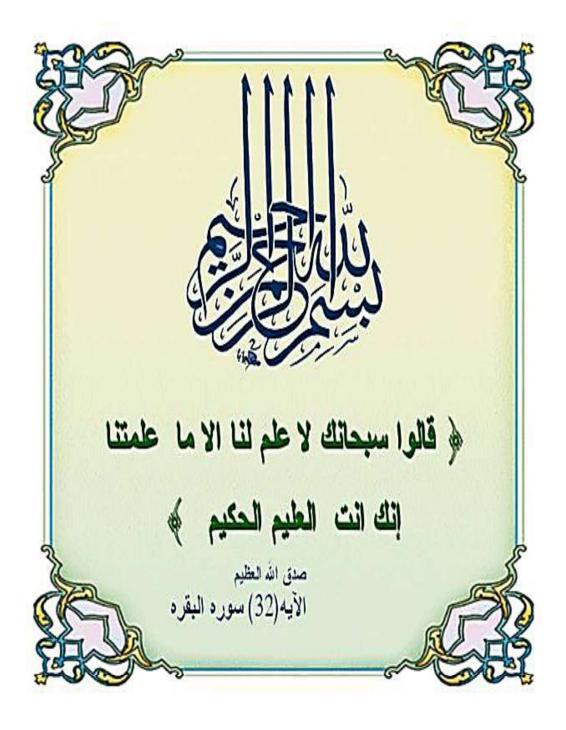
Ministry of Higher Education and Scientific Research University of Diyala College of Engineering



Improving the Execution Monitoring Quality and Materials Alternatives Using BIM

A Thesis Submitted to the Council of College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

By Jinan Adnan Aboab BSC. Civil Engineering, 2001

Supervised by **Prof. Dr. Wadhah Amer Hatem**

DEDICATION

I dedicate this study with much gratitude and love to;

My Dear Father;

His words of inspiration and encouragement in pursuit of

excellence.

My Affectionate Mother;

Who have always encouraged and supported me,

My Family

Finally, to My Friends.

ACKNOWLEDGEMENTS

First of all, I am very much indebted and grateful to Allah.

I would like to my express deep thanks to my supervisor Dr. Wadhah Amer Hatem for the illuminated instructions and directions throughout writing this thesis.

In this opportunity, I would like to thank the Dean of the College of Engineering as well as the teaching staff of the College of Engineering, University of Diyala, Department of Civil Engineering.

I would like to thank the resident engineer department for providing useful data and facilitating the researcher's task during the case study.

I would like to thank Asst. Prof. Dr. Fanar M. Abed, and Eng. Mohammed. of the College of Engineering, University of Baghdad, Department of Surveying Engineering, for their help during my study.

I would like to thank the engineer's syndicate to providing the researcher the facilities to conduct one or more seminars to clarify and explain my study.

Abstract

Quality is an important criterion for the evaluation of successful and sustainable building projects. And, it is the most important element of building a project beside time, and cost, for achieving the principles of quality management on performance by integrating all modern engineering concerns and linking them with quality requirements and directing its course to achieve a high quality product or service. Therefore quality management expanded its limits as it has become closely linked to modern technologies such as Building Information Modeling (BIM) technology. BIM technology is one of the modern integrated technologies, as it includes all the common operations of the construction project.

This research aims to study the possibility of adopting BIM technology to develop a proposed system to improve the quality of the construction projects implementation in Iraq in integration with modern engineering techniques. This system includes quality control and quality assurance.

To achieve the objectives of this research, a review of the literature and previous research was conducted and a questionnaire was prepared for the purpose of assessing the quality of construction projects in Iraq, and to determine if the use of modern software such as Building Information Modeling (BIM) control is the quality of execution in the construction sector and its analysis using the program (IBM SPSS-V26).

Although, many difficulties encountered by this work due to the different scientific methodology and different points of view in the application of these techniques in reality. However, this study focused on the application of these techniques in the field, and this step was supported by the practical study, where the Ghalibya Residential Complex was adopted as a case study that was modeled in this research through data collection. The project was conducted through personal interviews with the cadre of the resident engineer responsible for the project. The digital pictures of the building were also taken using the (Agisoft) program and photogrammetry. The case study (as built) was modeled to monitor the quality of the project's performance, where all stages of project implementation can be documented with high accuracy. The model was imported into the Recap program to process the origin and data point, and then the model was exported to the Rivet program to prepare the modeling of the building and extract the quantities for the main activities of the building, where these techniques can be used to improve the quality of control for construction projects. Also, BIM technology was used, depending on a tool green building studio (GBS) to analyze the energy consumption of the study case and choose the best alternatives for the application.

Finally, the questionnaire results indicated the poor quality of construction projects depending on total average for (mean=2.3, SD=0.93) and weak project management responsibilities, due to depending on traditional methods based on the total average for (mean=2.3, SD=0.9) and non-compliance for the use of modren software as (BIM) to control the execution quality.

The results clearly monifested the ability of the integration of modern technologies to show a modeling of the project based on photogrammetry, where the accuracy of the measurement of dimensions reached 99.8%, with an error rate ranging within (0.8-10) cm. The accuracy of calculating the quantities was between actual and BIM (98.6%). The accuracy of the quantities is between the estimation and BIM (94.9%). Some materials that had comprehensive qualities in improving the quality of the building were also selected, such as granite in the finishing of the external walls and cellulose insulating material, as well as foam materials can be used on the roofs, as they are considered materials resistant to weather conditions and high temperatures and also reduce the energy consumption of the building

compared to other materials. This was done by adopting the BIM technology for energy analysis. As well as according to the opinion of experts and engineers to evaluate the proposed system, a questionnaire was used, where the end result was the acceptance of the proposed system by 95%.

List of Contents

SUPERVISOR CERTIFICATION	Error! Bookmark not defined.
Scientific Certification	Error! Bookmark not defined.
Language Certification	Error! Bookmark not defined.
COMMITTEE CERTIFICATION	Error! Bookmark not defined.
DEDICATION	V
ACKNOWLEDGEMENTS	VI
Abstract	VII
List of Contents	X
List of Figures	XVI
List of Tables	XIX
List of Abbreviations	XXI
CHAPTER ONE	1
Introduction	1
1.1 General	1
1.2 Research Justifications	2
1.3 Research Aim and Objectives	
1.4 Research Scope and Limitations	
1.5 Research Methodology	
1.6 Thesis Structure	
1.7 Review of Previous Studies	7
1.8 Summary	
CHAPTER TWO	
Literature Review	
2-1 Introduction	
2.2 The Quality of Construction Proj	ects in Iraq13
2.3 Execution Phase	14
2.3.1. Performance and Monitoring in	n the Execution Phase15
2-3.2. Problems and Obstacles in the	Execution Phase15
2.4 Construction Project Constraints	
2.5 Project Quality Control	

2.6 Quality Concept and Definition	
2.6.1 Quality in Construction Projects	
2.6.2 Quality Assurance & Quality Control	
2.6.3 Total Quality Management	25
2.7 Traditional Tools of Quality	
2.8 Computer-Aided Design(CAD) of Quality Improvement	
2.9 Building Information Model (BIM) of Quality Improvement	
2.10 Concept of Building Information Model (BIM)	
2.10.1 Definition of BIM	
2.10.2 Dimensions of BIM	
2.11 BIM vs. CAD	
2.12 The Technologies and Improving Quality Projects	
2.12.1 BIM Applications	
2.12.2 Photogrammetry and 3D Modeling	
2.12.2.1 Photogrammetry Software	
2.12.3 Energy Analysis Using BIM	
2.12.3.1 Autodesk Green Building Studio (GBS) Cloud	
2.17 The Advantages of Using BIM in Improving the Quality of	
Execution	
2.18 Summary	
CHAPTER THREE	
Execution Quality of Iraqi Construction Projects	
3.1 Introduction	
3.2 Data Collection Methods	
3.3 Design of Questionnaire	41
3.3.1 Part I (General Information)	
3.3.2 Part II Quality Execution Control in Iraqi Construction Pro	jects 42
3.3.3 Part III Construction Project Management Responsibilities	
3.3.4 Part IV Use of Modern Software as Building Information N to Control the Quality of Implementation	-
3.4 Arbitration of the Questionnaire	
3.5 Statistical Reliability	

3.5.1. Alpha (Cronbach) Model	44
3.6 Questionnaire Distribution	45
3.6.1 Sample Size and Response Rate	45
3.6.2 Sample Description	45
3.7 Statistical Analysis	
3.7.1 Questionnaire Distribution Administration	
3.7.2 Descriptive Statistics	
3.7.2.1 Central Tendency Measurement	
3.8 Results of the Questionnaire	
3.8.1 Part II Quality Execution Control in Iraqi Construction Proj	jects 49
3.8.2 Part III Construction Project Management Responsibilities .	51
3.8.3 Part IV Use of Modern Software as Building Information M to Control the Quality of Implementation	e
3.9 Relative Important Index	
3.10 Summary	59
CHAPTER FOUR	60
Proposed System Error! Bookmark not	defined.
Proposed System Error! Bookmark not 4.1 Introduction	
	60
4.1 Introduction	60 60
4.1 Introduction4.2 Requirement of BIM Usage	60 60 61
 4.1 Introduction 4.2 Requirement of BIM Usage 4.3 Programs Used in This Study 	60 60 61 61
 4.1 Introduction 4.2 Requirement of BIM Usage 4.3 Programs Used in This Study 4.3.1 Agisoft Metashape 	60 60 61 61
 4.1 Introduction 4.2 Requirement of BIM Usage 4.3 Programs Used in This Study 4.3.1 Agisoft Metashape 4.3.2 Autodesk Recap Software 	
 4.1 Introduction	

4.10.1 Photo Upload	73
4.10.2 Photo Alignment	74
4.10.3 Dense Cloud Generation	75
4.10.4 Build Mesh	76
4.10.5 Build Texture	77
4.10.6 Clean Up the Cloud Point(Noise)	78
4.10.7 Create Scale Bar	80
4.10.8 The Accuracy of Building Models with Actual	80
4.10.8.1 Building Height	81
4.10.8.2 The Building Length of the Front Facade	81
4.10.8.3 The Building Length for the Right Side	81
4.10.8.4 The Building Length of the Back Facade	82
4.10.8.5 The Building Length for the Left Side	82
4.10.8.6 The Length and Width of Window	83
4.10.8.7 The Length and Width of AC Slot	83
4.10.8.8 The Building Width of Door	84
4.10.8.9 The Ground Floor, First Floor, and Second Floor Height	84
4.10.9 Export Points Cloud	87
4.11 Import in Recap	88
4.12 Import and Modeling in Revit Software	90
4.13 Quantities of Modeling Building	95
4.14 Quality Assurance	97
4.15 Collection of Data for Case Study	97
4.16 Visualization a 3D Case Study Model	97
4.17 Method Improving Execution by BIM Model	99
4.18 Selecting New Material	99
4.19 Creating New Material	100
4.20 Energy Simulation	103
4.21 Summary	105
CHAPTER FIVE	107
Results and Discussion	107

5.1 Introduction
5.2 Quantities of the Case Study107
5.2.1 Quantities of the Column Works
5.2.2 Quantities of the Wall (24cm)Works108
5.2.3 Quantities of the Wall (12cm)Works109
5.2.4 Quantities of the Floor Works110
5.2.5 Quantities of the Ceiling Works111
5.2.6 comparison of the quantities112
5.3 Energy Analysis 113
5.3.1 Energy Analysis of Actual Material113
5.3.2 Add New Materials (Alternatives)114
5.3.2.1 Using Foam Material Above Roofs114
5.3.2.2 Using Sand Stone in Wall Finishing115
5.3.2.3 Using Granite in Finishing Wall116
5.3.2.4 Using Fiber Glass Insulation in Finishing Walls116
5.3.2.5 Cellulose Insulation
5.3.2.6 Using Double Glazing117
5.3.3 Selecting the Best Alternatives
5.4 The Third Topic 120
5.4.1 Design of the Questionnaire
5.4.2 Questionnaire Distribution
5.4.3 Sample Description121
5.4.4 Results of Evaluating the Quality Improvement System By BIM 123
5.4.4.1 Part II (Evaluation of the Use of Modern Technologies BIM to Quality Control in Iraqi Construction Projects)
5.4.4.2 Part III (Evaluation of the Use of Modern Technologies BIM to Quality Assurance in Iraqi Construction Projects)
5.4.4.3 Part IV (Evaluation of the Improving the Quality System For Iraqi Construction Projects Using Modern Engineering Technologies BIM)127
5.5 Summary 129
CHAPTER SIX
Conclusions and Recommendations

6.1 Introduction	
6.2 Conclusions	
6.3 Recommendations	
6.4 Suggestions for Future Studies	
References	
Appendix -A	
Appendix -B	
Appendix -C	
Appendix -D	
Appendix –E	

List of Figur	es
---------------	----

Figure NO.	Title	Page No.
1.1	Research methodology(Researcher)	5
2.1	Construction project main constraints	18
2.2	Quality control process	20
2.3	Comparison between quality assurance and quality control	25
2.4	The seven quality control tools	26
2.4	BIM dimensions	31
2.5		33
2.0	Set of images to be used for photogrammetry The structure from motion technique	33
	1	36
2.8	User interface of Green Building Studio	
3.1	Components of the questionnaire	42
3.2	The percentage of respondents according to work sector	46
3.3	The age proportion of respondents	46
3.4	Respondents' educational levels	46
3.5	Respondents' specialization	47
3.6	The respondents' group	47
3.7	The respondents' practical experience	47
3.8	The relative importance of the quality execution control	57
3.9	The relative importance of the construction project	58
	management responsibilities	
4.1	Plan practical study workflow	64
4.2	Ghalibyah residential complex project	65
4.3	Residential unit model in a residential complex	66
4.4	Flowchart for creating a 3D model and integrating photogrammetry with BIM	69
4.5	Devices used in the photogrammetry: (a) The lens (b) Drone with foldable tracking antennas and remote control (c) Nikon D90	71
4.6	Fieldwork Procedures: (a) Choosing the distance between the camera and the building (b) Distributing coded targets on the building (c) Photographing it	73
4.7	User interface of Agisoft Software to add photographs	74
4.8	Align photo settings case study	75
4.9	Spare point cloud for case study	75
4.10	Dense cloud generation settings case study.	76
4.11	Dense point cloud with noise for case Study	76
4.12	Setting of mesh for case study	77
4.13	Generate mesh model for case study	77
4.14	Setting of texture for case study	78

4.15	a,b, and c.: Build texture for case study during life cycle	78
4.16	(a) Clean up the cloud point for ground floor	79
	(b) Clean up the cloud point for first floor	
4.16	(c) Clean up the cloud point for second floor	80
4.17	Illustration of how to create a scale bar for the case study	81
4.18	Building height in Agisoft Software	82
4.19	Building length of the front facade in Agisoft Software	82
4.20	Building length for the right side in Agisoft Software	83
4.21	Building length of the back facade in Agisoft Software	83
4.22	Building length of the left side in Agisoft Software	83
4.23	Length and width of window in Agisoft Software	84
4.24	Length and width of AC slot In Agisoft Software	85
4.25	Building width of door in Agisoft Software	85
4.26	Ground-floor 2. First-floor 3.Second-floor height in	86
	Agisoft Software	
4.27	(a) Image of the front and right side illustrative of the	87
	location of the dimensions of the components name for	
	case study on-site	
	(b) Image of the back and left side illustrative of the	
	location of the dimensions of the components name for	
	case study on-site	
4.28	Export points cloud from Agisoft Software	89
4.29	Interface of Recap Software	89
4.30	Describe how to enter the model into Recap.	90
4.31	The model's form after it was loaded into Recap.	90
4.32	(a) The model after set the origin point	91
	(b)The model after set the orientation in Recap	
4.33	Import point cloud for the model as built-in Revit	92
4.34	The view for building (As-Built Model) in Revit	92
4.35	The origin point of the model in Revit	93
4.36	The model with levels and grids applied	93
4.37	a: The model of ground floor with point cloud	94
	b: The model of first floor with point cloud	
	c: The model of second floor with point cloud	
4.38	a: The model of ground floor without point cloud	95
	b: The model of first floor without point cloud	
	c: The model of second floor without point cloud	
4.39	Two models, one with a point cloud and the other	96
	without.	
4.40	The geometric model sans the point cloud	96
4.41	Calculate Schedule /quantities by Revit Software	96
4.42	a: Scheduling column quantities	97

b: Scheduling quantities of wall thickness (240mm) c: Scheduling floor quantities e: Scheduling floor quantities e: Scheduling ceiling quantities994.43User interface of Revit Software (Researcher)994.44Improvement method of BIM model with the BPA tools1004.45a: Select manage b. Creating new materialsc.102Creating special new library in the case study1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using faam material1155.4Using granite1165.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The groportion of respondents according to work sector1215.11Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group1225.15The respondents' practical experience123	1		1
d: Scheduling floor quantitiese: Scheduling ceiling quantities4.43User interface of Revit Software (Researcher)994.44Improvement method of BIM model with the BPA tools1004.45a: Select manage b. Creating new materials c. Creating special new library in the case study4.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials4.48a: Physical properties b. Thermal properties of new materials4.49Energy settings4.49Energy settings4.49Energy settings4.50Calculation of H&C and create an energy model1055.1Summary of energy simulation1145.2Annual energy consumption5.4Using floar material5.5Using granite5.6Using fiber glass1175.7Using double glazing5.8Using double glazing5.10The percentage of respondents according to work sector5.11The age proportion of respondents5.12Respondents' educational levels5.13Respondents' educational levels5.14The respondents' group5.14The respondents' group		b: Scheduling quantities of wall thickness (240mm)	
e: Scheduling ceiling quantities4.43User interface of Revit Software (Researcher)994.44Improvement method of BIM model with the BPA tools1004.45a: Select manage b. Creating new materials c. Creating special new library in the case study1024.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using granite1165.6Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122			
4.43User interface of Revit Software (Researcher)994.44Improvement method of BIM model with the BPA tools1004.45a: Select manage b. Creating new materials c. Creating special new library in the case study1024.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using granite1165.5Using granite1165.6Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122			
4.44Improvement method of BIM model with the BPA tools1004.45a: Select manage b. Creating new materials c. Creating special new library in the case study1024.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1165.5Using granite1165.6Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122			
4.45a: Select manage b. Creating new materials c. Creating special new library in the case study1024.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122	4.43	User interface of Revit Software (Researcher)	99
Creating special new library in the case study4.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122		Improvement method of BIM model with the BPA tools	
4.46Identifying new materials in Revit Software1024.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using granite1165.6Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122	4.45	a: Select manage b. Creating new materials c.	102
4.47Introducing graphics and appearance information about new materials1034.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using granite1165.6Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' group122		Creating special new library in the case study	
new materials114.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using fiber glass1175.7Using fiber glass1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' group122	4.46	Identifying new materials in Revit Software	102
4.48a: Physical properties b. Thermal properties of new materials1034.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using granite1165.5Using fiber glass1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' group122	4.47	Introducing graphics and appearance information about	103
materials1044.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' specialization1225.14The respondents' group122		new materials	
4.49Energy settings1044.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.12Respondents' educational levels1225.13Respondents' group122	4.48	a: Physical properties b. Thermal properties of new	103
4.50Calculation of H&C and create an energy model1054.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using fiber glass1175.6Using cellulose insulation1175.7Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' group122			
4.51Framework to evaluate energy performance1055.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' specialization1225.14The respondents' group122	4.49	Energy settings	104
5.1Summary of energy simulation1145.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' group122	4.50	Calculation of H&C and create an energy model	105
5.2Annual energy consumption1145.3Using foam material1155.4Using sandstone1155.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' specialization1225.14The respondents' group122	-		
5.3Using foam material1155.4Using sandstone1155.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1225.13Respondents' specialization1225.14The respondents' group122	5.1	Summary of energy simulation	
5.4Using sandstone1155.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122		Annual energy consumption	114
5.5Using granite1165.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122		Using foam material	115
5.6Using fiber glass1175.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.4	Using sandstone	115
5.7Using cellulose insulation1175.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.5	Using granite	116
5.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.6		117
5.8Using double glazing1185.9The effect of alternatives on energy consumption1185.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.7	Using cellulose insulation	117
5.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.8	Using double glazing	118
5.10The percentage of respondents according to work sector1215.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.9	The effect of alternatives on energy consumption	118
5.11The age proportion of respondents1215.12Respondents' educational levels1225.13Respondents' specialization1225.14The respondents' group122	5.10		121
5.13Respondents' specialization1225.14The respondents' group122		The age proportion of respondents	121
5.14The respondents' group122	5.12	Respondents' educational levels	122
	5.13	Respondents' specialization	122
5.15The respondents' practical experience123	5.14	The respondents' group	122
	5.15	The respondents' practical experience	123

List of Tables

Table	Title	Page
NO.		No.
1.1	Review of previous studies	8
2.1	Problems in the execution phase	15
2.2	Definition of quality	21
2.3	Traditional tools of quality	27
2.4	Definition of the BIM	29
2.5	Advantages of using BIM in improving the quality of execution	37
3.1	Name of governmental institutions and private companies	41
3.2	Arbitrators' information	43
3.3	Reliability cutoff values	44
3.4	Value of alpha Cronbach for questionnaire 's parts	45
3.5	Statistical analysis of items for the second part	50
3.6	Statistical analysis of items for the third part	52
3.7	Statistical analysis of items for the fourth part	54
3.8	Five – grade system	55
3.9	The relative importance of the quality execution control	55
3.10	The relative importance of the construction project management responsibilities	57
4.1	Additional information about project of the Ghalibyah residential complex	66
4.2	Relevant technical information of equipment used	71
4.3	Result of the planning process	72
4.4	Comparing the accuracy of as built model with building	88
	dimensions for case study on-site	
4.5	Some material and components of case study	99

4.6	The new materials and components used in the case study	101
5.1	Quantities of the columns of case study	108
5.2	Quantities of the walls(24cm) of case study	109
5.3	Quantities of the walls(12cm) of case study	110
5.4	Quantities of the floor of case study	111
5.5	Quantities of the Ceiling of case study	112
5.6	Comparison of BIM(as-built), estimation(as-planned), and	113
	actual quantities for case study	
5.7	Annual energy analysis by using alternatives	119
5.8	Engineers' opinions on the application of modern	124
	technologies BIM to quality control	
5.9	Engineers' opinions on the application of modern	126
	technologies BIM to quality assurance	
5.10	Engineers' opinions on the application of modern	127
l	technologies BIM to improving the quality system	

List of Abbreviations

Abbreviations	Explanation
2D	Two Dimension
3D	Three Dimension
4D	Four Dimension
5D	Five Dimension
6D	Six Dimension
7D	Sevene Dimension
AEC	Architecture, Engineering and Construction
BIM	Building Information Modeling
BPA	Building Performance Analysis
CAD	Computer Aided Design
GBS	Green Building Studio
QA	Quality Assurance
QC	Quality Control
QMS	Quality Management System
QTO	Quantity Take-Off
RII	Relative Importance Index
SD	Standard Deviation
SfM	Structure From Motion
SPSS	Statistical Package for Social Sciences
TQM	Total Quality Management
UAVs	Unmanned Aerial Vehicles

CHAPTER ONE INTRODUCTION

CHAPTER ONE Introduction

1.1 General

The construction sector is considered one of the most vital sectors in Iraq. It is known that the majority of construction projects in this country may not be completed within the project specifications. The reality of the field of construction projects in Iraq is related to the need to develop the performance to improve the quality, time, and cost management, and therefore there is a need to use modern software as building information modeling to control the quality of execution.

Science and technology are developing by the day. Building Information Modeling (BIM) was merely a moniker expressing a cutting-edge notion a few years ago for most people. It is now widely used and popular in the Architecture/ Engineering/ Construction (AEC) profession in the majority of nations throughout the world. One of the administrative challenges that the managers of building projects in Iraq encounter is updating the information and data to determine the quality of performance (Amer et al. 2021). Construction project management must have a clear vision and goal in order to plan, execute, and evaluate its performance on a continuous basis, especially in an uncertain work environment (Mahmoud 2020).

Quality is one of the main factors in the success of construction projects. Quality of construction projects, as well as project success, can be regarded as the fulfillment of expectations. Some design professionals believe that the quality is measured by the aesthetics of the facilities they design. while a new term for quality that has emerged as quality 4.0 is an extended approach to quality management, where the recent technologies are being integrated with traditional quality practices (Quality Control (QC), Quality assurance

(QA), and Total Quality Management (TQM)) to expand the quality management scope and to improve the quality activities (Sader Sami 2021).

Chapter One

One of these techniques is building information modeling (BIM), which represents a technical and operational shift in the construction industry (Succar 2009).

Building Information Modeling (BIM) is a sophisticated technology and technique that combines virtual features, systems, and concepts in a single environment (WoonSeong and Son 2015). Several BIM applications may be utilized to aid in quality inspection constructability, control, analysis, scheduling, cost estimates, and time sequencing (Takim and Harris 2013). One of the key advantages of BIM is the accurate geometrical representation of architectural elements within an integrated information environment (Amer et al. 2018). BIM execution necessitates careful planning and a coordinated strategy that takes into account the implementation and innovation management (Migilinskas et al. 2013). The purpose of this research is to improve the quality of implementation in construction projects by making a virtual prototype of a building in a residential complex by using digital cameras and drone cameras during Agisoft, Recap software, and Revit software. In addition, it aims to improve and assure the quality of construction projects by reducing their energy consumption, where the study gave a proposal for a special system to monitor, ensure and continually improve the quality in the implementation phase using several BIM applications.

1.2 Research Justifications

Chapter three from this thesis explains the justifications for this research and the most important points by distributing questionnaires for the people who work in the execution for construction propjets, and there are some points that can be summarized as follows:

- 1- The lack of apporprate technologies.
- 2- The need to use moder technologies such as BIM to improve quality of construction project during execution stage.

3-Implementing asystem for improvement execution in construction project in Iraq is necessare and beneficial.

1.3 Research Aim and Objectives

The aim of this research is to propose a quality improvement system to control, assure, and improve the quality of Iraqi projects using BIM and its applications that revolve around improving the project quality in the implementation phase and there are some objectives besides the main aim as follows:

- 1. Increasing the quality control and performance enhancement through performance monitoring in the construction project implementation works.
- 2. Increasing the quality assurance using BIM by the administration by appointing a quality manager who has sufficient experience with the general specifications in quality control.
- 3. Achieving total quality to ensure a continuous improvement during the execution phase.

1.4 Research Scope and Limitations

The research scope and limitations include the following points:

- 1- Research scope: This study was applied in the execution stage.
- 2- Spatial limitation: The research included the execution stage of the study case Diyala governorate of the Al- Ghalibyah Residential Complex (condominiums).
- 3- Temporal limitation: It covers the period 2021-2022.

1.5 Research Methodology

The methodology of the research is mainly divided into two parts: Theoretical study and practical study, as shown in figure (1-1):

A- Theoretical study:

This part includes reviewing the pertinent literature; covering the previous researches and scientific references including books,

conferences, journals, and magazines that discussed improving the quality using BIM.

B- Practical study:

The practical part of the research includes:

1. Questionnaire design: The questionnaire approach was used to assess the utilization of quality in building projects. It includes questions distributed to respondents working in the construction sector to express their opinion on the quality of construction projects in Iraq, as well as the extent of their knowledge of modern engineering techniques (BIM) and their relationship to the development of the quality system in construction.

2. Analyzing the results of the questionnaire and statistical analysis using the (SPSS) program, version (26).

3. The project data, which are two-dimensional AutoCAD files, bills of quantities, and some information about the project, were collected through interviews with engineers in the resident engineer department of the Al-Ghalibyah Residential Complex.

4. Characterizing the building in this study employing photogrammetry and the extent to which the dimensions and quantities conform to the specifications, the Agisoft program, and Autodesk Recap.

5. Creating a 3D model using Autodesk Revit 2021 depending on 3D modeling by the Agisoft program, and Autodesk Recap.

6. Creating a 3D model using BIM technology and its applications for the purpose of improving and assuring the quality of construction projects by reducing their energy consumption.

7. The questionnaire method was used to evaluate the system for quality improvement in construction projects in Iraq by BIM.

8. Finally, displaying the conclusions, recommendations, and proposals for future research.

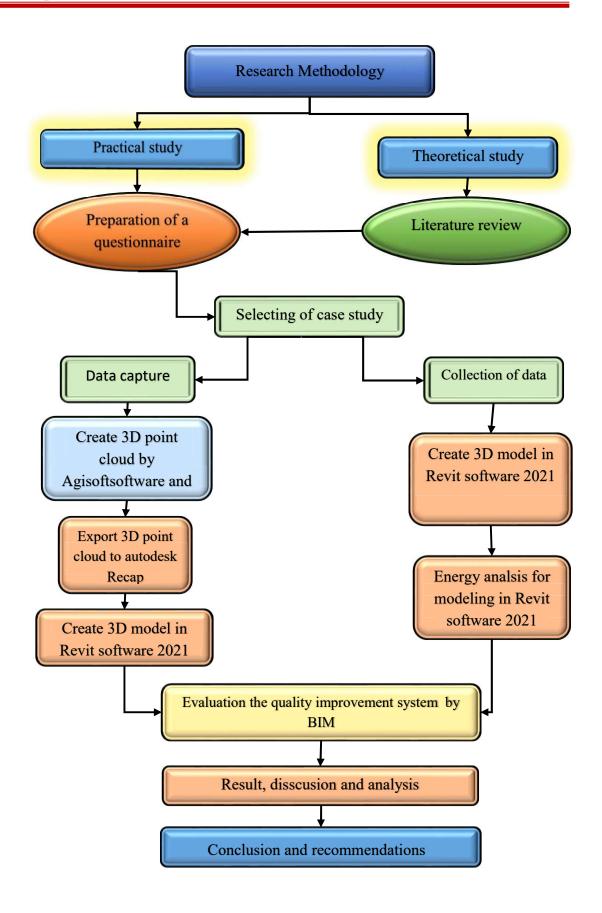


Figure (1-1): Research methodology (Researcher)

1.6 Thesis Structure

The research has been divided through this thesis into as follows:

Chapter One: Introduction

It presents general introduction to the study, the background of the research and justifications, research aim and objectives, research scope and limitation, description of the research methodology as well as explain previous studies.

Chapter Two: Literature Review

It contains a brief study about the quality of construction projects in Iraq, Execution Phase, Construction project constraints, Project quality control, concepts of quality and its definitions, quality in construction projects, assurance and control quality, total quality management, traditional tools of quality, computer-aided design (CAD), Building Information Model (BIM) of quality improvement, (BIM) the definitions, concepts, dimensions, The technologies and improving quality projects, BIM Applications, Photogrammetry and 3D Modeling, Energy analysis using BIM, and the advantages of using BIM in improving the quality of the execution.

Chapter Three: Execution Quality of Iraq Construction Projects

This chapter reviews the questionnaire method for evaluating the quality performance of construction projects execution in Iraq. It includes questions distributed to respondents working in the contracting sector to express their opinion on the quality of implementation currently used in construction projects as well as their knowledge of BIM technology to improve the quality. The results of this questionnaire are confirmed as the justifications for this thesis.

Chapter Four: Improving the Execution Quality by Building Information Modeling

Chapter One	Introduction

This chapter will describe the following two important subjects:

The first subject was improving quality control using building information modeling for BIM-compliant construction projects using Agisoft software, Autodesk Recap, and Autodesk Revit software.

The second subject was improving quality assurance using building information modeling and energy analysis, which evaluates the energy usage in accordance with BIM using Autodesk Revit software, and Autodesk Green Building Studio (GBS) Cloud.

Chapter Five: Results and Discussions

This chapter will discuss the following three results themes:

The first topic is a comparison of the Q.T.O. between the as planned quantity (estimated), the actual quantity, and the as built quantity computed by Revit using BIM.

The second topic is the results of the energy analysis which measures the energy consumption for new materials and chooses the most applicable alternatives.

The third topic in this chapter is the evaluation of the improving the quality system for construction projects by BIM applications.

Chapter Six: Conclusions and Recommendations

It includes the research overall conclusions, recommendations, and proposals for future research study in this field.

1.7 Review of Previous Studies

Many researchers in different countries have investigated certain aspects improving the quality in the implementation stage of the BIM application. Table (1-1) provides a simple summary of these studies. The studies are divided according to their geographic location into three groups (local studies, Arab studies, and global studies).

	Local Studies (Iraqi studies)			
NO.	Researcher	Title	Year	Country
1	Ali Amer M. Hasan	Quality Evaluation of Construction Factories by Using 'Six Sigma' Approach	2011	Iraq
	1	The work		
mixtu metho and th 1. proces 2.	res are improved ds and through the e results revealed The lack of specia sses from the begin There is a dearth	ne quality evaluation of construction fac to reach the quality of construction pro- e philosophy of Six Sigma. many conclu- that list departments for quality management, nning to the conclusion. of use of statistical tools and mathema- l causes of deviation or to analyze the m	rojects, usir sions have b , with the jol atical metho	ng statistical been reached b of auditing bdologies to
2	Faiq Mohammed Sarhan AL- Zwainy, and Firas Khary Jaber	Quality control of concrete bored piles in overpasses projects in Iraq	2014	Iraq
		The work		
(bridg site fo these	es) in Iraq, to clar or these projects u projects. Factors, t	study the reality of quality control in ify the factors that affect the quality cont using fishbone technology, to know the to evaluate the field application by looking construction projects to reach a si	rol of concr relative im ng at the sci	ete piles on- portance of entific basis

for quality control in construction projects, to reach a set of conclusions and recommendations aimed at improving the quality control process in projects. Finally it was concluded that the overpass projects in Iraq suffer from a lack of efficient staff and specialized workers in the quality control field, with a relative importance of 90%, a lack of statistical methods for operations modeling, with a relative importance of 83 %, and a lack of information system for quality control.

Chaj	pter One		Introduct	ion
3	Nidal Adnan Jasim	Diagnosing the Causes of Poor Quality Management in Iraqi Construction Projects Using Technique of Root Cause Analysis	2021	Iraq
		The work		
identif severa subcon three r Pareto were e in the	fy the reasons for al categories, such ntractors, site pers reasons for poor qu analysis revealed eight reasons in th materials group, a	ation approach has been used. The purp poor quality management in Iraqi cons as equipment, labor, systems, material onnel, and contract. The findings develo ality management in Iraqi building proje that only thirty-five of the causes were systems group, seven in the design an and three in the subcontractor's group.	struction pro s, design an ped and diag ects in gener the most rele ad execution	ojects across d execution gnosed fifty al; however evant. There a group, five
	Arabic Studies			
NO.	Researcher	Title	Year	Country
1	Maya Rana, Omran Jamal, Hassan Bassam	Quality Information Modeling for Construction Using BIM Autodesk 360 Field	2014	Syria
		The work		
manag approp resolv and co Contro unequ	ging high-quality priately tracking to ing difficulties, vi ollaboration. The co ol (QA/QC) chec ivocally that the ment, visual interfe	posed to use BIM Autodesk 360 Field as information in construction. This the condition of materials and equipme sualizing construction processes, and in- case study's use of the program's Quality eklists resulted in 187 quality and safe personal follow-up of the tasks perform- erence, documentation, and reporting are	will be a ent, docume creasing con Assurance ety issues. ned and qua	chieved by enting work nmunication and Quality This shows ality contro
2	Sadek, Khaled; El-Bastawissi, Ibtihal; Raslan, Rokia; and Sayary, Samer	Impact of BIM on Building Design Quality	2019	Lebanon

Chapter One

Introduction

The work

This research proposes a set of hypotheses that links the BIM execution with the improvement of information sharing capability (ISC) and collaborative decision capability (CDC) in the construction sector of the building industry. Consequently, it relates the degree of BIM use to the design quality improvement using ISC and CDC as mediators. The study uses three sets of criteria for the improvement of the design quality as indicators to enhance the project quality benefit, form, aesthetic qualities, and building construction quality. The study suggests a new conceptual model establishing the probable relationships between the variables included in the study. As a result, it has various implications for practitioners and decision-makers on the relevance of BIM in improving project quality.

3	Mohammad	Study of the Quality Concepts	2019	Saudi
	Abazid,	Implementation in the Construction		Arabia
	Hüseyin	of Projects in Saudi Arabia by using		
	Gökçekuş, and	Building Information Modelling		
	Tahir Çelik	(BIM)		
	4			

The work

In this research study, the descriptive-analytical technique was employed to attain the study's goal by distributing 12 questionnaires in engineering offices and construction enterprises. The SPSS application was used to process the acquired data. According to the findings of the study, construction projects in Saudi Arabia continue to suffer from weaknesses in the application of Building Information Modeling (BIM), a lack of administrative, scientific, and technical competencies, and a poor application of quality concepts in the execution of construction projects.

	Global Studies			
NO.	Researcher	Title	Year	Country
1	Ying-Mei Cheng	Building Information Modeling for Quality Management	2018	China
The work				

This study focuses on the application framework of BIM on quality management. The core concepts of quality management include quality control, quality assurance and communication protocol. The communication protocols encompass: 1) Organizational structure and responsibilities of project stakeholders; 2) Communication channels; 3) Frequency of information exchange. Based on this framework, a QC (Quality Control) model system prototype is established. The QC model was utilized in the construction stage with Autodesk Revit API (Application Programming Interface) which greatly improves the collaborative work while effectively reducing the costs at the same time.

	pter One		Introduct	ion
2	Ammad Hassan Khan, Ali Imran, and Muzamil Hussain	Evaluation of Quality during Construction Projects: A Case Study of Pakistan	2019	Pakistan
		The work	<u> </u>	1
satisfa variab Pakist stakel contra satisfa this i sustai be all hired,	action. This study bles influencing the tan. A qualitative holders, including actor's performance action, and worker nvestigation, poli ning the quality le ocated, workers s	attained and maintained to achieve organ looks into several areas of operationali he quality of building construction in do re and quantitative survey was distr Clients, Consultants, and Contractors, the e, project monitoring and controlling te rs' experience in the construction industr tical and socio-economic issues have evel in the local industry. As a result, ad hould be properly trained, quality cont nology should be used to ensure app mplementation. Development of Quality Control Requirements for Improving the Quality of Architectural Design Based on BIM	zing quality eveloping co cibuted amo to assess the echniques, p y projects. A a crucial equate resor- rol personne	v culture ar ountries lik ong variou e level of th roper, clie According influence urces shou el should b
		The work		
qualit check data f check	y architectural de objectives for the or each phase of th objectives from n inspection stand	h is to create and implement quality cont sign using BIM. To accomplish this, the BIM-based design phase by analyzing he architectural design process and extract the case, the research created space in dards, Finally, the study created a rul	ne study def the busines cting the det spection sta	fined quali s and outp ailed quali andards, ar
		Current Study		
	esearch explores t	he advantages of using BIM and its use	fulness in in l prototype (

1.8 Summary

This chapter presents a brief introduction to improve quality by BIM, a description of the justification for research, a description of the aim and objectives of the research, research scope, and limitations, the methodology of research, in brief, the structure of the thesis, and finally the review of previous studies.