Ministry of Higher Education and Scientific Research

University of Diyala

College of Engineering

Study the Mechanical Properties of Steel tube Reinforced by Composite Materials

A Thesis Submitted to the Council of the College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Mechanical Engineering

By

Ream Husam Ahmed (B.Sc. Mechanical Engineering)

> Supervised by Dr. Ekhlas Edan Kader Assist. Prof.

2022 A.D.

IRAQ

1444 A.H.

﴿ رَبّ هَبْ لِي حُكْمًا وَأَلْحِقْنِي

بالصالحين ﴾

سورة الشعراء: (83)

CERTIFICATION

I certify that the thesis entitled "Study the Mechanical Properties of Steel tube Reinforced by Composite Materials" was prepared by "Ream Husam Ahmed" under my supervision at the Department of Mechanical Engineering, College of Engineering, Diyala University in a partial fulfillment of the requirements for the Degree of Master of Science in mechanical engineering.

Signature:

Supervisor: Asst. Prof. Dr. Ekhlas Edan

Date: / /

In view of the available recommendation, I forward this thesis for debate by the examining committee.

Signature:

Name:

Head of the Department of Mechanical Engineering

Date: / /

DEDICATION

THIS WORK IS DEDICATION WITH ALL MY LOVE AND RESPECT TP MY:

Mr. Sahib Khudair Ajaj

All the love to: (Mr. Ahmed Habib)

Dear father

Dear mother

Belover husband (Engineer Bassam Sahib)

My children (Tim and Kanz)

My family

Lovely friends

Acknowledgments

In the beginning, forever thanks to Allah for everything.

I would like to thank my supervisor **Asst. Prof. Dr. Ekhlas Edan** for all help and guidance during the project period. Her engagement, helpfulness and availability have been highly appreciated without her support this work would not be possible.

Special thanks and acknowledgement to (my father, my mother, my husband, my family, my professors and my friends) for their support me during my study.

Finally, I would like to express my appreciation to the staff of the Mechanical and Civil Engineering Department, College of Engineering, Diyala University for their encouragement and support during the preparation of this work.

Ream

ABSTRACT

When exposed compression and bending to stresses, hollow structural members are extremely sensitive structural elements. To safelv sustain both service static loads. steel This hollow tube members must be strengthened. study of circular focused the experimental verification hollow on steel of different and wrapped sections of thicknesses with glass fibers and carbon or glass and carbon at different 90° under bending and compression 0° and angles loading. Twelve samples were examined for buckling and 12 of them for bending with thicknesses of 2 mm and 3 mm. The results obtained indicated that the column with the largest thickness of 3 mm and wrapped with two layers of glass and carbon at an angle of carbon 90° bears a greater load than the rest of samples because (FRP) it is responsible the for increasing the axial capacitance of the hollow steel samples and where it can be Using this method to improve the performance of hollow steel sections.

Critical buckling loads showed an increment of 35 % using two layers of Carbon and glass fibers in 2mm steel. The Same behavior noticed Composite was using 3mm tubes. Experimental results of 2mm tube compression test showed a 20% enhancement in Max stress with a 56% reduction in strain when a layer of glass and carbon were. Changing the tube thickness to 3mm showed an increase in applied loads of 70 % while a decrease of 64 % in strain where $\Theta=0$.

Analyzing bending test showed a reduction of 77% in strain with an increase in applied load of 62%.

To explore the failure of Composite tubes, failure mode was studied.

2mm steel tube showed an elephant foot buckling at the tube upper region.

Considering 3mm tube elephant foot was noticed at the top with pulled and rupture of glass fiber in the upper region.

i

List of Contents

Abstract	i
List of contents	ii
List of Abbreviations	iv
List of Symbols	V
List of figures	vi
List of tables	viii
Chapter one: Introduction	1
1.1 Background	1
1.2 Buckling	4
1.3 Bending	4
1.4 Aims and objectives	6
1.5 Research layout	6
Chapter two: Literature review	8
2.1 Introduction	8
2.2 Previous Studies	8
2.3 Concluding remarks	16
Chapter three: Theoretical Background	17
3.1 Introduction	17
3.2 Rule of Mixture Theory	17
3.3 The Basic Concept of Column Buckling	19
3.4 End-Fixity Factor and Effective Length	21
3.5 Slenderness Ratio (SR)	23
3.6 Composite material	24
3.7 Reinforcing Materials	25
3.7.1 Glass Fiber	25
3.7.2 Carbon Fiber	27

3.8 Lamination of Composite Material	27
3.9 Mechanical tests	29
3.9.1 Compression Test	29
3.9.2 Bending Test	33
Chapter four: Experimental Work	36
4.1 Introduction	36
4.2 Materials Used	36
4.2.1 Steel tube	36
4.2.2 Matrix material	37
4.2.3 Reinforced material	38
4.2.3.1 Carbon Fiber	38
4.2.3.2 Glass Fiber	39
4.3 Preparation of composite tube	40
4.3.1 Strain gage	42
4.3.2 The used Glue	43
4.4 Composite Tube Dimension	44
4.5 Mechanical Testing	44
4.5.1 Compression test	45
4.5.2 Bending test	45
4.6 Microscopic study	46
Chapter five: Results and Discussions	47
5.1 Introduction	47
5.2 Buckling Test Result	47
5.3 Compression test results	49
5.3.1 Effect of sequence angle	55
5.4 Bending Test Result	62
5.5 Failure modes	65
5.5.1 Compression test	65

5.5.1 Bending Test	74
Chapter six: Conclusions and recommendations	83
6.1 Conclusions	83
6.2 Suggestions for Further Works	84
References	85

LIST OF ABBREVIATIONS

Abbreviation	Description
Cc	Column constant
CFRP	Carbon fiber-reinforced polymers
СМС	Ceramic matrix composite
F. E.	Finite element method
FRP	Fiber reinforced Polymer
GFRP	Glass fiber-reinforced polymers
MMC	Metals matrix composite
РМС	Polymer matrix composite
SR	Slenderness ratio
S1	Steel tube 2mm thickness
<u>\$2</u>	Steel tube 3mm thickness
C1	Carbon fiber ⊖=0
C2	Carbon fiber ⊖=90°
G	Glass fiber
GC1	Glass-Carbon fibers ⊖=0
GC2	Glass-Carbon fibers ⊖=90

Symbols	Term	Units
P _{cr}	Critical applied load	N
А	Cross- sectional Area	mm ²
с	Half of the specimen width	mm
D _{in}	Inner diameter	mm
Do	Outer diameter	mm
Е	Young's Modulus	GPa
Ι	Moment of Inertia of Beam	mm ⁴
K	End-fixity factor	
L	Actual length	mm
Le	Effective length	mm
М	Internal Bending Moment	N.mm
Р	Applied load	N
r _g	radius of gyration	mm
t	Thickness of Sample	mm
v	Poisson Ratio	
λ	Slenderness Ratio	
δl	Change in length	mm
σ	Stress	MPa
ε	Strain	
dI	Inner diameter of deformed section at mid span in lateral	mm
	direction	
dv	Inner diameter of deformed section at mid span in vertical	mm
	direction	

LIST OF SYMBOLS

LIST	OF	FI	GU	RES
------	----	----	----	-----

Figure	Title	Page
(3.1)	Buckling failure in long columns	20
(3.2)	Failure in intermediate columns	20
(3.3)	Failure in short columns	20
(3.4)	(a) Commercially available demonstrator for end fixity. (b) K	22
	values for the four alternative end fixes, where Le=KL for effective	
	length	
(3.5)	Composites can be reinforced with a variety of materials, including	26
	a) particles, b) short fibers, c) continuous fibers, and d) plates	
(3.6)	Carbon fiber	27
(3.7)	Lamina fibers orientations	29
(3.8)	Compression stress-strain curve	30
(3.9)	Three-point Bending test	35
(4.1)	Hollow round tube Steel	37
(4.2)	Shows the Glass and Carbon fiber	39
(4.3)	Fabricating and processing of composite materials	42
(4.4)	Strain gage	42
(4.5)	Compression test device	45
(4.6)	a. Bending test device b. bending test sample	46
(5.1)	Stress-strain curve of 2mm composite tubes	53
(5.2)	Stress-strain curve of 3mm composite tubes	54
(5.3)	Reinforcing fibers angle with applied loads	55
(5.4)	Ultimate strength of composites tubes	56
(5.5)	Time-loads for 2mm composite tube	57
(5.6)	Time-loads for 3mm composite tube	58
(5.7)	Strain-Load in 2mm ⊖=0	59
(5.8)	Strain-Load in 2mm ⊖=90	60
(5.9)	Strain-Load in $3mm \Theta = 0$	61
(5.10)	Strain-Load in 3mm Θ =90	61
(5.11)	Strain-Bending Load in $2mm \Theta = 0$	62
(5.12)	Strain-Bending Load in 2mm Θ =90	63

(5.13)	Strain-Bending Load in 3mm Θ =0	64
(5.14)	Strain-Bending Load in 3mm Θ =90	64
(5.15)	Failure mode in steel 2mm thickness	65
(5.16)	S1G Elephant foot failure	66
(5.17)	S1G buckling failure	66
(5.18)	S1C1 Elephant foot failure	67
(5.19)	S1C2 Elephant foot failure	68
(5.20)	S1C2 cover open failure	68
(5.21)	S1GC1 Elephant foot failure	69
(5.22)	S1GC2 pulled and rupture failure	69
(5.23)	S1GC2 buckling failure	70
(5.24)	Failure mode in steel 3mm thickness	70
(5.25)	S2G elephant foot failure	71
(5.26)	S2G pulled and rupture failure	71
(5.27)	S2C1 Elephant foot failure	72
(5.28)	S2C2 Elephant foot failure	72
(5.29)	S2GC1 Elephant foot failure	73
(5.30)	S2GC2 Elephant foot failure	74
(5.31)	S2GC2 cover movable failure	74
(5.32)	Failure behaviour of bare and FRP strengthened test specimens	75
	under bending	
(5.33)	Failure mode in the support appeared	76
(5.34)	Debonding length of FRP strengthened test tubes under bending	77
	2mm thickness	
(5.35)	Debonding length of FRP strengthened test tubes under bending for	79
	3mm thickness	
(5.36)	show bending time-Load curves of 2mm tubes	81
(5.37)	show bending time-Load curves of 3mm tubes	82

Table	Title	Page
(4.1)	Chemical composition of steel	37
(4.2)	Properties of Epoxy	38
(4.3)	The Properties of carbon fibers	39
(4.4)	The properties of Glass fiber	40
(4.5)	Characteristics of strain gages	43
(4.6)	Specifications of glue	43
(4.7)	The following are the details of composites and the corresponding	44
	designations	
(5.1)	Parameter results for 2mm steel tube	48
(5.2)	Parameter results for 3mm steel tube	49
(5.3)	Critical buckling load E, ocr of 2mm.	50
(5.4)	Critical buckling load E, ocr of 3mm.	50
(5.5)	Summary of Bending Test Results	78
(5.6)	Bending Test deformed length	80

LIST OF TABLES

Chapter One Introduction

Chapter One Introduction

1.1 Background

A composite material is defined as one that is composed of two or more materials and that, when used alone, exhibits superior qualities than the separate components. Each substance keeps its own chemical, physical, and mechanical characteristics, unlike metallic alloys.

Based on the form of matrix material, composite structures can be divided into three types [1]:

- 1. Polymer matrix composite (PMC) is a term that is used to describe a material that is made up of many different polymers.
- 2. Composite made of metals as matrix (MMA)
- 3. Ceramic matrix composite (CMC)

The benefits of composite materials include their superior weight-tostrength ratio, corrosion resistance, electromagnetic inertness, high ratio of stiffness to weight, and fatigue resistance [2].

Fiber and matrix are the two basic components of laminated composite. The reinforcing agent that contributes most to the strength and stiffness of composites is characterized as fibers. The matrix, on the other hand, can be thought of as the binder that binds the fibers together, disperses the load, and safeguards the fibers from chemical and environmental assaults. A laminated composite material is made up of a stack of laminas stacked in various directions, with each lamina being characterized as a thin, flat or curved layer of unidirectional fibers or woven fabric in a matrix that functions as an orthotropic material. In general, the laminated composite material will exhibit anisotropic behavior as a result of the differences in the material's characteristics in each direction.

The usage of laminated composite materials has increased over the last several decades in a variety of industrial applications, including aerospace engineering, marine engineering, automotive engineering, and civil engineering. As a result, there is a growing need to comprehend the mechanical behavior of laminated composite. Some of the concerns that required investigation were stability (i.e. buckling) problems before collapse. Anisotropic laminated composite member buckling has received scant attention in the literature. However, sufficient study has been done to forecast how cylinders, shells, plates, and beams would behave in terms of stability [2].

Failures because of the instability phenomena can occur suddenly and may cause the whole structure to breakdown. It's therefore in the engineer's interest to have good knowledge about this phenomenon. Column buckling is one of the most common examples of instability phenomena [3].

The buckling phenomenon is characterized by structural elements bending under an axial compressive force. The thin elements known as columns support the axial compressive load. A column might collapse if the compressive load is too great owing to buckling, a structural instability. Consequently, the issue of the columns' buckling is a crucial one. Underestimating this impact might have devastating consequences or unnecessary safety considerations [4].

Any system that has a chance of slightly deviating from the equilibrium configuration is considered stable. This possibility may be provided by a degree of mechanical freedom that is more or less constrained, in which case the issue is one of static stability and is essentially unaffected by the propensity that any actual body exhibits to deform when applied forces; or it may be caused, more or less entirely, by this propensity [5].

In the latter situation, the issue is one of elastic stability, and other approaches must be taken. However, there is no fundamental difference between the two types, with most mechanical systems' stability only depending on the relative sizes of its constituent parts [5].

However, researcher [6] pointed out that under compressive stress, instability of buckling is likely to happen and limits the success of the service performance or forming process. Thus, it is crucial and extremely important to have a thorough grasp of the buckling process and behavior. Instability is the phenomena on a physical level where a structure shifts a transition from one equilibrium to another, or an unstable condition. This secondary equilibrium path, also known as the bifurcation path, is what Liu et al. [7] the situation where the structure deviates from the basic equilibrium course ((beginning with no force).

Steel tubes blanks may exhibit instability axisymmetric, diamond instability, Euler instability, instability of barrel, and mixed axisymmetric and so on, under axial compression. When the tube blank's thickness in comparison (the diameter to plate thickness ratio) exceeds 0.02 and it has good homogeneity, axisymmetric instabilities will become evident. Jones and Karagiozova [8] specifically drew attention to the fact that the tube's blank end was in touch with the die to uniformly swell and shrink, folding into a corrugated tube shape. According to Abbas et al. [9], after buckling takes place, as the load decreases, the matching maximum force may be used as the crucial value P_{cr} to determine maybe buckling has taken place or not. Therefore, it is crucial to understand how to anticipate the critical buckling force properly [10]. The ability to understand and manipulate materials has been fundamental to our technical development over time.

Today scientists and engineers recognize the importance of in nova-tive materials use for economic and environmental reasons. Functionally graded materials (FGMs) are advanced engineering materials designed for a specific performance or function in which a spatial gradation in structure and/or composition lend itself to tailored properties. This occurs by providing in-depth graded com-positions, microstructures and properties. FGMs are not new to Nature. Similar to many other man-made materials, function-ally graded natural materials such as bamboo have been used for thousands of years in decorating and construction [11].

1.2 Buckling

A structural component buckles when it undergoes an abrupt change in form under pressure, such as when a column bows under compression or a plate wrinkle under shear. A portion may abruptly change shape when a structure is subjected to a load that is gradually increasing; this is called as buckling [12].

Even if the strength that occur in the structure are smaller than those necessary to cause failure in the metal wherein the building is formed, may buckling occur. Additional stress might cause significant, unexpected deformations that could eventually prevent the part from bearing load. Whether the distortion that press buckling do not cause the structure to totally breakdown, the structure can still sustain the load that led it to buckle. Some airplanes are made so that thin skin panels can sustain load even when they are buckled [13].

1.3 Bending

In fundamental mechanics, bending (also called as flexure) describes how a thin structural element responds to a load that is applied perpendicular to the element's longitudinal axis.

4

Several steel buildings have bended, including in 1907 in Canada the Quebec Bridge, in 1978 in the United States the Hartford Gymnasium, and in 2008 in south China the steel power transmission towers accident. One of the key failure types that commonly occurred, causing both significant financial losses and substantial deaths, was this one. In China, the development of steel constructions, especially those that are lightweight, is extremely rapid. There are several unsafe constructions margins in terms of potential for stability, some of which may result in unstable failure accidents, as a result of people's inexperience or excessive pursuit of economy; meanwhile, many structures lack sufficient bearing capacity because of the increasing imposed load, construction inaccuracy, damage of corrosion, and other factors. Steel structure strengthening is important as the steel building industry develops [14].

Due to a number of factors, composites are particularly well suited for this objective [15]:

i. Extremely high ratios of stiffness to weight and strength to weight

ii. Exceptional toughness in hostile circumstances.

A structural part's performance, specifically, its rigidity, capacity for weight, toughness, and fatigue behavior under cyclical loadings has been demonstrated to be greatly improved by the inclusion of externally bonded FRP composites, both theoretically and empirically [16].

Compared to the conventional ways of bolting or welding steel plates, there are various benefits of using FRP material for steel component repair and rehabilitation. Since carbon FRPs (CFRPs) tend to have better stiffness than other FRP materials, they have been chosen over other FRP materials for reinforcing steel structures. The development of high-modulus CFRP plates having a higher elastic modulus than steel has allowed researchers to transmit a large amount of load into steel beams before the steel yields [16].

1.4Aims and objectives

The aims of this study are: Study of the properties of steel reinforced with carbon fibers and glass by 50% carbon and 66% glass in order to strengthen the steel's bearing of the imposed load and its bearing of vertical and horizontal compressive loads (Compression and Bending) loads, while the objectives are:

- 1. Studying instability and buckling resistance of steel reinforced by composite material laminated composite columns.
- 2. Study the use of Glass and Carbon fibers reinforcing materials in reinforcing and sequence of layer on the composite stability considering buckling.
- 3. Examine bending strength of Glass and Carbon fibers composite reinforced steel.
- 4. Study the possibility of using the composite material for a specific application and evaluate its effectiveness and performance considering applied load, type of loading and cost.
- 5. Applying different composite reinforcement to hollow structural steel to determine the behavior of circular hollow section column under the compression loading.
- 6. Studying structure configuration on its stability considering thickness.
- 7. Understanding the CFRP reinforced steel failure modes to find solutions for preventing or retarding the failures.

1.6 Research layout

The research is divided in to six chapters:

1. Chapter One includes an introduction to Glass and Carbon fibers composite materials, purpose, problem statement, drawbacks, and methodology.

- 2. Chapter Two include a study of literature, including magazines, papers and thesis-related publications.
- 3. Chapter Three includes the theoretical aspect take into account composites.
- 4. Chapter Four includes the experimental of work including composite production process and mechanical tests.
- 5. Chapter Five includes the find tests results and the discussion of Glass and Carbon fibers composite experimental work.
- 6. Chapter Six includes conclusion and recommendations for further work.