTHX and foamed TTHX samples. The experimental results are also 

shown in this chapter. 

 Chapter Six illustrates the overall conclusions and the significant 

recommendations. The recommendations have been included specific 

ideas for future studies to follow up by researchers in the near future. 

 


