Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

Structural Behavior Of Smart Beams Reinforced With Super Elastic Shape Memory Alloy Rebar (SMA)

A Thesis Submitted to the Council of the College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Civil Engineering

By

Karrar Maallak Hannun

Supervised by

Prof. Dr. Ali L. Abbas

1444

بسمرائلا الرحن الرحيمر

يَرْفَع اللهُ الَّذِينَ آمَنُوا مِنْكُمُ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِيرُ

صدق الله العظيم

Dedication

To the spirit of my father dear and my dear mother To my lovely wife which has been a constant source of support and encouragement during the challenges To my brothers and sisters and friends . To those who struggle for their freedom. To those who pursue a meaning for their lives. To mankind.

Acknowledgments

I would like to thank God for his countless blessings and for facilitating my study, then I'd like to thank (Ph.D. Ali Laftah Abbass). No words can appreciate him and his support to achieve this work.

Also, I could not forget the members of the Department of Civil Engineering / College of the Engineering / University of Diyala for their support.

Finally, I want to thank all of my friends and brothers who have helped and supported me in my work.

> Karrar Maallak Hannun 2022

Structural Behavior Of Smart Beams Reinforced With Super Elastic Shape Memory Alloy Rebar (SMA) By Karrar Maallak Hannun Supervised by Prof. Dr. Ali Laftah Abbas

Abstract

Reinforced concrete beam with shape memory alloy rebar (SMA) is a new type of smart beam that is an important part of smart seismic structural systems developed to decrease the effects of earthquakes while maintaining approximately the same load carrying capacity as compared with conventional concrete beams. Shape memory alloy rebar has the ability to recover its normal shape after exposure to loads by removing loads or exposure to heat, and this property is so important in terms of enhancing seismic structural performance. In this thesis, an experimental investigation is carried out to study concrete beams for two effective types of loads, monotonous loads and repeated loads and the behaviour of normal reinforced concrete beams.

The experimental program tests eight normal beams with dimensions of 1450mm×250mm×150mm. The specimens are divided into three groups according to the percentage of SMA rebars that reinforced beams in bottom longitudinal direction. Each group included four beams, two as reference beams and two as variations which had reinforcing details similar to the other. The two reference beams are reinforced with steel bars in the longitudinal direction representing flexural reinforcement, which acts as control beams in the three groups. The first group has a percentage of the SMA rebars in flexural reinforcement, 25% of the total flexural reinforcement. The second group beam has a percentage of the SMA rebars in flexural reinforcement, 50% of the total flexural reinforcement. The third group beam has a percentage of the SMA rebars in flexural reinforcement, 75% of the total flexural reinforcement. For the three groups, one beam was tested by monotonic load and compared to a reference that tested by monotonic load, and last beam is tested by repeated load within a specific protocol and compared by a reference beam that tested also by repeated load.

The experimental results showed that the ultimate load decreased by using SMA bars in (25%, 50%, 75%) of total flexural reinforcement about (2.66,18.93, 44.66%) respectively, in the case of monotonic loading and (9.825%, 21.776%, 42.78%) in case of repeated loading. The deflection increased by using SMA in (25%, 50%, 75%) percentage of flexural reinforcement about (14.45%, 19.18%. 3.491%) total respectively, in case of monotonic loading and (18.8%, 6.213%, 3.084%) in case of repeated loading. The ductility increased by using SMA bars in (25%, 50%, 75%) of total flexural reinforcement about (37.446%, 92.4%, 18.116%) respectively, in case of repeated loading, while in case of monotonic loading, ductility increased by using SMA bar in (25%, 50%, 75%) of total flexural reinforcement about (32.05%, 73.89%, 3.236%). The Absorbed energy increased by using SMA bars in (25%) of total flexural reinforcement about (5.15%, 12.24%) in case of monotonic and repeated loading, respectively, while by using SMA bars in (50%,75%) of total flexural reinforcement in case monotonic loading, Absorbed energy decreased about (9.26%, 42.48%), and in case of repeated loading it decreased about (14.55%, 28.08%). The Nitinol alloy had a positive effect in reducing distortions, as well as a relative return of the beams to its original place.

List of Contents

Title Number	Title Name	Page No.
Title		
Committee	Decision	
Dedication		
Acknowled	lgments	
Abstract		Ι
List of Cor	itents	III
List of Fig	lres	VI
List of Tab	les	VII
List of Syn	nbols, Abbreviations and Nomenclature	VIII

CHAPTER ONE INTRODUCTION

1.1	General	1
1.2	Smart structures	3
1.3	Shape Memory Alloy	4
1.4	Optimum use of SMA in concrete beams	5
1.5	Repeated load	6
1.6	Research Objectives	7
1.7	Research Justification	8
1.8	Layout of the Study	8

CHAPTER TWO LITERATURE REVIEW

2.1	Introduction	9
2.2	Shape memory alloy SMA	9
2.2.1	Nitinol SMA	11
2.2.2	Microstructure of NiTi SMAs	11
2.2.2.1	Shape Memory Effect	12
2.2.2.2	Superelasticity or Pseudo Elasticity	13
2.2.3	Characteristics under Repeated or Cyclic Loading	14

2.2.4	Behavior under Tension and Compression	16
2.3	Previous Studies on Structure with Shape Memory Alloy	18
2.4	Previous Studies on Beams with Shape Memory Alloys	21
2.5	Summary	25

CHAPTER THREE EXPERIMENTAL PERPARATIONS

3.1	General	27
3.2	Test specimens	27
3.3	Materials	28
3.3.1	Cement	28
3.3.2	Sand	29
3.3.3	Coarse Aggregate	32
3.3.4	Water	33
3.4	Steel Reinforcement	33
3.5	Shape memory alloy rebar	35
3.6	Molds	38
3.7	Mix Design and Procedure	38
3.8	Testing of Fresh Concrete	39
3.9	Fixing Steel Reinforcement	40
3.10	Casting and Curing of Beams	42
3.11	Mechanical Properties of Hardened Concrete	44
3.11.1	Compressive Strength	44
3.11.2	Modulus of Rapture(fr)	45
3.11.3	Splitting Tensile Strength (ft)	46
3.12	Test Measurements and Instrumentation	47
3.12.1	Deflection Measurements	47
3.12.2	Cracks Widths Measurements	48
3.12.3	TDS-530 Data Logger	48
3.12.4	Strain Measurement on Steel and Concrete	49

3.13	Location of Strain Gauges	49
3.14	Testing Procedure	50

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1	General	52
4.2	Experimental of Beams	52
4.3	Experimental Results and Discussions of Group One	52
4.3.1	Reference Beam (R1) Under Static Load	53
4.3.2	Reference beam (R2) Under Repeated Load	55
4.3.3	Beam with Replacing One of Longitudinal Steel Bar with Shape Memory Alloy Bar (B1-25%SMA) Under Monotonic Load	56
4.3.4	Beam with Replacing One of Longitudinal Steel Bar with Shape Memory Alloy Bar (B2-25%SMA) Under Repeated Load	57
4.3.5	Ductility of the Tested Beams Group One	58
4.3.6	Strain Distribution of Group One	59
4.3.7	Load-Deflection Curve	63
4.3.8	Load- Cracks for all Beams in Group One	67
4.3.9	Flexural toughness	67
4.4	Experimental Results and Discussions of Group Tow	69
4.4.1	Control Beams (R1) and (R2)	70
4.4.2	Beam with Replacing Tow of Longitudinal Steel Bar with Shape Memory Alloy Bar (B3-50%SMA) under Monotonic Load	70
4.4.3	Beam with Replacing Two of Longitudinal Steel Bar with Shape Memory Alloy Bar (B4-50%SMA) Under Repeated Load	71
4.4.4	Ductility of beams	72
4.4.5	Strain Distribution of Group Two	73
4.4.6	Load deflection Curve	75
4.4.7	Load- Cracks for all Beams in Group Two	78
4.4.8	Flexural toughness	78
4.5	Experimental Results and Discussions of Group Three	79
4.5.1	Control Beams (R1) and (R2)	80
4.5.2	Beam with Replacing Three of Longitudinal Steel Bar with Shape Memory Alloy Bar (B5-75%SMA) under Monotonic Load	81

4.5.3	Beam with Replacing Three of Longitudinal Steel Bar with Shape Memory Alloy Bar (B6-75%SMA) under Repeated Load	81
4.5.4	Ductility of beams	83
4.5.5	Strain Distribution of Group Three	83
4.5.6	Load-Deflection Curve	85
4.5.7	Load- Cracks for all Beams in Group Three	88
4.5.8	Flexural toughness	88
4.6	Comparison the Results of Tested Specimens for Three Groups	90

CHAPTER Five CONCLUSIONS AND AND RECOMMENDAIONS

5.1	Conclusion	95
5.2	Recommendations for Future Studies	98
	REFERENCES	100

List of Figures

N.	Address of figure	р.
Figure (1-1)	Collapse of the RC 6story building, Japan 2016	1
Figure (1-2)	Three-dimensional stress, strain and temperature diagram showing the	5
	deformation and behavior of NiTi SMA	
Figure (1-3)	Load history for compression repeated load (Zhang, et al., 2019)	7
Figure (1-4)	Load history for cyclic load (Ibrahim and Abdulkhalik, 2017)	7
Figure (2-1)	microstructure of different phases of SMAs (2D.) (Hossain, et al., 2015)	12
Figure (2-2)	Stress-strain curve (Shape Memory Effect) (Hossain, 2015)	13
Figure (2-3)	Stress-strain curv (superelasticity) (Hossain, 2015)	14
	2.2.3 Characteristics under Repeated or Cyclic Loading	
Figure (2-4)	Typical stress-strain curve of austenitic SMA under cyclic forces ((Dolce and Cardone, 2001) and (Vivet et al., 2001))	16
Figure (2-5)	Typical stress-strain curve of martensite SMA under cyclic forces	16
F : (2 ()	((Doice and Cardone, 2001) and (Liu et al., 1999))	17
Figure(2-6)	(Alam, 2009)	17
Figure(2-7)	Isolator system for buildings. (Dolce et al., 2001)	19
Figure(2-8)	setup of specimen (Bajoria & Kaduskar, 2017)	24
Figure(2-9)	Mid-span displacement versus load (Bajoria & Kaduskar, 2017)	24
Figure(3-1).	Dimensions and some other details of the beam specimens are shown in	27
Figure (3-2)	Arrangement of reinforcing the bottom beams in the longitudinal direction	29
Figure(3-3)	Stress-Strain relationship for steel rebar by tensile testing	34
Figure(3-4)	Stress-Strain relationship for SMA rebar by tensile testing	36
Figure(3-5)	Positions of strain gage for all beams	50
Figure(3-6)	Cyclic displacement history	51
Figure (4-1)	Loading histories applied to the (R2) test specimen	56
Figure (4-2)	Loading histories applied to the (B2-25%SMA) test Specimen	58
Figure (4-3)	Strain distribution with depth at different load stages for R1	60
Figure (4-4)	Strain distribution with depth at different load stages for B1-25%SMA	61
Figure (4-5)	Strain distribution with depth at different load stages (R2)	61
Figure (4-6)	Strain distribution with depth at different load stages (B2-25%SMA)	62
Figure (4-7)	Load-strain curve for control specimens (R1)	62
Figure (4-8)	Load-strain curve for B1-25%SMA specimen beam with one bar of SMA	62
Figure (4-9)	Strain measurement control specimens (R2)	63
Figure (4-10)	Strain measurement control specimens (B2-25%SMA) with SMA bar	63
Figure (4-11)	Load mid span deflection of (R1)	64
Figure (4-12)	Load mid span deflection of (B1-25%SMA)	65
Figure (4-13)	Load mid span deflection of beam (R2)	65
Figure (4-14)	Load mid span deflection of beam (B2-25%SMA)	65
Figure (4-15)	Load -deflection for (R1 and B1-25%SMA)	66

Figure (4-16)	Load -deflection for (R2 and B2-25%SMA)	66
Figure (4-17)	Flexural toughness of monotonic load test specimen	68
Figure (4-18)	Flexural toughness of repeated load test specimen	69
Figure (4-19)	Loading histories applied to the (B4-50%SMA) test specimen	72
Figure (4-20)	Strain distribution with depth at different load stages for B3-50%SMA	74
Figure (4-21)	Strain distribution with depth at different load stages (B4-50%SMA)	74
Figure (4-22)	Load-strain curve for B3-50%SMA specimen beam with two bar of SMA	75
Figure (4-23)	Strain measurement control specimens (B4-50%SMA) with SMA bar	75
Figure (4-24)	Load mid span deflection of (B3-50%SMA)	76
Figure (4-25)	Load mid span deflection of beam (B4-50%SMA)	76
Figure (4-26)	Load mid span deflection of beams (R1 and B3-50%SMA)	77
Figure (4-27)	Load mid span deflection of beams (R2 and B4-50%SMA)	77
Figure (4-28)	Flexural toughness of monotonic load test specimen	79
Figure (4-29)	Flexural toughness of repeated load test specimen	79
Figure (4-30)	Loading histories applied to the (B6-75%SMA) test specimen	82
Figure (4-31)	Strain distribution with depth at different load stages for B5-75%SMA	84
Figure (4-32)	Strain distribution with depth at different load stages (B6-75%SMA)	84
Figure (4-33)	Load-strain curve for B5-75%SMA specimen beam with three bar of SMA	85
Figure (4-34)	Load-strain curve for (B6-75%SMA) specimen beam with three bar of SMA	85
Figure (4-35)	Load mid span deflection of (B5-75%SMA)	86
Figure (4-36)	Load mid span deflection of beam (B6-75%SMA)	86
Figure (4-37)	Load mid span deflection of beams (R1 and B5-75%SMA)	87
Figure (4-38)	Load mid span deflection of beams (R2 and B6-75%SMA)	87
Figure (4-39)	Flexural toughness of monotonic load test specimen	89
Figure (4-40)	Flexural toughness of repeated load test specimen	89

N. plate	Address of plate	Page
Plate (3-1)	Machine used for testing steel bars	34
Plate (3-2)	SMA Bars	35
Plate (3-3)	Timber mold used	38
Plate (3-4)	Preparation of mix proportions	39
Plate (3-5)	Reference beam reinforcement	41
Plate (3-6)	beam reinforcement	41
Plate (3-7)	Method of fixation of SMA bars against smoothness	42
Plate (3-8)	Curing of the specimens	43
Plate (3-9)	Casting of the specimens	43
Plate (3-10)	Painting of the specimens	44
Plate (3-11)	Concrete compressive strength test	44
Plate (3-12)	Modulus of rupture test	45
Plate (3-13)	Splitting tensile strength test	46
plate (3-14)	LVDT instrument	47
Plate (3-15)	Micro-Crack meter device	48
Plate (3-16)	TDS-530 Data Logger	48
Plate (3-17)	Strain gage type	49
Plate(3-18)	Position of beams in the load-testing machine	51
Plate (4-1)	Failure mode of control beam (R1)	54
Plate (4-2)	Failure mode of beam (R2)	55
Plate (4-3)	Failure mode of beam (B1-25%SMA)	57
Plate (4-4)	Failure mode of beam (B2-25%SMA)	58
Plate (4-5)	Failure mode of beam (B3-50%SMA)	71
Plate (4-6)	Failure mode of beam (B4-50%SMA)	72
Plate (4-7)	Failure mode of beam (B5-75%SMA)	82
Plate (4-8)	Failure mode of beam (B6-75%SMA)	83
Plate (4-9)	Failure mode of control beam (R1)	93
Plate (4-10)	Failure mode of beam (B1-25%SMA)	93
Plate (4-11)	Failure mode of beam (B3-50%SMA)	93
Plate (4-12)	Failure mode of beam (B5-75%SMA)	93
Plate (4-13)	Failure mode of beam (R2)	94
Plate (4-14)	Failure mode of beam (B2-25%SMA)	94
Plate (4-15)	Failure mode of beam (B4-50%SMA)	94
Plate (4-16)	Failure mode of beam (B6-75%SMA)	94

List of Plates

List of Tables

No.of table	Address of table		Page
Table (1-1)	Fatigue cycles spectrum with corresponding structures (Isojeh, et	6

T		
	al., 2017)	
Table (2-1)	Typical properties of NiTi compared with structural steel (Penar, 2005))	11
Table (2-2)	Mechanical properties of Ni-Ti alloy (Alam, 2009)	28
Table(3-1)	Designation of the test specimens	29
Table (3-2)	Table (3-2)Physical composition of cement.	
Table (3-3)	Chemical composition and main compounds of cement*	
Table (3-4)	Grading of fine aggregate*	
Table (3-5)	Physical properties of fine aggregate*	
Table (3-6)	Yield and ultimate stresses and elongations of steel bar used	
Table (3-7)	Mix proportions	37
Table (3-8)	Properties of hardened concrete	39
Table (4-1)	Results of all beam specimens	50
Table(4-2)	Configurations for group one	53
Table (4-3)	Experimental results for group one with respect to monotonic reference beam R1	59
Table (4-4)	Experimental results for repeated beams	59
Table (4-5)	Different in residual deflection between every two cycles	66
Table (4-6)	Different in deflection between peak and low values for each cycle	66
Table (4-7)	Details of crack for group one	67
Table (4-8)	Absorbed energy of the monotonic load test specimens.	68
Table (4-9)	Configurations for group two	70
Table (4-10)	Experimental results for group two with respect to monotonic reference R1	73
Table (4-11)	Experimental results for repeated beams	73
Table (4-12)	Different in residual deflection between every two cycles	77
Table (4-13)	Different in deflection between peak and low values for each cycle	78
Table (4-14)	crack details	78
Table (4-15)	Absorbed energy of the monotonic load test specimens.	79
Table (4-16)	Configurations for group two	81
Table (4-17)	Experimental results for group three	84
Table (4-18)	Experimental results for repeated beams	84
Table (4-19)	Different in residual deflection between every two cycles	
Table (4-20)	e (4-20) Different in deflection between peak and low values for each cycle	
Table (4-21)	4-21) crack details	
Table (4-22)	Absorbed energy of group three specimens.	90

List of Symbols, Abbreviations and Nomenclature

Symbol

Definition

Af	Austenite finish temperature
As	Austenite start temperature
Db	bar diameter
Dc	concrete compressive damage
Dt	concrete tensile damage
Ec	concrete modulus of elasticity
fc	concrete compressive stress
f' c	concrete compressive strength
fs	stress in the reinforcement
ft	concrete tensile stress
fu	stress at ultimate
fy	yield stress
Pcr	cracking load
FEM	Finite Element Method
M	applied moment
Mf	Martensite finish temperature
N	Nitrogen
Ni	Nickel
0	Oxygen
Р	applied load
PE	Psuedoelasticity Effect
RC	Reinforced Concrete
SMA	Shape Memory Alloy
SME	Shape Memory Effect
Т	temperature
Ti	Titanium
w/c	Water to Cement Ratio
$\mu\Delta$	displacement ductility
σ	stress
σu	stress at ultimate load
ψ	Curvature ductility
σds	detwinning start stress
ρ	Ratio of Tension Reinforcement Equal to As /(b _w d)
2D	Two-Dimensions
3D	Three-Dimensions

CHAPTER ONE INTRODUCTION

1.1 General

For safety purpose, concrete structures reinforced with traditional steel are typically designed so that seismic performance is determined by the amount of energy dissipated via the yielding of steel reinforcing bars. It is true that plastic deformation can help disperse seismic energy and save a building from collapsing, but this comes at the expense of leaving more permanent residual deformation that compromises the building's safety and usefulness (Hossain, 2013).

Many buildings in the areas hit by the 1985 Michoacan (Mexico) and 1994 Northridge (United States) earthquakes had to be torn down and rebuilt after suffering substantial irreversible deformation beyond the scope of repair. More than one hundred RC bridge piers suffered permanent deformation of greater than (1.75 %) during the 1995 Hyogo-Ken Nanbu earthquake (Kobe, Japan), forcing the authorities to dismantle and rebuild the structures because of the difficulty of straightening them (**Ramirez and Miranda, 2012**). In addition, 240,000 building structures suffered partial collapses, resulting in an estimated economic loss of between \$50 to \$100 billion (US) (**Comartin et al., 1995; Eguchi et al., 1998**).

Figure (1-1): Collapse of the RC 6story building (Shiohara, 2017)

There was another big earthquake in northern Chile in 2010 with a magnitude of 8.8 on the Richter scale and a related tsunami that damaged 80 out of 3000 buildings (>10 storey), resulting in an estimated \$30 billion in economic loss (Wen et al., 2011). In 2011, Japan was hit by the Tohoku earthquake, which had a magnitude of 9 on the Richter scale and caused powerful tsunami waves that caused 129,225 buildings to collapse, 254,204 buildings to "half collapse," and 691,766 buildings to be partially damaged (National Police Agency of Japan 2012).

In 2017, an earthquake measuring 7.4 on the Richter scale occurred in Halabja city, located in the Sulaymaniyah province in Iraq, and its center was in the Iranian province of Kermanshah. The Iranian government announced that hundreds of infrastructure had collapsed and eight villages had been flattened, while the Iraqi government announced that a Darbandikhan dam had been damaged, and hundreds of buildings in the provinces of Sulaymaniyah and Diyala (Wikipedia).

To prevent this kind of damage, there is an urgent need to construct smart structures; the academic and structural science community favored a performance-based seismic system design in which a building's seismic performance would stay within a range of defined limits even when ground motion excitation, protecting people inside (via large deformation) and restoring the building's original form and function via re-centering, (Jason McCormick et al., 2008). The above performance-based seismic design would be focused on minimizing the residual sideways deformations by utilizing re-centering devices, such as post-tensioned re-centering sensors (Priestley et al., 1999; Valente et al., 1999), passive energy dissipating devices, such as optimized mass and optimized liquid dampers (Clark et al., 1995; Symans et al., 2008), and smart materials such as shape memory alloys (SMAs) (Alam et al., 2009).

1.2 Smart structures:

Smart structures are a new design concept made possible by technological and scientific advancements in the field of materials engineering. A structure is said to be smart if it is capable of sense or detect an applied load or displacement and then respond in such a way as to reduce the amount of deflection demand and the damage that results from this. A network of sensors and actuators is used to provide the intelligent structure with the ability to detect and respond to its environment. When compared to conventional servomechanisms, the hardware requirements and response times of this architecture are much more manageable (Banks, et al., 1996). A variety of materials are utilized as actuators with smart system architecture. Most of these intelligent materials are (Clarke, et al., 2009):

- 1- Piezoelectric (PZL) layers.
- 2- Electrostrictive (ER).
- 3- Magnetorostrictive (MR)
- 4- electrorheological fluids and solids.
- 5- shape-memory alloys (SMA), this is the subject of this thesis.

Recent studies investigate man-made and natural materials with unusual properties, known as smart materials, and systems that can spontaneously adapt to environmental changes, known as adaptive systems. This has led to the development of the smart structure concept, in which smart materials are integrated into a structure to make it smart (Cheng, F. Y., et al. 2008).

1.3 Shape Memory Alloy:

SMA is a one-of-a-kind material due to its remarkable capacity to recover its original shape after being significantly deformed. By using SMAs as reinforcing bars in an RC construction, the building will be better able to absorb seismic forces and return to its original shape with minimal damage (Alam et al., 2008; Saiidi and wang, 2006).SMA is one of the most useful parts of smart metals. Because of the development of the utilization area, SMAs, whose popularity is growing quickly, have become more easily accessible due to alloys like NiTi (Youssef et al., 2008).

Nickel-Titanium Alloys (NiTi) are a special class of metal that exhibit a number of distinctive features, including the capacity to recover significant deformation with little permanence of the residual strain, by upheating (shape memory effect) or unloading (superelasticity effect). A form of SMA known as Superelastic Nitinol has the unusual capacity to withstand huge strains of up to 6-8%, as well as having great strength, significant fatigue resistance, and high damping. The superelasticity is one feature that makes these materials attractive for use in passive vibration control systems. When SMA is deformed, it transforms between its two stable phases, austinite and martensite, a phase change known as a "solidto-solid" phase transformation. Typically, martensite is stable under high stress, but austenite is stable under low stress; nevertheless, when nitinol is loaded, austenite transforms into martensite. After being unloaded, the martensite will change back into its original parent phase, which is austenite (DesRoches et al., 2004). The shape of the recovery indicated in Figure (1-2).

1.4 Optimum use of SMA in concrete beams:

Beam structures are an important type of building part that construction workers and some types of engineers need to know about. These structures are significant for transferring weight and ensuring that a building's foundation is firmly set in the ground. Overhanging, fixed, trussed, continuous, and simply supported beams are some of the most common types of beam structures(**Ballio, et al., 1983**). The urgency of using smart

Figure (1-2): Three-dimensional stress, strain and temperature diagram showing the deformation and behavior of NiTi SMA (DesRoches et al., 2004).

buildings has recently increased, with more resistance to unusual conditions such as earthquakes and explosions. Important parts of buildings on this side are columns, beams, slabs and areas of connection (Song, et al., 2006).

The smart beam is one of the parts of the smart structure and the beam is considered smart when its internal or external structure is added parts that help it resist abnormal conditions. An example is the beam enhances the beam with the bars of the memory alloy to give a lengthy failure if it is exposed to a sudden load. As an example, the Pesoceramic Vibration Control Operator System is added and is a frequency field technique to achieve strong control performance and others (Shahverdi, et al., 2016). An analytical study has shown that it works very well to mix super elastic SMA bars (nitinol bars) including some steel reinforcement in a reinforced concrete beam (Bajoria, et al., 2016).

1.5 Repeated load

Offshore structures, bridge girders, foundations, Pile caps, and transfer girders in high-rise buildings are just a few examples of massive structural engineering applications that have been subjected to repeated load. Throughout their service life, beams may experience anywhere from a few thousand to a few million load cycles (Teng, et al., 1998) shown in Table (1-1). It is possible that the repeated load will consist only of compression (cyclic axial compressive loading) (AlSulayfani, et al., 2010; Lam, 1979), or it may take the form of compression tension (reversed loading) (Jurcevic, et al., 1990) shown in Figure (1-3) and Figure (1-4).

 Table (1-1): Fatigue cycles spectrum with corresponding structures (

 Isojeh, et al., 2017)

Low-Cycle Fatigue (0 – 10 ³ cycles)	High-Cycle Fatigue (10 ³ – 10 ⁷ cycles)	Super-High-Cycle Fatigue (10 ⁷ – 5 x 10 ⁸ cycles)
- Structures subjected	-Bridges	- Mass rapid transit
to earthquakes	- Airport pavement	structures
- Structures subjected	- Wind power plants	- Sea structures
to storm	- Highway pavement	- Machine foundations
	- Concrete railroad ties	

Figure (1-3): Load history for compression repeated load (Zhang, et al.,

2019)

Figure (1-4): Load history for cyclic load (Ibrahim and Abdulkhalik, 2017)

1.6 Research Objectives

The overall objective of the research is to configure smart concrete beams reinforced with smart materials. To achieve this objective, the project has been subdivided as follows:

- 1- Review the developments in concrete beam systems over the coming years and the variables that affect how SMA material responds.
- 2- The expremental test involved casting reinforced concrete beams by partially replacing the normal reinforcement rebar with shape memory alloy rebar SMA.
- 3- Study the tested beam with different replacement ratios of (25%, 50%, and 75%) reinforcement rebar by SMA bars under monotonic loading.
- 4- To study the tested beam with different replacements of reinforcement rebar by SMA bar (25%, 50%, 75%) under repeated loading.

1.7 Research Justification

In the past, many studies were conducted on smart structure systems in seismic systems and smart materials such as SMA were used in analytical and theoretical ways, but most of them focused mainly on colomn-beam joints as well as columns. While studies related to the structural behavior of concrete beams are few and not comprehensive, most of them have used theoretical methods.

1.8 Layout of the Study

- **Chapter one** presents a general introduction about the smart structure and smart material. It also describes the aims of the study.
- **Chapter two** includes a summary of relevant literature, a description of the systems used in SMA design, an outline of the pseudo elastic reaction of SMA, and a discussion of the material's potential applications in building construction.
- **Chapter three** describes the methods employed and the characteristics of the materials tested. Information about the test beams, concrete, and apparatus, is provided as well.
- **Chapter four** presents an analysis and discussion of experimental data gathered from testing beams.
- Chapter five discusses some conclusions and makes some recommendations for future research.