Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Veterinary Medicine

Isolation and Identification of the most common zoonotic bacteria from workers, meat and meat products with study the pathogenicity of *Klebsiella pneumoniae* in Rabbits

A Thesis

Submitted to the Council of the College of Veterinary Medicine, University of Diyala in Partial Fulfillment of the Requirements of the Degree of M.Sc. in Internal and Preventive Medicine- Zoonosis

By

Jasim Hadi Mousa Al-Anbagi

Supervised by

Prof. Dr. Al-Khafaji Nazar Jabbar

2020 A. D.

1442 A.H.

بسمالله الرحمز الرحيم

نَرْفَعُ دَرَجَاتٍ مَنْ نَشَاعُ وَفَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ

صدق الله العلي العظيم

سورة يوسف (الآية٧٦)

Supervisor Certification

I certify that this thesis which is entitled (**Isolation and Identification of the most common zoonotic bacteria from workers, meat and meat products with study the pathogenicity of** *Klebsiella pneumoniae* **in Rabbits**) has been prepared under my supervision at the Department of Medicine, College of Veterinary Medicine, University of Diyala, in a partial fulfillment of the requirements for the Degree of M.Sc. in Veterinary Medicine- Zoonosis.

Supervisor

Prof. Dr. Nazar Jabbar Al-Khafaji

College of Veterinary Medicine

University of Diyala

2020

In view of the available recommendation, I forward this thesis for debate by the examining committee

Assist. Prof. Dr. Khalid Ibrahim Abd

Vice Dean of post graduate studies and science affairs

College of Veterinary Medicine

University of Diyala

2020

Examination Committee Certification

We, the examining committee, certify that after reading this thesis entitled (Isolation and Identification of the most common zoonotic bacteria from workers, meat and meat products with study the pathogenicity of *Klebsiella pneumoniae* in Rabbits) was prepared by Jasim Hadi Mousa Al-Anbagi in its contents, we think it is adequate for the award degree of Master of Science in Internal and Preventive Medicine - Zoonosis.

Prof. Dr. Khalid Mahmood Hammadi

Chairman

Assist Prof. Dr. Tareq Rifaaht Minnat

Assist Prof. Dr.Zina Saab Khudhir

Member

Member

Prof. Dr. Nazar Jabbar AL-Khafaji

Member and Supervisor

Approved by the council of the College Veterinary Medicine - University of Diyala

Assist. Prof. Dr. Mohammad Yousif Mahmood	Prof. Dr. Talib Jawad Kadhim
Head of Department of	The Dean College of
Internal and Preventive Medicine	Veterinary Medicine
College of Veterinary Medicine University of Diyala	University of Diyala
2020	2020

Dedication

I would like to dedicate this work to

My beloved father and mother, their encouraging, directing words and moral support to reach success and progress

My wife and children who supported me during study.

My brothers and sisters who were supporting me throughout my life.

Acknowledgements

I wish to thank my supervisor Prof. Dr. Al-Khafaji Nazar Jabbar who was more than generous with his expertise and precious time. His excitement and willingness to provide feedback made the completion of this research an enjoyable experience. I would like to extend my appreciation to Dr. Talib Jwad, the dean of the College of Veterinary Medicine, to Dr.Basim Mohmed Manswr and to Dr.Raad Mahmoud.and to Dr. Mohammed Abid and Special thanks to Walla Mahmoud, Oras Salman and Hiba Ali Who have helped me in the laboratory work. Also my appreciation goes to Rofieda Mohammed and Mohammed Jasim, my best friends who helped me during sampling, processing and culturing. I would like to thank all the staff members of the Department of Medicine in our college for allowing me to conduct my research and providing assistance where requested. Special thanks goes to my colleagues (postgraduate students) in our college for their support. Finally, I would like to thank all of the teaching staff members who have taught me during the coursework in the first year of my master study.

Jasim

Summary

To investigate the common zoonotic bacteria that contaminated meat and meat products during handling, processing and transportation, till it reached the consumers, in Diyala province, Iraq. A total 251 samples were collected, 35 sheep's and cow's meat and meat products, 41 samples poultry's meat, and 175 swabs from workers and their equipment that are used in butchery shops, in the period from August, 2019 to April, 2020.

The samples submitted to laboratory investigation to isolate and identified, the contaminated bacteria, according to their cultural morphology and biochemical properties. Count the total viable bacteria. In addition to study the sensitivity of these bacteria to sixteen commonly used antibiotics. Moreover, the pathogenicity of *Klebsiella pneumoniae*, which was one of the common isolates in current study, was studied in rabbits.

The results revealed that *Klebsiella* spp., *Pseudomonas* spp., *Staphylococcus* spp., *E. coli, Salmonella* spp., *Listeria, Enterobacter, Citrobacter, Proteus* spp., *Yersinia* and *Shigella* were common isolates. In 175 isolates, from workers and equipment, *Klebsiella* spp. was the predominant bacteria 44 (25.1%); followed by *Staphylococcus* spp. 42 (24.0%); *E. coli* 34 (19.4%); *Pseudomonas* spp. 26 (14.9%); *Proteus* spp. 14 (8.0%); *Citrobacter* and *Yersinia* each of 8 (4.6%); *Enterobacter* 7 (4.0%); *Streptococcus* 6 (3.4%); *Salmonella* spp. 4 (2.3%); *Listeria* 3 (1.7%) and *Shigella* 1 (0.6%).

From sheep's and cow's meat, 22 isolates were isolate, from which, *Staphylococcus* spp. was the highest, 12 (54.5%); followed by *Klebsiella* 72 (31.8%); *Pseudomonas* 6 (27.3%); *Listeria* 4 (18.2%); *E. coli* and *Salmonella* each of 3 (13.6%). From sheep's and cow's meat products 13 isolates were isolated, from *Staphylococcus* 7 (53.8%); was the highest

A

isolate; followed by *Klebsiella* 6 (46.2%); *Pseudomonas* 3 (23.1%); *Listeria* 2 (15.4%); *E. coli*, *Citrobacter* and Enterobacter each of 1 (7.7%). Total isolates from sheep's and cow's meat and meat products was 35; from which *Staphylococcus* 19 (54.3%); *Klebsiella* 13 (37.1%); *Pseudomonas* 9 (25.7%); *Listeria* 6 (17.1%); *E. coli* 4 (11.4%); *Salmonella* 3 (8.6%); *Citrobacter* and *Enterobacter* each of 1 (2.9%).

From poultry's meat and meat products 41 isolates was isolated from which , the highest isolate was *Staphylococcus* 16 (39.0%); followed by *E. coli* and *Salmonella* each of 12 (29.3%); *Klebsiella* and *Pseudomonas* each of 9 (22.0%); *Listeria* 7 (17.1%); *Citrobacter* and *Enterobacter* each of 5 (12.2%).

The order of the bacterial species isolated from the 251 samples were as the follows: *Staphylococcus* 77 (30.7%); *Klebsiella* 66 (26.3%); *E. coli* 50(19.9%); *Pseudomonas* 44 (17.5%); *Salmonella* 19 (7.6%); *Listeria* 16 (6.4%); *Citrobacter* and *Proteus* 14 (5.6%); *Enterobacter* 13 (5.2%); *Yersinia* 8 (3.2%); *Streptococcus* 6 (2.4%) and *Shigella* 1 (0.4%).

The highest number was of isolates obtained from workers 197/251 (78.5%); then those from poultry's meat and meat products 75/251 (29.9%); and from sheep's and cow's meat and meat products 56/251 (22.3%).

The total number of bacterial isolates was 328 from which there were 134 (40.9%) isolates in a single form, while the remaining were in more than one isolate; two isolates 110 (33.5%) and three isolates 84 (25.6%).

The highest viable bacterial counts was from chicken's raw meat $(8.34\pm0.02 \log_{10} \text{cfu}/\text{g})$; followed by Roast meat (8.32 ± 0.06) ; sheep's raw meat (8.31 ± 0.03) ; cow's raw meat (8.30 ± 0.07) ; sausages from chicken (8.29 ± 0.02) ; hamburger (8.22 ± 0.03) ; liver of chicken (8.20 ± 0.03) ; burger from chicken (8.16 ± 0.06) ; shawerma from chicken (7.89 ± 0.04) ; kebab from

chicken (7.85 \pm 0.05); kebab from meat (7.77 \pm 0.05); worker's ear (4.81 \pm 0.04) and the lowest count was from worker's hand(4.78 \pm 0.07). While coliform count were as follows: chicken 's raw meat (8.27 \pm 0.01); roast meat (8.27 \pm 0.05); sheep's raw meat (8.24 \pm 0.01); cow's raw meat (8.15 \pm 0.01); sausage – chicken (8.11 \pm 0.08); hamburger (8.08 \pm 0.02); liver chicken (8.10 \pm 0.05); burger – chicken (8.04 \pm 0.07) shawerma – chicken (7.79 \pm 0.03) ; kebab chicken (7.80 \pm 0.01); kebab meat (6.57 \pm 0.02); worker's ear (4.79 \pm 0.02) and worker's hand (4.72 \pm 0.01).

All tested isolates were sensitive to Norfloxacin (Nor 10) and Gentamycin (Cn10) except *Listeria*. But to Clindamycin (Da10); Cloxacillin (Cx10); Metromidazole (Met 30); Rifampin(RA 54); Amoxicillin (Ax10) ; Piperacillin (Prl 100) all isolates were resist. The tested isolated exhibit a resistant to 2/3 of tested antibiotics (9-12 antibiotics) and *Listeria* was resist to all tested antibiotics.

Clinically the animals exposed to *Klebsiella pneumoniae* exhibits signs of anorexia, depression, dyspnea, engorge blood vessels, three of them died. Heart rates and respiratory rates increased, body temperature and body weight non - significantly changed.

Hematologically; Packed cell volume (PCV%) decreased, Hb showed no significant changes. Total leucocyte count significantly increased. Lymphocytes% increased significantly. Heterophils increased in Monocytes significantly increased. Basophils% and Eosinophils% no significant changes.

Postmortem findings: The main gross lesion were: Lung sever, congestion, with presence of fluid and un-clotted blood. Heart, flabby, enlarged, severely congested. Liver enlarged and congested. Patchy hemorrhages on gastric mucosa, sever congestion of gastrointestinal mucous membranes. Kidneys enlarged and congested, with retention of urine.

С

Histopathologically: Lung showed expansion of alveoli and destruction of the alveolar walls, this referred to pulmonary emphysema. Amyloid present in some area of the lung, Necrosis, destruction of alveoli, hemorrhage in alveolar wall and thickness of alveolar wall in some area lung showed infiltration of the inflammatory cells Heterophils with a few mononuclear cells.

Heart showed infiltration of fibrocytes in the myocardium Liver showed necrotic area, Kupffer cells a rounded glomeruli with the fatty vacuoles, hepatocyte hyperplasia, and presence of fatty change. Kidneys showed infiltration of inflammatory cells (Heterophils), with a few of mononuclear cell (lymphocytes and mesengial cells.

Stomach showed amyloid deposition in the lamina propria with hyperplasia in mucosal gland. Small intestine showed hemorrhage nearly the microvilli of intestine, and presence of vacuolation in submucosal layer, this result in hemorrhagic enteritis.

Series	Title	Page
	Summary	A-D
	List of Contents	I-IV
	List of Tables	V
	List of Figures and Pictures	VI
	List of Abbreviations	VII
1.1.	Introduction	1
1.2.	The aims of current study	3
2.	Literatures Review	4
2.1.	Introduction	4
2.2.	Meat	4
2.3.	Sources of contamination	6
2.3.1.	Salmonella spp.	10
2.3.1.1.	Salmonella types	11
2.3.2	E. coli	12
2.3.3	Staphylococcus aureus	14
2.3.4.	Pseudomonas spp.	14
2.3.5	K. pneumoniae	14
2.4.	Sensitivity to antibiotics	19
2.5.	Bacterial counts	20
3.	Materials and Methods	24
3.1.	Materials	24
3.1.1.	Instruments and Tools	24
3.2.	Methods	29
3.2.1.	Preparation of culture media	29
3.2.1.1.	Nutrient Broth	29
3.2.1.2.	Muller Hinton Agar	29
3.2.1.3.	MacConkey Agar	29
3.2.1.4.	Salmonella Shigella Agar (SS Agar)	30
3.2.1.5.	Eosin Methylene Blue	30
3.2.16.	MacConkey Sorbitol Agar	30
3.2.1.7	Blood Agar	30
3.2.1.8.	Brain Heart Infusion Agar	31
3.2.1.9.	Brain Heart Infusion Broth	31

List of content

3.2.1.10.	Xylose- Lysin deoxycholate Agar (XLD)	31
3.2.1.11.	Triple Sugar Iron (TSI)	31
3.2.1.12.	<i>Campylobacter</i> base Agar	31
3.2.2.13.	Listeria base Agar	32
3.2.1.14.	Media sterilization test	32
3.2.1.15.	Peptone water (PW)	32
3.2.1.16.	Phosphate buffer solution	33
3.2.1.17.	Physiological normal saline	33
3.2.1.18.	Formalin working solution (10%)	33
3.3.	Samples collection and Processing	33
3.3.1.	Samples collection	33
3.3.2.	culturing the swabs that collected from workers ears and hands	34
3.3.3.	Sample Collection and Processing from raw meat and meat products	35
3.4.	Bacterial isolation	36
3.4.1.	Plating and culture on media	36
3.5.	Identification of isolates	39
3.5.1.	Morphological characterization	39
3.5.2.	Gram stain	39
3.5.3.	Biochemical tests	
3.5.3.1.	VITEK 2	40
3.5.3.2.	Lactose fermentation	41
3.5.3.3,.	Triple Sugar Iron (TSI) agar slant reaction	41
3.5.3.4.	Indole test	41
3.5.3.5.	Urase test	41
3.5.3.6.	Simon citrate test	42
3.5.3.7.	Catalase test	42
3.5.3.8.	Oxidase test	42
3.6.	Sensitivity to antibiotics	43
3.6.1.	Preparation of bacterial suspensions to antimicrobial test	43
3.7.	Enumeration of Microorganisms	44
3.7.1.	Total viable bacterial count	44
3.7.2.	Coliform Bacterial Count	44
3.8.	Pathogenicity of Klebsiella pneumoniae in rabbits	45
3.9.	Statistical anaylsis	46
4.	Results	47
4.1.	Workers and their equipment	47

4.1.1.	Workers	47	
4.1.2.	Equipment	47	
4.2.	Meat and meat products	48	
4.2.1.	Sheep's meat	48	
4.2.2.	Sheep's meat products	49	
4.2.3.	Sheep's meat and meat products	49	
4.3.	Cow's meat and meat products	50	
4.3.1.	Cow's meat	50	
4.3.2.	Cow's meat products	50	
4.3.3.	Cow's meat and meat products	51	
4.3.4.	Sheep 's and cow's meat products	51	
4.3.5.	Sheep's and cow's meat	52	
4.3.6.	Poultry's meat and meat products	53	
4.3.6.1.	Poultry's meat	53	
4.3.6.2.	Poultry's meat products	53	
4.3.6.3.	Poultry's meat and meat products	53	
4.4.	Total isolates in current study	54	
4.5.	Forms of isolates in the current study	58	
4.6.	Total viable bacterial counts	59	
4.7.	Sensitivity to antibiotics	61	
4.7.1.	Staphylococcus spp.	62	
4.7.2.	Salmonella spp.	62	
4.7.3.	<i>E. coli</i> .spp	62	
4.7.4	Klebsiella spp.	62	
4.7.5	Pseudomonas spp.	62	
4.7.6.	Proteus spp.	62	
4.7.7.	Listeria spp.	62	
4.8.	Pathogenesis of Klebsiella pneumoniae in rabbits	64	
4.8.1.	Clinical signs	64	
4.8.2.	Hematological changes	65	
4.8.3.	Postmortem findings	67	
4.8.4.	Histopathological changes	71	
4.8.4.1.	Animal died, not received hydro cortisone, exposed to K.	71	
4.0.4.1.	pneumoniae	/ 1	
4.8.4.2.	Animal died, received hydrocortisone twice dose, and	72	
4.0.4.2.	exposed to K. pneumoniae	12	
4.8.4.3.	Animal died, received one dose, hydrocortisone and	74	
т.0. т . <i>)</i> .	exposed to K. pneumoniae	/	
4.8.4.4.	Animal died, received hydrocortisone, one time, and	76	
	exposed to K. pneumonae		
5.	Discussion	78	

5.1.	General	78
5.2.	Total isolates	78
5.2.1.	Poultry's meat and meat products	78
5.2.2.	Staphylococcus spp.	79
5.2.3.	KLebsiella spp.	80
5.2.4.	E. coli	80
5.2.5.	Salmonella spp.	81
5.2.6.	Listeria spp.	82
5.2.7.	Enteric bacteria	82
5.3.	Bacterial count	83
5.3.1.	Total viable bacterial counts	83
5.3.2.	Coliform counts	84
5.4.	Sensitivity to antibiotics	85
5.5.	Pathogenesis of Klebsiella pneumonia in rabbits	86
5.5.1.	Clinical signs	86
5.5.2.	Hematological changes	87
5.5.3.	Postmortem findings	88
5.5.4.	Histopathological changes	88
6.1.	Conclusion	90
6.2.	Recommendation	91
7.	References	92-122

List of Tables

No.	Heading	Page
Table -3-1-	Instrument and Tools utilized in the study	24
Table -32-	Reagents and chemicals	25
Table -3-3	Laboratory Equipment : appliances	26
Table 3-4-	Culture media used in the current study	27
Table 3-5-	Antibiotic discs	28
Table-3-6	samples used in the current study	35
Table -4-1-	Isolates from workers and equipment	48
Table -4-2-	Isolates from sheep's meat and meat products	50
Table -4-3-	Isolates from cow's meat and meat products	51
Table -4-4-	Isolates from sheep's and cow's meat	52
Table -4-5-	Isolates from poultry's meat and meat products	54
Table-4-6-	Total isolates in current study	55
Table-4-7-	Forms of bacterial isolates in the current study	58
Table-4-8-	Total viable bacterial counts	60
Table -4-9-	Sensitivity to antibiotics	
Table-4 -10-	Heart rate, Respiratory rate, Body temperature, Body weight of rabbits used in the study	65
Table-4-11-	Hematological changes	66

List of Figures	and	Pictures
-----------------	-----	----------

Series	Item	
Figure -3-1-	Schematic of design of study	
Figure-3-2-	The automated microbiology system (VITEK2)	40
Figure-4-1-	Colony morphology of bacterial isolates	56-57
Figure-4-2-A,B	Total isolates count and Coliform bacterial count	61
Figure 4-3-	Sensitivity to antibiotics	64
Figure 4-4-	Gross lesions in viscera of dead rabbits exposed to <i>K. pneumoniae</i>	68-70
Figures-4-6- 4-7	Histopathological changes in organs of animal died, not received cortisone, exposure to <i>K.pneumoniae</i> , figure 4-6- lung, 4-7- kidney	
Figure-4-8, 4-9- 4-10-	 Changes in viscera of animal died, received cortisone twice and exposed to <i>K.pneumoniae</i>, 4-8- liver, 4-9- stomach, 4-10- heart 	73-74
Figure-4-11- 4-12- 4-13 4-14	Animal died, received one dose of cortisone and exposed to <i>K.pneumoniae</i> , 4-11- lung, 4-12-small intestine 4-13- liver 4-14- lung	75-77

List of Abbreviations

Aberrations	Key or full name	
μm	Micromole	
ANOVA	Analysis of variance	
B cells	B lymphocyte	
BPW	Buffer peptone water	
CFU	Colony forming unit	
EFSA	European Food Safety Authority	
GIT	Gastrointestinal tract	
Gm	Gram	
H ₂ S	Hydrogen sulphate	
H ₂ O	Water	
ID	Infective dose	
IND	Indol test	
mg	Milligram	
ml	Mole	
MLNS	Mesenteric lymph node	
T cells	T lymphocyte	
TSI	Tribble sugar iron	
URE	Urease test	
VP	Voges–Proskauer	
USA	United States America	
UK	United kingdom	
ICMSF	International Commission and Microbiological	
	Specification for Foods	
G	Grams	
S	Second	
CDC	Centers for disease Control and Prevention	
$\frac{PW}{M \pm S.E}$	peptone water mean + standard error	
$IVI \pm S.E$	mean \pm standard error	

Chapter one Introduction

1.1. Introduction

Consumers are looking for healthy food with high nutritional value, red meat is one of the most important food for humans, which containing high levels of proteins, fats, and vitamins (Prescott., 2002; Yaseen, 2006). Contaminated raw meat and meat products causes (90%) of food-borne illnesses in the human and animals (Barbuddhe *et al.*,2003; Bhandare *et al.*,2007; Podpečan *et al.*,2007; Arul and Saravanan, 2014).

local markets in Iraq usually contains various kinds of food including meat and meat products from several countries regardless of whether or not this food is valid for consumption by human (Jarallah, *et al.*,2014 ; Jarullah, 2015). The inappropriate storage, transport and retail marketing of these food products can increase the opportunity of contamination with various biological, chemical and physical contaminants, this threat of food contamination may lead to serious health complications, particularly by the imported food (Al-jasser,2012;Haleem,*et al.*,2013).

The refrigerated chicken meat can be contaminated during the long period of storage due both of actions of microorganism and the biochemical changes inside such meat (Octavian, *et al.*,2010; Al-jasser,2012; Noori, and Alwan, 2016).

There are several factors contribute to the increased zoonotic infections including Temperature abuse, eating habits, storage and transport for long distances (Hedberg, *et al.*,1992). World Heath Organization has defined the food-borne diseases as these disease that are occurred due to consumption of contaminated food by infectious bacteria or their toxin (le Loir *et al.*, 2003).

The International Meat Secretariat Newsletter (2005) reported that meat consumption has been increased dramatically in the last 2-3 decades due to the improvement in the living standards, the increase in the meat demands is attributed to the modern urbanization, high personal income, Therefore, the

1

meat hygiene has become one of the major concerns of the society in this era (Sofos, 2008).

Meat from healthy animals is free of microorganisms cross contamination of meat and meat products can occurs during different stages of processing , handling, and storage , particularly chicken meat due to its high fluid contents compared to cooked ones (Javadi and Saeid, 2011; Koffi-Nevry *et al.*, 2011; Darshana, *et al.*, 2014).

Klebsiella pneumonia causes infections to nasal mucosa and pharynx that lead to primary pneumonia which is called nosocomial infection, this type of pneumonia contributes to (30-33%) of cases in the surgical and medical intensive care units (Richards *et al.*, 2000; Ko *et al.*,2002). This pathogen can produce beta lactamase which is enable this bacteria to resist various antibacterial drugs (Abdulhasan *et al.*, 2015). Hyper-virulent strain of *K. pneumonia* is highly infectious to healthy human which can lead to death or community-acquired bacterial infections such as meningitis, pyogenic liver abscess, necrotizing fascilitis, pneumonia and endophthalmitis (Shon and Russo . 2012; Shon *et al.*, 2013).

There is little studies of the contaminated bacterial species in the raw meat of beef, lamb and chicken meat and their processed products in Diyala province. Thus, the current study was designed to isolation and identification the most of common zoonotic bacterial species and determination the level of contamination in the meat and meat products with sensitivity of these bacterial species to the most commonly used antibiotics ,with special emphasis to studying the pathogenicity of *Klebsiella pneumoniae* in the rabbit.

1.2 The aims of current study were:

- 1. Isolation and identication the most common zoonotic bacteria from sheep, cows, poultry meat, meat products, workers and their equipment.
- 2. Counting the viable bacteria in the meat and meat products
- 3. Determition the sensitivity of isolates to most commonly used antibiotics.
- 4. Studying the pathogenicity of Klebsiella pneumoniae in rabbits