Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

Structural Performance of Fibrous Reinforced Concrete One-way Bubbled Slabs

A Thesis Submitted to the Council of College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Structural Engineering

By

Ahmed Sardar Hakeem

(B.Sc. in Civil Engineering, 2016)

Supervised by

Prof. Ph.D. Ahmed A. Mansor

2022 A.D

IRAQ

1444 A.H

CERTIFICATION

I certify that the thesis entitled " Structural performance of fibrous reinforced concrete one-way bubbled slabs" was prepared by " Ahmed Sardar Hakeem " under my supervision at the Department of Civil Engineering-College of Engineering- Diyala University in partial fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering.

Le Signature:

Supervisor: Prof. Dr. Ahmed A. Mansor

Date: //2022

COMMITTEE DECISION

We certify that we have read the thesis entitled "Structural Performance of Fibrous Reinforced Concrete One-way Bubbled Slabs" and we have examined the student (Ahmed Sardar Hakeem) in its content and what is related with it, and in our opinion, it is adequate as a thesis for the Degree of Master of Science in Civil Engineering.

Examination Committee

Signature

DIJIT

1- Prof. Dr. Ahmed A. Mansor (Supervisor)

2- Prof. Dr. Wissam D. Salman (Chairman)

3- Lecturer. Dr. Huda M. Mubarak (Member)

4-Asst. Prof. Dr. Mohammed A.Elwi (Member)

Prof. Dr. Wissam D. Salman (Head of Department)

The thesis was ratified at the Council of College of Engineering / University of Diyala.

Signature.....

Name: Prof. Dr. Anees A. Khadom

Dean of College of Engineering / University of Diyala Date: / / 2022

بسم الله الرحمن الرحيم

﴿ وَيَسْأَلُونَكَ عَنَ أَلَرُّوحَ قُلِ الرُّوحُ مِنْ أَمْرِ رَبِي وَمَا أُوتِيتُم مِّنَ الْعِلْمِ إِلا قَلِيلاً ﴾

صدق الله العظيم

سورة الأسراء – آية 85

To My Family

With Love and

Respect

Acknowledgments

All praise is to Allah, who enabled me to accomplish this valuable work.

I want to extend my deep gratitude to Prof. Dr. Ahmed A. Mansor, who enlightened my mind with knowledge, supported me, and answered my inquiries with humility and kindness.

Also, I could not forget the members of the Civil Engineering Department / College of the Engineering / University of Diyala for their support.

I would also like to thank the construction laboratory staff for their support in completing this work.

Finally, I want to thank all of my friends who have helped and supported me in my work research.

Structural Performance of Fibrous Reinforced Concrete One-Way Bubbled Slabs

By

Ahmed S. Hakeem Supervised by Prof. Dr. Ahmed A. Mansor

Abstract

A reinforced concrete slab with plastic voids (Bubbled-Deck system) is a form of a slab with a two-dimensional configuration of voids designed to reduce the slab's self-weight while keeping about the same load-bearing capability as solid slabs. Plastic voided slabs may decrease the quantity of concrete by 35%, which is crucial in terms of cost savings and structural performance improvement. This study experimentally examines the strength and behavior of bubbled reinforced concrete one-way slabs. The experimental program evaluates eleven one-way slabs with $(1760 \times 420 \times 125 \text{ mm})$ diminution; one solid slab (without balls and fibers), and one bubble slab (with spherical balls but without fibers), which is used as a reference.; the other nine slabs are fibrous bubbling slabs (with a spherical ball and fibers), and these nine slabs are divided into three groups based on fiber types (steel fiber bubble slabs, polypropylene fiber bubble slabs, and chopped carbon bubble slabs). The experimental study includes the following parameters: the types of fibers and the percentage of each type, the experimental findings showed that basic bubbled slabs containing spherical ball had 90% of the ultimate load of solid slab and for steel fiber bubble slabs the increase in ultimate load capacity was (14.5 to 25.2 %) compared to solid slab and (26.8 to 39.8 %) compared to basic bubble slab, for polypropylene fiber bubble slabs the increase ultimate load capacity was (12.8 to 20.64 %) compared to solid slab and (25 to 33.6%) compared to basic bubble slab, for chopped carbon fiber bubble slabs the ultimate load result showed a

variation (13.15 to -6 %) compared to solid slab and (25.3 to 4 %) compared to bubble slab in addition, the first crack load result showed a reduction for basic bubble slab compared with sold slab by (15.4%); for steel fiber bubble slabs first crack load increase by (38.46 to 84.6 %) compared to solid slab and (63.3 to 118.1 %) compared to basic bubble slab , for polypropylene fiber bubble slabs first crack load increase by (13 to 30.7 %) compared to solid slab and (33.6 to 54.4%) compared to basic bubble slab , for chopped carbon bubble slabs first crack result showed a variation (13.15 to -6 %) compared to solid slab and (34.5 to 7.3 %) compared to basic bubble slab in addition the type of failure had been changed form shear failure in bubble slab to flexural failure for all fibrous bubble slabs.

List of Contents

Title		
Committ	ee Decision	
Dedicatio	on	
Acknowl	edgments	
Abstract		Ι
List of C	ontents	III
List of Fi	gures	VII
List of pl	ates	VIII
List of Ta	ables	Х
List of S	ymbols	XI
List of A	bbreviations	XII
	CHAPTER ONE INTRODUCTION	
1.1	General (Bubble Slab)	1
1.2	Application of Bubble-Deck Slab	2
1.3	One-way Slab	4
1.4	Strengthening by Fibers	4
1.5	Application Fiber	5
1.6	Research Justifications	6
1.7	Aim and Objectives of Research	6
1.8	Layout of the Thesis	7
	CHAPTER TWO LITERATURE REVIEW	
2.1	General	8
2.2	Plastic Voided Slab Systems	8
2.2.1	Beton U-Boot	9
2.2.2	Cobiax	10
2.2.3	Bubbled RC Slab	11
2.3	Types of Bubbled RC Slabs	12
2.3.1	Type-A- Reinforcement Modules (Simple Type)	12
2.3.2	Type B-Filigree Elements (Semi-Precast Type)	13
2.3.3	Type C-Finished Planks (Precast Type)	14
2.4	Sustainability	14
2.5	Bubbled RC Slabs Designs	15
2.6	Behavior of Bubbled RC Slabs	16
2.7	Structural Properties of Bubbled Slab	17
2.7.1	Flexural Strength	17
2.7.2	Shear Strength	18
2.7.3	Behavior Under Seismic Loads	19

2.7.4	Fire Resistance	19
2.8	Fiber-reinforced concrete (FRC) Background	20
2.9	Previous Studies	21
2.9.1	Bubble RC slab Previous Studies	21
2.9.2	Fibers RC Previous Studies	27
2.9.2.1	Steel Fiber RC Previous Studies	27
2.9.2.2	Polypropylene Fiber RC Previous Studies	29
2.9.2.3	Chopped Carbon Fiber RC Previous Studies	31
2.10	summery	33
	CHAPTER THREE	
	EXPERIMENTAL WORK	
3.1	General	34
3.2	Methodology	34
3.3	Materials	37
3.3.1	Cement	37
3.3.2	Fine Aggregate	39
3.3.3	Coarse Aggregate	40
3.3.4	Super Plasticizer	41
3.3.5	Reinforcement Bars	42
3.3.6	Plastic Balls (Bubbles)	43
3.3.7	Fibers	43
3.3.8	water	46
3.4	concrete Mixing Procedure	46
3.5	Investigating Properties of Normal Concrete	48
3.5.1	Fresh Concrete	48
3.5.2	Properties of Hardened Concrete	50
3.5.2.1	Cube and Cylinder Compressive Strength test (F.C.U.) & (fc')	50
3.5.2.2	Splitting Tensile Strength test (fct)	51
3.5.2.3	Flexural Strength Test (fr)	52
3.6	Mold	52
3.7	Mechanism Installed Balls	53
3.8	Curing	53
3.9	Slab Instrumentation and Measurements Testing Procedure	54
3.9.1	Strain Measurements	55
3.9.2	Strain Gauge Location	56
3.9.3	Strain Measurements Device	56
3.9.4	Deflection Measurement	57
3.9.5	Crack Width Measurement	57
3.10	slab Test Procedure	58

	CHAPTER FOUR RESULTS AND DISCUSSION	
4.1	Introduction	59
4.2	Concrete Mechanical Properties	59
4. 2. 1	Concrete Compressive Strength	60
4. 2. 2	Concrete Modulus of Rupture (flexural strength)	62
4. 2. 3	Concrete Splitting Tensile Strength	64
4.3	Tested Slabs General Behavior	66
4.4	References Rustle	67
4.4.1	Ultimate Load capacity of Tested Slabs in References	67
4.4.2	Load-Deflection Behavior of the Tested Slabs in References	68
4.4.3	Longitudinal Reinforcement gauges and Compression Concrete Face strain gauges	69
4.4.3.1	Compression Face of Concrete Strain	70
4.4.3.2	Average Strain in Longitudinal Reinforcement strain	70
4.4.4	Mode of Failure and Crack Pattern of Tested Slabs in Reinforcement	71
4.5	Group A Rustle	74
4.5.1	Ultimate Load capacity of Tested Slabs in Group A	75
4.5.2	Load-Deflection Behavior of the Tested Slabs in Group A	75
4.5.3	Longitudinal Reinforcement gauges and Compression Concrete Face strain gauges	76
4.5.3.1	Compression Face of Concrete Strain	77
4.5.3.2	Average Strain in Longitudinal Reinforcement	78
4.5.4	Mode of Failure and Crack Pattern of Tested Slabs in Group A	79
4.6	Group B Rustle	82
4.6.1	Ultimate Load capacity of Tested Slabs in Group B	82
4.6.2	Load-Deflection Behavior of the Tested Slabs in Group B	83
4.6.3	Longitudinal Reinforcement gauges and Compression Concrete Face strain gauges	84
4.6.3.1	Compression Face of Concrete Strain	85
4.6.3.2	Average Strain in Longitudinal Reinforcement	86
4.6.4	Mode of Failure and Crack Pattern of Tested Slabs in Group B	87
4.7	Group C Rustle	90
4.7.1	Ultimate Load capacity of Tested Slabs in Group C	90
4.7.2	Load-Deflection Behavior of the Tested Slabs in Group C	91
4.7.3	Longitudinal Reinforcement gauges and Compression Concrete Face strain gauges	92
4.7.3.1	Compression Face of Concrete Strain	93
4.7.3.2	Average Strain in Longitudinal Reinforcement	94
4.7.4	Mode of Failure and Crack Pattern of Tested Slabs in Group C	95
4.8	Bending Strength of the Bubbled Slabs	98

Evaluation for Slabs	100
Load Capacity and Crack Control	100
Weight and Cost for The Slabs	101
CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY	
Conclusions	103
Suggestions for Future Study	106
References	108
APPENDIX A	A-1
APPENDIX B	B-1
APPENDIX C	C-1
APPENDIX D	D-1
	Load Capacity and Crack Control Weight and Cost for The Slabs CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY Conclusions Suggestions for Future Study References APPENDIX A APPENDIX B APPENDIX C

<u>Figure</u> <u>No.</u>	<u>Figure Title</u>	<u>Page</u> <u>No.</u>
(2-1)	Three components of sustainability (Lobo, 2010)	15
(2-2)	Standard Stress Block (Eurocode2)	17
(2-3)	Stress block of the bubbled slab	17
(3-1)	Experimental work program	35
(3-2)	Longitudinal and Cross-section of Slabs	37
(3-5)	Steel Bar Test Result	42
(4-1)	Effect of Fibre on Compressive Strength	61
(4-2)	Effect of Fibre on Flexural Strength	63
(4-3)	Effect of Fibre on Tensile Strength	65
(4-4)	Ultimate Load capacity of S.S and B.S	68
(4-5)	Load-deflection Curves of S.S and B.S	69
(4-6)	Load Average Concrete Strain of S.S and B.S	71
(4-7)	Load Average Longitudinal Reinforcement Strain of S.S and B.S	72
(4-8)	Ultimate Load Capacity of Tested Slabs in Group A	75
(4-9)	Load-deflection Curves Slabs in Group A	76
(4-10)	Load Average Concrete Strain for Group A	78
(4-11)	(4-11) Load Average Longitudinal Reinforcement Strain for Group A	79
(4-12)	Ultimate Load capacity of Group B	83
(4-13)	Load-deflection Curves Slabs in Group B	84
(4-14)	Load Average Concrete Strain for Group B	86
(4-15)	Load Average Longitudinal Reinforcement Strain for Group B	87
(4-16)	Ultimate Load capacity of Tested Slabs in Group C	91
(4-17)	Load-deflection Curves Slabs in Group C	92
(4-18)	Load Average Concrete Strain for Group C	94
(4-19)	Load Average Longitudinal Reinforcement Strain for Group C	95

List of Figures

<u>List</u>	01	f P	lates

<u>Plate</u>	Plate Title	<u>Page</u>
<u>No.</u>		<u>No.</u>
(1-1)	Bubbled RC Slab System (www.BubbleDeck.com)	1
(1-2)	Construction of La Bahn Hockey Arena (www.BubbleDeck.com)	3
(1-3)	Plate (1-3) Millennium Tower (www.BubbleDeck.com)	4
(1-4)	One-Way Slab	4
(1-5)	Museum of Civilisations From Europe and the Mediterranean (www.structurae.net)	5
(1-6)	L'Oceanogràfic-L'Oceanogràfic-Access Building (www.structurae.net)	6
(2-1)	Beton U-Boot	9
(2-2)	Cobiax slab (Suheir and Mazin, 2013)	10
(2-3)	Bubbled RC Slab System (www.BubbleDeck.com)	12
(2-4)	Type A-Simple Bubble Slab (www.BubbleDeck.com)	13
(2-5)	Type B-Filigree Bubbled Slabs (www.BubbleDeck.com)	13
(2-6)	Type C-Finished Planks (Precast Type) (www.BubbleDeck.com)	14
(2-7)	Shear Zone at the Column-to-slab Connection (www.BubbleDeck.com)	18
(2-8)	Different types of fibers (Buttignol et al., 2017)	20
(2-9)	Loading Test Machine (Salman 2012)	21
(2-10)	Bubble Slab Design and Test (Nazar K. Oukaili and Luma F. Husain 2017).	22
(2-11)	Shape of Ball and Type of Construction (Humam A. Abdul Hussein 2018)	23
(2-12)	Cracks Configuration at Failure of Slabs (Hussain A. Jabir, el al 2021)	26
(2-13)	Contrast of microstructure between traditional mixing and vibratory mixing (Yuanxun Zheng 2018)	29
(2-14)	Microscope Image of Fiber Reinforced Concrete Surface After an Impact Load (Yeou-Fong Li and Kun-Fang Lee and el al, 2021)	33
(3-1)	Materials Used to Prepare Normal Concrete	41
(3-2)	Bars Test	42
(3-4)	Plastic Balls	43
(3-5)	Hook Ends Steel Fiber	44
(3-6)	Polypropylene Fiber	44
(3-7)	Chopped Carbon Fiber	45
(3-8)	Pan-type Mixture	46
(3-9)	Finishing Sample Stage	47
(3-10)	Concrete Mix	48
(3-11)	Slump Test	49
(3-12)	Compressive Strength Test for Cylinders and Cubes	50
(3-13)	Splitting Tensile Strength Test	51

(3-14)	Flexural Strength Test	51
(3-15)	Mold	52
(3-16)	Balls Installation	52
(3-17)	Slab Curing	53
(3-18)	Concrete Sample Curing	53
(3-19)	Strain Gauges	54
(3-20)	Strain Gauges Installation Steps	55
(3-21)	Datalogger	56
(3-22)	LVDT	56
(3-23)	Optical Micro-crack Meter	57
(3-24)	Hydraulically Testing Machine	58
(4-1)	Fiber Distribution	62
(4-2)	Flexural Test Result	64
(4-3)	Splitting Tensile Test Result	66
(4-4)	Mode of Failure and Crack Pattern in S.S and B.S	73
(4-5)	Mode of Failure and Crack Pattern in Group A	81
(4-6)	Mode of Failure and Crack Pattern in Group B	89
(4-7)	Mode of Failure and Crack Pattern in Group C	97

List	0	f Tables

<u>Table</u>	Tull Tul	Page
<u>No.</u>	<u>Table Title</u>	<u>No.</u>
(2-1)	Versions of Bubbled Slabs (Bubble Deck, 2020)	16
(2-2)	Minimum Concrete Cover Thickness	20
(3-1)	Slabs Details	35
(3-2)	Cement Properties	38
(3-3)	Grading and Physical Properties of Fine Aggregate	39
(3-4)	Grading and Physical Properties of Coarse Aggregate	40
(3-5)	Reinforcement Bars Test Result	42
(3-6)	Concrete Mix	46
(3-7)	slump result	49
(3-8)	Strain Gages Specification	54
(4-1)	Concrete Properties	60
(4-2)	References Result	67
(4-3)	Strains Gauges in Reinforcement and Concrete for Reference	70
(4-4)	Data Observed From the First Crack	73
(4-5)	Group A Result	74
(4-6)	Strains Gauges in Reinforcement and Concrete for Group A	77
(4-7)	Data Observed from the First Crack Group A	80
(4-8)	Group B Result	82
(4-9)	Strains Gauges in Reinforcement and Concrete for Group B	85
(4-10)	Data Observed from the First Crack Group B	87
(4-11)	Group C Result	90
(4-12)	Strains Gauges in Reinforcement and Concrete for Group C	93
(4-13)	Data Observed from the First Crack Group C	96
(4-14)	Values of µs of Slabs	99
(4-15)	Load Capacity and Crack Control	100
(4-16)	Local Pricing	101
(4-17)	Slabs Matiral Quantity	102
(4-18)	Total Cost	103
(4-19)	Total concrete Weight	103

A List of Symbols

<u>Symbol</u>	<u>Definition</u>
D	Ball diameter (mm)
d	Effective depth (mm)
E	Elastic modulus of elasticity
Ecr	Strain at crack load (mm)
Eu	Strain at ultimate load (mm)
ε _y	Strain at yield load (mm)
f'c	Cylinder Compressive strength (Mpa)
f _{ct}	Splitting Tensile Strength (Mpa)
fr	Flexural Strength (Mpa)
Н	The total thickness of the slab (mm)
L	Span length (mm)
Pcr	Crack load (kN)
Pu	Ultimate load (kN)
P _Y	Yield load (kN)
Vu	Vertical shear force (kN)
$\Delta_{\rm u}$	Deflection at ultimate load (mm)
Δ_{y}	Deflection at yield load (mm)

List of Abbreviations

<u>Abbreviation</u>	<u>Definition</u>	
AASHTO	American Association of State Highway Officials	
ACI	American Concrete Institutes	
ASTM	American Society for Testing and Material	
BS	British standards	
CO ₂	Carbon Dioxide	
C.F.B.S	Carbon fiber bubble slab	
C.F.C	Carbon fiber concrete	
F.R.C	Fiber reinforcement concrete	
N.C	Normal concrete	
P.F.B.S	Polypropylene fiber bubble slab	
P.F.C	Polypropylene fiber concrete	
R.C	Reinforced Concrete	
S.F.B.S	Steel fiber bubble slab	
S.F.C	Steel fiber concrete	

CHAPTER ONE INTRODUCTION

1.1 General (Bubble Slab)

The slab is one of the most significant structural parts of a building, and it consumes the most concrete (Chung, 2011). The initial design constraint for a reinforced concrete slab is the column span. Large spans between columns frequently need thick slabs and support beams. Using significant volumes of concrete increases the structure's dead weight. Heavy constructions are less resistant to seismic forces than light buildings due to the considerable dead load and rising inertia forces. Adding support beams increases floor-to-floor heights, which increases finish material prices (Midkiff, 2013). For decades, many efforts have been undertaken to manufacture biaxial hollow slabs to save weight. Many attempts were employed, such as waffle slabs/grids. Only waffle slabs have some market value, but their resistance to shear, local punching, and fire is limited (Joseph, 2016).

"Bubble-Deck System," invented by (Jorgen Breuing) in the nineties, was used to decrease the slab's weight. This system uses spherical balls made of recycled industrial plastic to create air voids while providing strength through the arch action, as shown in Plate (1-1).

Plate (1-1) Bubbled RC Slab System (www.BubbleDeck.com)

Reducing the dead load makes the long-term response more economical for the building while offsetting increases the slab deflection (Lai, 2010). The Bubble-Deck system offers many advantages in building design and construction (Fuchs, 2009).

1. By reducing the slab's self-weight by around 30% to 50%, the bubble slab decreases the amount of concrete used in columns, walls, and foundations by approximately 20%, so the total reduction was in the whole building not only the slab.

2. A bubbling slab requires less concrete than a solid concrete structure; one kilogram of plastic replaces more than 100 kilograms of concrete. As a result, CO2 emissions into the atmosphere throughout the production process are reduced. Additionally, it complies with environmental standards by using recycled plastic balls.

- 3. Reducing energy consumption in production, transportation, and carry out.
- 4. Reducing the total building construction cost by about 8 to10%.
- 5. Decreasing the time of construction.
- 6. Green technology.
- 7. Providing sound and thermal insulators.

1.2 Application of Bubble-Deck Slab

Bubble slabs have many applications, such as (www.BubbleDeck.com):

- Car parker building
- Office building
- High rise building
- Factory and warehouse building

• Public building

In Germany, Holland, Denmark, and United States, the bubbling slab technology has been applied in several structures. Several of these systems are shown below:

• La Bahn Hockey Arena La Bahn

La Bahn Hockey Arena La Bahn is the University of Wisconsin's hockey team arena in the United States. Following consultation with a Bubble-Deck manufacturer, the designer's team recommends adopting a Bubble-Deck system for the walkway. Filigree panels are installed within two days of the location's delivery. It consists of the plastic ball, the primary reinforcement, and the concrete bottom layer. The top layer of concrete is done after one week. By incorporating a bubble deck into the walkway, plate (1-2) illustrates the arena's construction. (Midkiff, 2013).

Plates (1-2) Construction of La Bahn Hockey Arena (www.BubbleDeck.com)

• Millennium Tower

Millennium Tower is one of the first high-rise structures in Holland to use Bubble-Deck, with 35 floors (25000m²) and 140m high. The Tower was finished in 2000., as shown in Plate (1-3).

Chapter One

Plate (1-3) Millennium Tower (www.BubbleDeck.com)

1.3 One-way Slab

The one-way slab is a slab that is supported by parallel walls or beams as shown in plate (1-4), and the short span to long span ratio is equal or greater than two and it bends in only one direction (spanning direction).

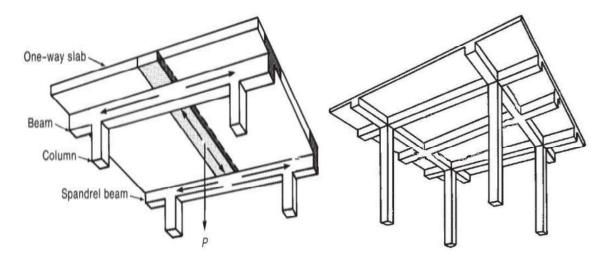


plate (1-4) One-way Slab

1.4 Strengthening by Fibers

In civil engineering, strengthening is one of the most desirable tasks in Reinforced Concrete (RC) structures. One of the methods used to strengthen concrete is using fibrous material in the concrete mix; the mechanical behavior of fiber-reinforced concrete (FRC) depends mainly on the interactions between the fibers and the brittle concrete matrix: physical and chemical adhesion; friction; and mechanical anchorage induced by complex fiber geometry or by deformations or other treatments on the fiber surface.

1.5 Applications of Fiber

- Highway Bridges
- Hydraulic Dam
- Railway Engineering Pilrest
- Port and Marine Engineering
- Tunnel and Mine Works
- Pipework
- Other construction works

This technology has been applied in several structures. Some of these systems are shown below in plates (1-4) and (1-5):

plate (1-5) Museum of Civilisations From Europe and the Mediterranean (www.structurae.net)

Chapter One

plates (1-6) L'Oceanogràfic – L'Oceanogràfic - Access Building (www.structurae.net)

1.6 Research Justification

Numerous types of research have been conducted on the Bubble-Deck system, but most of them have concentrated on bubbled slabs' behavior. At the same time, less research seeks to compensate for the messing efficacy of bubble slab compared to solid slab; this research aims to cover the messing efficacy caused by a plastic ball by using fiber materials.

1.7 Aim of the Research

This research investigates the fibrous one-way bubbled slab structural behavior with plastic sphere bubbles. The main aims of this study are:

1-To investigate the strength and behavior of using plastic sphere bubbles in a one-way slab

2-To Evaluate the strength and behavior of the fibrous material with different types and different percentages of fiber in bubble slab.

1.8 Layout of the Thesis

This study is presented in five chapters, as shown below:

- Chapter one briefly introduces the bubble slab with plastic sphere bubbles, the study's application, scope, and amis.
- Chapter two displays the introduction, background, and design of bubble slabs and the types of fibers used. In addition, this chapter presents some previous research with experimental studies that were carried out for both bubble slabs and fiber slabs.
- Chapter three explains the properties of the materials used in this study experimental work, casting, and test procedures of control specimens.
- Chapter four results and discusses the slab's experimental result.
- Chapter five presents the conclusions obtained from the study and recommendations for further work.