Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

Economic Sustainability and Life Cycle Cost for Iraqi Construction Projects Using BIM

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

By

Noor Mejwal Mahmood

BSC. Civil Engineering, 2008

Supervised by

Prof. Dr. Wadhah Amer Hatem

2022 A.D

IRAQ

1444 A.H

بسم الله الرحمن الرحيم ﴿ يَرْفَع الله ٱلدِينَ أَمُنوا مِنْكُمُ وَٱلدِينَ أَوْتوا العِلَم حَرَجاتِ وَاللهُ بَمَا تَعْمَلُونَ خَبِيرَ ﴾ حدق الله العظيم

سورة المجادلة -11

SUPERVISOR CERTIFICATION

We certify that the thesis entitled "Economic Sustainability and Life Cycle Cost for Iraqi Construction Projects Using BIM" Presented by "Noor Mejwal Mahmood" Was prepared under our supervision in the Department of Civil Engineering, University of Diyala, in partial fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering

Signature:

Prof.Dr. Wadhah Amer Hatem

Supervisor

In view of the available recommendation, we forward this thesis for debate by the Examining Committee.

Signature:

Name: Prof. Dr. Wissam Dawood Salman

Head of the Department of Civil Engineering

Date: / / 2022

SCIENTIFIC AMENDMENT

I certify that this thesis entitled "Economic Sustainability and Life Cycle Cost for Iraqi Construction Projects Using BIM" presented by "Noor Mejwal Mahmood" has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature
Name:
Address:
Date: / /2022
Signature
Name:

Address:

Date: / /2022

LINGUISTIC AMENDMENT

I certify that this thesis entitled "Economic Sustainability and Life Cycle Cost for Iraqi Construction Projects Using BIM" presented by "Noor Mejwal Mahmood" has been corrected linguistically, therefore, it is suitable for debate by examining committee.

Signature.....

Name: Assist. Prof. Dr. Ahmed Adel Nouri (M.A.)

Address: College of Education for Humanities

Date:

COMMITTEE CERTIFICATION

We certify that we have read the thesis titled "Economic Sustainability and Life Cycle Cost for Iraqi Construction Projects Using BIM" and we have examined the student "Noor Mejwal Mahmood" in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

Examination Committee	Signature
Prof. Dr. Wadhah Amer Hatem (Supervisor)	•••••
Assist. Prof. Dr. Abbas Mahdi Abd (Member)	•••••••
Assist. Prof. Dr. Abbas Mohammed Burhan (Member)	•••••
Prof. Dr Hatem Khaleefah Breesam (Chairman)	•••••

Prof. Dr.Wissam Dawood Salman (Head of Department)

The thesis was ratified at the Council of College of Engineering /University of Diyala.

Signature.....

Name: Prof. Dr. Anees Abdullah Khadom

Dean of College of Engineering / University of Diyala

Date:

DEDICATION

This thesis is dedicated to my parents for their endless love and my beloved husband for support and encouragement.

my beating heart my dear child, my dear brother, my beloved sisters and their children.

ACKNOWLEDGEMENTS

First of all, I am very indebted and grateful to Allah. I would like to express my deep thanks to my supervisor, Dr. Wadhah Amer Hatem, for the illuminated instructions and directions throughout writing this thesis. In this opportunity, I would like to thank the **Dean of the College of Engineering** as well as the teaching **staff of the College of Engineering**, University of Diyala, Department of Civil Engineering, and the spirit of **Dr. Hafez Ibrahim Naji**, who was the highest ideal for me and for all researchers in this field in knowledge, etiquette, and morals.

Finally, many thanks to all **my colleagues** who always encouraged and supported me during my studies

<u>Abstract</u>

With the continuous rise in energy consumption and the general inefficiency of existing buildings in terms of functional, economic and human terms, in addition to the environmental damage resulting from the excessive and inefficient use of resources in setting up projects. The need to reduce energy costs and choose building materials that will enhance this has become necessary, especially with the modern trend towards achieving the principles of sustainability in construction projects. As a solution, some research is attempting to include operational energy calculations for buildings in a Life Cycle Cost (LCC) calculation by integrating it with Building Information Modeling (BIM). BIM is currently one of the most prominent trends in the sectors of architecture, engineering and construction. The research deals with Iraqi artistic and cultural projects because they are characterized by their large open spaces such as galleries or theaters, in addition to their high altitudes that require increased operational energy costs. This research aims to explore the advantages offered by BIM technology to enhance the sustainable economy in the establishment of Iraqi artistic and cultural projects by investigating the capacity of BIM and energy simulation tools to reduce the cost of the building life cycle as well as the impact of building material selection on enhancing the energy performance of buildings. The questionnaire tool was design for experts in building projects of an artistic and cultural nature, to find justifications for carrying out the research. The experts were asked to express their opinions about the actual need for this type of research, the extent to which building information modeling technology is used in the creation of artistic and cultural projects, and the most significant issues that impede its use. In addition to emphasizing the value of BIM technology for enhancing this kind of project's sustainable economy. The method used in this study involved making a 3D model

of an existing building to determine the initial construction and the annual energy costs, then creating alternatives for the exterior building envelopes, which include walls, roofs, and windows, and re-modeling them to calculate the initial cost and annual energy costs, comparing them with the original model, and determining the most cost-effective option. The results showed that annual energy savings of about 4.5% can be achieved when energy costs are included in the life cycle cost calculation of the building, as it showed a decrease in its present value of (41,389,361) Iraqi dinars. The study has come to the conclusion that BIM tools may be used to assess a building's performance and select the best and least expensive option in the future. The researcher recommended the creation of government regulations for the use of BIM technology; the significance of educating the next generation about sustainability and the sustainable economy; and the necessity of instructing government officials on how to efficiently use environmental resources and lower energy consumption.

Table of Contents

No.	Subject	Page No.
	Supervisor Certification	Ι
	Scientific Amendment	II
	Linguistic Amendment	III
	Committee Certification	IV
	Dedication	V
	Acknowledgements	VI
	Abstract	VII
	Table Of Contents	IX
	List Of Figure	XI
	List Of Tables	XII
	List of Abbreviations and Symbol	XIII
Chapte	er One: Research Introduction	
1.1	General	1
1.2	Problem of the Research	2
1.3	Aims and Objectives of the Research	3
1.4	Limitations and Scope of the Research	3
1.5	Methodology of the Research	3
1.6	Theses Structure	6
1.7	Previous Studies	7
Chapte	er Two: Literature Review	
2.1	Introduction	12
2.2	Building Information Modelling (BIM)	12
2.3	The Dimensions of BIM	13
2.4	Sustainability	15
2.5	Economic Sustainability	17
2.6	Sustainability-Based Model Performance	18
2.7	BIM and Green Building	19
2.8	Tools for Sustainable (Performance) Analysis	22
2.9	Green Building Studio (GBS)	24
2.10	Green BIM Technologies to Improve Economic and	26
	Environmental Sustainability	
2.10.1	Sustainable Sites	26
2.10.2	Indoor Environmental Quality	27
2.10.3	Water Efficiency	28
2.10.4	Energy and Atmosphere	28
2.10.5	Materials and Resource	29

2.11	BIM's Sustainable Interoperability	30	
2.12	Life-Cycle Cost (LCC) Analysis	31	
2.13	Integration of LCC and BIM	33	
2.14	Artistic and Cultural Buildings	34	
2.15	Summary	38	
Chapte	r Three: Field Survey for Justification	-	
3.1	Introduction	39	
3.2	Design of the Questionnaire	39	
3.3	Data Analysis of the Questionnaire	41	
3.4	Results and Discussion	41	
3.5	Summary	55	
Chapte	r Four: Results Analysis and Discussions	1	
4.1	Introduction	57	
4.2	Case Study: The Details of Stores and Training Theater	57	
	for the National Theater		
4.3	Motives and Reasons for Selecting the Case Study	58	
4.4	Challenges for Applying the Research Methodology	59	
4.5	BIM Work with Revit 2022	61	
4.6	Materials Take-Off	67	
4.7	Energy Simulation	69	
4.8	Exporting the Model from Revit 2022 to Green Building XML	71	
4.9	Energy Analysis in Green Building Studio (GBS)	72	
4.10	Data Collection & Assumptions for Life-Cycle Cost	76	
	Calculation:		
4.11	Improvements the Envelope of the Building	78	
4.12	Results and Discussion	82	
4.13	Evaluation BIM to Enhance Economic Sustainability	92	
4.14	Results and Discussion	93	
4.13	summary	100	
Chapte	r Five: Conclusions and Recommendations		
5.1	Introduction	102	
5.2	Conclusions	102	
5.3	Recommendations	103	
5.4	Suggestion for Future Studies	104	
Referen	nces	105	
Appen	dix -A	A1	
Appen	Appendix -B B1		
Appen	Appendix -C C1		

List of Figure

Figure No.	Title	Page No.
1-1	Figure (1-1): Research Methodology (Researcher).	5
2-1	Building Information Modeling (BIM) lifecycle view	14
2-2	Key elements of sustainable development	16
2-3	Applications of BIM along the engineering and	22
	construction value chain	
2-4	Linkage between sustainable design, BPA, and BIM.	24
2-5	Relationship between Revit, Energy Analysis, GBS	25
2-6	Uses of sustainable analysis tools& software's in	26
	Middle East	
2-7	Plans and pictures of existing theaters in Iraq	36
3-1	Levels of respondents' educational	43
3-2	Specialization of respondents	43
3-3	The practical experience of the responders	44
4-1	Stores and training theater for the national theater	60
4-2	The structural details of wall type w1b	
4-3	The structural details of roof	62
4-4	4-4 The analytical properties for windows	
4-5	The interference check for the model	65
4-6	The spaces for the ground flour	66
4-7a	BIM model for project	66
4-7b	BIM model for project	67
4-8	Add price for materials	67
4-9	Materials take-off in Revit	68
4-10	Table of column quantities by Revit program	68
4-11	Energy setting	70
4-12	Project location in Revit	70
4-13	Energy model created in Revit	71
4-14	Export Revit 2022 model to gbxml file	72
4-15	The project name, type, and the operating schedule	73
4-16	Project location in GBS	73
4-17	The utility information	74
4-18	The project in GBS	74
4-19	Loaded the building's gbxml	75
4-20	Energy consumption	75

4-21	The annual electricity usage	76
4-22	annual operating costs for alternatives	87
4-23	The Annual Operating Costs of Electricity and Fuel	88
4-24	Energy consumption after re-modeled	91
4-25	Levels of respondents' educational	94
4-26	Specialization of respondents	94
4-27	experience of the responders	95

List of Tables

Tables No.	Title	Page No.
1-1	Review of previous studies	7
3-1	Likert scale	41
3-2	The respondent's department's name	42
3-3	Statistical analysis of questions for the part two- first	45
	portion	
3-4	Statistical analysis of questions for the part two-	47
2.5	Statistical analysis for the part three	50
3-3	Statistical analysis for the part three	50
4-1	Case study information	58
4-2	Material and components of case study	63
4-3	Total costs of items used in construction project	
4-4	Description of Alternatives 79	
4-5	The Cost of Construction Items in Iraqi Construction	81
	Market	
4-6	The Initial cost and Pv-annual operating costs	83
4-7	Construction Cost of Alt Item	84
4-8	Cost Saving and Pv for Annual Operating Costs	85
4-9	The Present Value for LCC and Cost Saving	88
4-10	Total cost for Project after remodeling	90
4-11	The Initial Cost and Pv-Lcc for Project After Re-	91
	modeling	
4-12	Statistical analysis for the part two	95
4-13	Statistical analysis for the third part	97
4-14	Statistical analysis for the fourth part	99

List of Abbreviations and Symbol

Abbreviations	Explanation
aecXML	Architecture-Engineering-Constructio XML
BIM	Building Information Modelling
BPA	Building Performance Analytics
CAD	Computer-Aided Design
CD	Construction Detailing
CA	Construction Administration
DB	Design Builder
DD	Design Development
eQUEST	Quick Energy Simulation Tool
ecoXML	Examining CommerceNet's XML
FM	Facility Management
GBS	Green Building Studio
GBXML	Green Building Extensible markup language
gbXML	Green Building XML
HEED	Home Energy Efficient Design
HVAC	Heating, Ventilation and Air conditioned
HBIM	Heritage Building Information Model
HKD	Hong Kong Dollar
IPD	Integrated Project Delivery
IES-VE	Integrated Environmental Solutions-Virtual Environment
IFC	Industry Foundation Classes
LCA	Life-Cycle Cost Analysis

Chapter One Research Introduction

1.1 General

Due to its high energy consumption, the building sector has been recognized as one of the key contributors to global environmental consequences, which has led to an increase in demand for sustainable construction [Junnila, and Horvath, 2003] [Bribián et al.,2009]. Artistic and cultural buildings are characterized as buildings with large areas and high elevations, so the necessity of adopting modern technologies when constructing such buildings has become a necessity with the trend of the times towards green construction. Currently, the usual practice prefers sustainable building designs, often known as green buildings, that consume the minimum energy to run [EPA,2016].

BIM is presently one of the prominent trends in the architecture, engineering, and construction sectors. It has gotten a lot of interest from academics and industry [Eastman et al.,2011]. It is the graphical depiction of the building in the future and also incorporates the basic, physical, and intrinsic aspects of a building. It can support various sustainable design features like: building orientation, building form analysis, day lighting analysis, water usage analysis, reducing energy needs and identifying other renewable energy options; reducing material requirements by using sustainable materials; and lessening the wastage and carbon footprints [Eddy and Nies, 2008]. BIM not only adds technical value to the development process, but it also provides an innovative and integrated working platform that improves efficiency and sustainability across the project life cycle [Elmualim et al.,2014].

In addition, it has been demonstrated that BIM enhances a constructed facility's life-cycle cost savings. According to [Lu et al.,2014], a cost benefit analysis undertaken in a sample BIM project resulted in a cost savings of 6.92 percent (490.86 HKD/m2). [Guo et al.,2016], on the other hand, used BIM in conjunction with an energy-simulation system to conduct an energy consumption study, which gave more complete data for optimum design choices. BIM technology can find the best alternatives to energy problems during the early design stage, which saves time and cost compared to traditional methods that rely on two-dimensional diagrams, as traditional methods are an ineffective way to evaluate energy performance [Taha et al.,2020].

This chapter provides an overview of the research that has been done, the research challenges, and the reasons for the research, making the aim and objective of this research clear. Research limitations, research methodology, and discussions of previous studies are also included.

1.2 Problem of the Research

There are a number of issues that necessitate the use of building information modeling (BIM) in Iraq to assess the economic sustainability of artistic and cultural projects, the most important of which are:

- 1. Finding methods to reduce the amount of energy used by buildings and improving them functionally, economically, and socially.
- 2. Developing strategies to increase resource efficiency and environmental protection.
- Developing a system to address the weakness of government efforts to adopt BIM.

<u>1.3 Aims and Objectives of the Research</u>

This research aims to determine the benefits provided by BIM technology to promote a sustainable economy in the establishment of Iraqi artistic and cultural projects. To achieve the objective of the present research, some objectives must be achieved as follows:

- 1. Studying the ability of BIM and energy simulation tools to reduce the life cycle cost of a building.
- 2. Studying the effect of choosing building materials on improving the energy performance of buildings.

1.4 Limitations and Scope of the Research

This research has the following limits:

- This research focused mainly on energy performance and life cycle cost (LCC) calculation for building materials.
- 2. Iraqi artistic and cultural projects as a case study.
- 3. Time one year not sufficient.

1.5 Methodology of the Research

The following is a summary of the research methodology:

- 1. Theoretical aspects of reviewing the literature about the research topic by summarizing the local and international studies, including books, papers, and theses.
- 2. Practical aspects containing the following:
- A. Conducting a questionnaire for evaluating the benefits of BIM to promote a sustainable economy

Chapter One

- B. Questionnaire design: The questionnaire tool was used to analyze the barriers to using information modeling technology in the development of Iraqi artistic and cultural projects, as well as the value and need for its implementation. It included questions distributed to respondents who work in the construction sector for such projects to express their opinions on the most important paragraphs that the use of information modeling technology can contribute to improve when it is used in the establishment of these projects and to know their desire to develop the current construction system.
- C. Statistical analysis utilizing the SPSS version (26) program to analyze the questionnaire's data.
- D. The case study was selected, and related data was collected, including CAD drawings and photos of the building at the time of implementation and at the moment, as well as the BOQ.
- E. Autodesk Revit 2022 software is used to create a 3D model.
- F. Export 3D BIM model to Autodesk Green Building Studio (GBS) by using gbXML format to energy simulation, create and evaluate design alternatives.
- G. Discussion the results.
- H. Finally, reaching conclusions and recommendations.

Chapter One

Figure (1-1): Research Methodology (Researcher).

1.6 Theses Structure

Chapter One: Research Introduction

The chapter begins with an introduction to the study, followed by a discussion of the research problem and justifications, the aim and objectives, limitations, methodology, structure, and a review of previous studies concentrating on BIM integration with sustainable analytic tools.

Chapter Two: Literature Review

This chapter tries to create a theoretical foundation for the notion of BIM and sustainable construction Based on prior studies and research. This chapter defines Building Information Modeling, its dimensions, and the benefits that may be realized when it is implemented, as well as the definitions of sustainable development and sustainable economy, and the potential of accomplishing them through the use of BIM.

Chapter Three: Field Survey for Justification

This chapter reviews the questionnaire method, which is used to determine the barriers to using information modeling technology in the development of cultural projects and the rehabilitation of archaeological and historical sites, as well as the value and necessity of its implementation. It includes questions issued to respondents who work in the construction industry for such projects to express their perspectives on the most significant elements that the use of information modeling technology may contribute to improv when utilized in the planning and execution of these projects, to improve the present construction system.

Chapter Four: Results Analysis and Discussions

This chapter reviews the research methodology in detail, as well as use of the Revit program according to BIM with tools for sustainability analysis, finding alternatives, and discussing the results.

Chapter Five: Conclusions and Recommendations

This chapter outlines the main conclusions and important recommendations, as well as proposed further research.

<u>1.7 Previous Studies</u>

The previous studies are summarized in the Table (1-1).

No.	Researcher and	The Work
	country	
1.	Mahmoud H.	Title: "BIM Based Optimal Life Cycle Cost of
	Dawood (2016).	Sustainable House Framework."
	(Sultanate of Oman)	Aim: This study aims to identify the best design that
		provides the lowest life cycle cost throughout the
		course of the building's lifespan.
		Methodology: In this study, a combination of the
		Genetic Algorithm (GA) and Building Information
		Modeling (BIM) is utilized to arrive at a near-optimal
		solution.
		GA is utilized to arrive at the best option with respect
		to the lowest lifecycle cost of residential buildings.
		The quantity takeoff data and energy consumption

Table (1.1): Review of previous studies

		data of a project are produced using BIM in this
		study.
		Results: The proposed model automatically selects
		the components of the house that are most suitable to
		reach the minimum LCC during the design phase.
2.	Muhammed Mahdi	Title: "Using BIM in Assessing Economical Aspects
	Sadeq abed (2018).	for Sustainable Buildings Design."
	(Iraq)	Aim: This study intends to evaluate, using a closed
		questionnaire, the status of BIM usage in the Middle
		East (GCC), as well as the difficulties BIM users
		experience, the benefits of BIM usage, and how BIM
		may best promote sustainability ideas.
		Methodology: The case study was used to show how
		the integration of BIM and sustainability analysis
		tools might improve the design's economics by using
		life cycle costing (LCC) analysis to select the best
		option among several design, construction, and
		system options.
		Results: The results indicate the ability of BIM
		integration with performance analysis tools like LCC
		will increase the capability of analysis team. LCC
		tool enable the designer to evaluate different
		alternatives of constructions and design options
		based on total life cycle cost in compliance with
		sustainable concepts.

3.	-Tayyab Ahmad,	Title: "Economic Sustainability Assessment of
	Muhammad	Residential Buildings: A dedicated assessment
	Jamaluddin	framework and implications for BIM."
	Thaheem. (2018)	Aim: The goal of this study is to create a
	- Pakistan	comprehensively representative framework for
		evaluating the economic sustainability of residential
		construction with applications for BIM.
		Methodology: This study employs a mixed-methods
		approach, constructing a framework for the RBESA
		(Residential Building-related Economic
		Sustainability Assessment) and supporting it with
		quantitative data from a survey conducted and online
		interviews. The framework was subsequently
		evaluated using a case study of three residential
		structures once the acquired data had been added.
		Results: A case study that validates the framework's
		operation gives a decisive value of 48.25 percent for
		the economic performance of subject construction,
		which is an indicator of how well assessments work
		as a tool for decision-making.
4.	Shang-yuan Chena	Title: "A green building information modelling
	(2018) (Taiwan)	approach: building energy performance analysis and
		design optimization".
		Aim: This study focuses on the integrated
		application of Building Information Modeling (BIM)
		and Building Performance Analysis (BPA) software

		as tools for designing and analyzing construction
		projects.
		Methodology: The research uses Autodesk Energy
		®'s Analysis for Revit as a validation tool and utilizes
		the evaluation of building energy consumption as an
		example to show how green BIM can be used in
		integrated design processes.
		Results: BIM is emphasized as a fundamental tool
		from the beginning of the design phase in green BIM.
		Additionally, use of a design and analysis decision-
		making cycle when performing while conducting
		BPA in response to local climatic circumstances, can
		result in optimal design proposals with strong
		environmental effectiveness and eventually help
		accomplish the objective of environmental
		sustainability.
5.	Yussra Mohamed	Title: "A BIM-based Life Cycle Cost (LCC) Method
	Rashed et al. (2019)	to Reduce the Operation Energy Costs in Buildings."
	(Egypt)	Aim: The aim of the research is to suggest a more
		organized approach that may be built by utilizing the
		current efforts made and integrating the LCC with
		the energy simulations and BIM capabilities.
		Methodology: The suggested methodology is
		adopted in a case study.

Results: The results indicate that when incorporating
the energy expenses into roof assemblies, LCC
savings of around 17% may be made.

Current Study

This research aims to improve sustainability standards and study ways to reduce energy consumption in the establishment of Iraqi artistic and cultural projects. The researcher used Autodesk Revit software 2022 to create a 3D model and find quantities and costs of construction materials for the project, in addition to using sustainability and energy analysis tools to find the amount of energy consumed for the project and compare it with alternative models.