

Republic of Iraq Ministry of Higher and Education Research Scientific University of Diyala College of Veterinary Medicine

Bacteriological and Molecular Study on *Shigella* Isolates From Human, Food and Animals

A Thesis

Submitted to the council of the College of Veterinary Medicine, University of Diyala in partial fulfillment of The Requirements for the Degree of Master of Science in Veterinary Medicine / Microbiology

By

Doaa Ahmed Alwan

Bachelor in biotechnology (2014)

Supervised by

Prof. Karim Sadun Ali (Ph.D.) Prof. Abdulrazak Shafiq Hasan (Ph.D.)

2021 A.D.

1442 A.H.

سْم اللَّهِ الرَّحْمَنِ الرَّحِيم الَّذِي خَلَقَنِي فَهُوَ يَهْدِينِ (78) وَالَّذِي هُوَ يُطْعِمُنِي وَيَسْقِينِ (79) وَإِذَا مَرِضْتُ فَهُوَ يَشْفِينِ (80) وَالَّذِي يُمِيتُنِي ثُمَّ وہ پخیین (81) "صدقاً الله العَظِيم" سومرةالشعرإء

Acknowledgement

In the name of Allah first, praise be to Allah and thanks for giving me patience and strength to complete this project .

I would like to thank the University of Diyala and the Dean of the College, Doctor Talib Jwad, for giving me this opportunity. I would like to express my sincere thanks and gratitude to my supervisors; Dr. Karim Sadun and Dr. Abdulrazak Shafiq who made great efforts for guidance and advice.

Many thanks to Dr. Amer Khazal for his help, during the study period, and special thanks to Dr. Ammar Algbori and Dr. Anas Abdul Almajeed for their kind support.

I would like to thank the Institute of Research and Nutrition; its Director and all the Staff in the Microbiology Laboratory without exception, especially Dr. Elham, for her great efforts and assistance during the research period.

Thanks to all the workers at Veterinary Research Laboratories, especially the research and development laboratory and the microbiology laboratory, especially Dr. Ruqaya Mustafa, Dr. Khazal, and Heba. Thanks to Al-Kindi Hospital / Parasites Laboratory staff for giving me the opportunity to work; Lina, Sarah, Nour, and Ali.

Abstract

Shigella species were classified within the family Enterobacteriaceae as it is facultatively anaerobic non-motile Gram's negative bacilli. It included four species S.flexneri ,S.sonnei ,S.dysenterai and S.boydii.

The aims of the current study are to explore the rate of drug resistance among the isolates as multi or extensively drug when exposed to different types of Antibiotics. *Shigella* species was isolated from human and animal source by standard bacteriological methods and affirmed by Polymerase Chain Reaction detection. This study also aimed to figures out the impact of certain demographic and strain diversity on the rate of *Shigella* antibiotic resistant genes detected through PCR technique.

A total of (360) including (175) stool human samples were collected from various age groups of diarrheal patients who attended different hospitals in Baghdad City, plus (85) food samples and (100) animal stool samples during a period from October (2019) to October (2020). Conventional bacteriological methods are used for cultivation and identification of *Shigella*, included many differential and selective media like Xylose Lysine Deoxycholate agar, Hektoen Enteric agar, *Salmonella Shigella* agar, MacConkey agar and *Shigella* broth. Further verification was achieved by biochemical tests through (Api20 E) system and (Vitek 2) system, and eventually confirmed by PCR assay. Statistical Product and Service Solutions (SPSS) (version 25) was used for statistical analysis of the results obtained, significant differences were followed when (P) value is equal or less than (0.05) ($P \le 0.05$). The results showed that the *Shigella* detection rate from human samples was (12) (6.9%), from beef meat was (2) (6.7%) and from sheep meat was (1) (5.3%). No isolates were recovered from animal samples. *Shigella genus* was identified by the use of specific primers to (*invC*) gene in PCR assay. This gene was detected in all isolates from human and food samples which gives positive results. Furthermore, specific genes were also detected by the use of same technique and specific primers are used for *rfc*, *wbgZ*, *rfpB* and conserved hypothetical protein gene of *Shigella flexneri Shigella sonnei*, *Shigella dysenteriae*, *and Shigella boydii* respectively.

The obtained results revealed from human samples were (4.0%, 1.7%, 0.6%, and 0.6%) respectively for *Shigella flexneri, sonnei, dysenteriae* and *boydii*. In regards to food samples, *Shigella flexneri & Shigella sonnei* were both identify (3.3%) in beef meat while *Shigella flexneri* was detected (5.3%) in sheep meat.

High infection rate was found in male (98) (56.0%) versus (77) (44.0%) among females. The high isolation rate was (12.5%) recovered from <10 years age group, while age groups of (30 to 60) years showed the lowest rate. High rate was reported in rural area (8.9%), children (12.8%), Governmental employee (8.2%) and Housewife (5.1%) and high percentage was reported (60.0%) of type of diarrhea was bloody mucoid.

The antibiotic susceptibility test was done by Kirby-Bauer method and Vitek 2 system against 11 different antibacterial agents. The *Shigella* isolates from human showed high resistance to several antibiotics ; (11) (91.7%), equal rate (10) (83.3%) and (9) (75%) of isolates were resistance to ampicillin, tetracycline, Cefotaxime, and trimethoprim-sulfamethoxazole respectively. While the high sensitive to several antibiotics; (12) (100%),(11) (91.7%), (10)(83.3%) of isolates were sensitive to imipenem, ciprofloxacin and pipracillin-tazobatam, respectively.

The rate of multi-Drug Resistance (MDR) showed that (11) of (91.6 %) isolates from human samples were resistance to three or more antimicrobial categories, while (1) isolate (8.3 %) was found to be extended in its resistance (EDR). Whereas, the results of food specimens high resistance to several antibiotics; (2) (100%) of *Shigella* recovered from beef meat specimens were resistant to Ampicillin, Tetracycline, while all (2) (100%) were sensitive to Ciprofloxacin, Imipenem, Pipracillin–Tazobatam, and Chloramphenicol . Regarding the (1) isolate from sheep meat, it was resistant to Ampicillin, Tetracycline, Trimethoprim-sulfamethoxazole, Cefotaxime and Ceftriaxone.

While it is sensitive to Ciprofloxacin, Imipenem, Pipracillin– Tazobatam, Chloramphenicol, Ceftazidime and Nalidxic acid.(2 / 3)(66%)of isolates showed MDR resistant to three or more antimicrobial categories while (1/3) (33.3%) of isolates were not MDR but showed resistant to (≤ 2) antimicrobial categories.

The Extended Spectrum β -Lactmases isolates from human samples were distributed as *bla-tem* (10 / 12) (83.3%), *tet A* 9 /12 (75.0%), *ctx-m* 8 /12 (66.7%), *cat* gene 5 / 12 (41.7%), while from food samples including beef meat and sheep meat were found all positive isolated detected to all antibiotics resistance gene except *cat* gene was not detected. Virulence gene were found *ipaH* positive results in all isolated from human and food samples, *ial* gene 11/1 (91.7 %), 3/3 (100), human and food samples respectively, while *setl A* and *setl B* 2 /12 (16.7%) detected from human samples only but not detected from food samples.

The present results indicated that the amplified *tetB* fragment exhibited one nucleic acid variation, G184A, with a missense Ala144Thr effect on the *tetB*-encoded tetracycline efflux MFS transporter protein. Concerning the *bla*. TEM amplicon, the results showed that the amplified *bla*. TEM locus exhibited two nucleic acid variations (T269G and A452G) with two respective missense effects (Asn134Thr and Leu73Pro) on the bla.TEM encoded class A broad-spectrum beta-lactamase TEM-1. As in the case of the *bla_{TEM}* amplicon, the *set1B* amplicons were also exhibited two nucleic acid variations (G106A and C128G), and both variations showed two respective missense effects (Pro743Leu and Gly736Arg) on the set1B encoded serine protease autotransporter toxin Pic. Concerning Ial amplicons, only one nucleic acid variation (T179C) was identified, which showed a silent (Leu24 =) consequence on the Ial-encoded protein. Meanwhile, *ipah* amplicons did not exert any detectable variation as all its sequences exhibited complete homology with the reference genomic DNA sequences.

Based on the observed variations in the investigated bacterial amplicons, all generated comprehensive phylogenetic trees indicated that the investigated sequences were positioned in the *Shigella flexneri* sequences. The utilized *Ial*-based trees indicated a higher degree of clear and non-overlapping positioning and discrimination among the currently investigated samples over the other utilized amplicons. In contrast to the *Ial*-based tree, *bla*.*TEM* based tree showed the least accurate phylogenetic positioning than the other utilized trees. In all cases, all the observed nucleic acid variations were only minor deviations within the same identified species.

List of Contents

NO.	Subject	pages
1	Title in English	
2	Quran verse	
3	Supervisor Certification	
4	Examination committee certification	
5	Dedication	
6	Acknowledgment	
7	Abstract in English	Ι
8	List of content	V
9	List of Tables	XII
10	List of figures	XVI
11	List of Abbreviations	XXV
	Chapter One: Introduction	
1.1	Background	1
1.2	Amis of The study	4
	Chapter Two : Literature of Review	I
2.1	History of Shigellosis	5
2.2	General features	6
2.3	Classification of Shigella	7
2.4	Host	9
2.5	Epidemiology of Genus Shigella	9
2.6	Transmission	13
2.7	Pathogenesis	15
2.7.1	Virulence Factors & Virulence Genes	17
2.7.2	Toxins of Shigella	19
2.8	Risk Factor	21
2.9	Symptoms	22

2.10	Identification of Shigella spp.	23
2.11	Prevention and Control	26
2.12	Treatment and Antibiotic Resistance	28
2.12.1	Treatment	28
2.12.2	Antibiotic Resistance	29
2.12.2.1	Multi-Drug Resistance (MDR)	30
2.12.2.2	Extensive Drug Resistant (EDR)	31
2.13	Extended Spectrum β-Lactamase (ESBL) Genes for <i>Shigella</i> Species	32
2.14	Immunization	35
	Chapter Three : Material & Methods	
3	Materials and Methods	36
3.1	Study Area and Study Population	36
3.2	Materials	36
3.2.1	Equipment's and Instruments	36
3.2.2	Chemical and Reagent	37
3.2.3	Culture Media	38
3.2.4	List of Antibiotics	39
3.2.5	Laboratory Kits	39
3.2.6	General DNA Extraction Kit	40
3.3	Diagnostic Primers	40
3.4	Experimental Design	42
3.5	Samples collection	44
3.5.1	Stool Samples Collected from Human	44
3.5.2	Animal Stool Samples	44
3.5.3	Food Samples from Animal Products	45
3.6	Methods	45
3.6.1	Preparation of Media	45
3.6.1.1	Salmonella -Shigella Agar (S.S.Agar)	45

3.6.1.2	Xylose Lysine Deoxycholate (XLD) Agar	46
3.6.1.3	MacConkey Agar Medium	46
3.6.1.4	Hektoen Enteric Agar	46
3.6.1.5	Brian Heart Infusion Agar	46
3.6.1.6	Brian Heart Infusion Broth	47
3.6.1.7	Selenite F Broth	47
3.6.1.8	Nutrient Broth	47
3.6.1.9	Muller - Hinton Agar Medium	47
3.7	Microscopic and General Stool Examination	48
3.8	Identification of Bacteria Isolates	48
3.8.1	Growth on Selective and Differential Media	48
3.9	Microscopic Examination	50
3.10	Biochemical Testes	50
3.10.1	Oxidase Test	50
3.10.2	Catalase Test	51
3.10.3	Urease Test	51
3.10.4	Indole Test	51
3.10.5	Triple-Sugar-Iron Agar	52
3.11	API 20 E Test	52
3.12	Vitek 2 System	54
3.12.1	Step of Vitek2 Systems	54
3.13	Antibiotics Susceptibility Testing	55
3.13.1	Bacterial Inoculum Preparation	55
3.13.2	Streaking of Test Plates	55
3.13.3	Antimicrobial Discs Application	56
3.14	Preservation of Bacteria Cells	56
3.15	Polymerase Chain Reaction Amplication	57
3.15.1	Extraction of Genomic DNA	57
3.15.2	Amplification Reaction	57

3.15.3	Primers Preparation	57
3.15.4	Genes Detection	57
3.15.4.1	The PCR Cycling Programs	58
3.15.4.2	Detection of <i>Shigella</i> Genus, Species and other genes by PCR	58
3.15.4.3	Gel Electrophoresis in Agarose	59
3.16	Sequencing of Specific Loci in Shigella Flexneri	59
3.16.1	Genomic DNA Extraction	60
3.16.2	Polymerase Chain Reaction	60
3.16.3	DNA Sequencing of PCR Amplicons	61
3.16.4	Interpretation of Sequencing Data	61
3.16.5	Translation of Nucleic acid Variations into Amino Acid Residues	62
3.16.6	Comprehensive Phylogenetic Tree Construction	62
3.16.7	Statistical Analysis	62
	Chapter Four : Results	
4	Results	63
4.1	Human Specimens	63
4.1.1	Sociodemographic Distribution of patients	63
4.1.2		
7.1.2	Distribution of Clinical Symptoms	65
4.1.2	Distribution of Clinical Symptoms Type of Feedings	65 66
4.1.3	Type of Feedings	66
4.1.3	Type of Feedings Stool Examination Findings	66 66
4.1.3 4.1.4 4.1.5	Type of Feedings Stool Examination Findings Percentages of Bacterial Isolates the Characteristic of Bacteria Culture on Different	66 66 67

4.1.6	Detection of Shigella Species by PCR	72
4.1.7	Antibiotic Sensitivity of Shigella Isolates	72
4.1.8	PCR Results of <i>Shigella</i> Genes	76
4.1.9	Distribution of PCR Results of Human <i>Shigella</i> Isolates	77
4.1.9.1	According to Age Groups	77
4.1.9.2	According to Gender and Residence	78
4.1.9.3	According to Occupation	79
4.1.9.4	According to Diarrhea	80
4.1.9.5	According to Type of Diarrhea	80
4.1.9.6	According to Clinical Symptoms	81
4.1.9.7	According to Type of Feeding	82
4.1.9.8	According to Stool Findings	83
4.1.9.9	According to Type of Culture	84
4.2	Animal Specimens	85
4.2.1	Distribution of Basic Data	85
4.3	Food Specimens	86
4.3.1	Distribution of Culture and PCR Results	86
4.3.2	Antibiotic Susceptibility Test	88
4.3.3	Distribution of Gene Detection	91
4.3.4	Molecular Identification of <i>Shigella</i> Genus by PCR	92
4.4	Sequencing Results	98
4.4.1	<i>Tet B</i> Gene	98
4.4.2	The <i>bla-_{TEM}</i> Gene	103

4.4.3	SET1 B Gene	107
4.4.4	Ial Gene	112
4.4.5	IpaH Gene	116
	Chapter Five : Discussion	
5.1	Human Specimens	119
5.1.1	Socio – Demographic Distribution of Patients	119
5.1.1.1	Age of Patients	119
5.1.1.2	Gender and Residence	120
5.1.1.3	Occupation of Patients	121
5.1.2	Clinical Picture Distribution	122
5.1.2.1	Presence of and Types of Diarrhea	122
5.1.2.2	Clinical Picture	123
5.1.3	Types of Feeding	124
5.1.4	Diagnosis of Shigella Species.	125
5.1.4.1	Microscopical Examination of Stool	125
5.1.4.2	Identification of <i>Shigella</i> spp. by culture methods and PCR	126
5.1.4.3	Types of Shigella spp.	131
5.1.5	Antibiotic Sensitivity and MDR Resistance of <i>Shigella</i> spp. Isolated from Human and Animal Products	133
5.1.6	Types of Resistance Genes in Shigella spp.	140
5.1.6.1	β-Lactamases ESBL Antibiotic Resistance Gene	140
5.1.6.1.1	Antibiotic Resistance Genes of Shigella Food Isolates	145
5.1.6.2	Virulence Factor Gene	146
(Chapter six : Conclusions & Recommendations	
6	Conclusions & Recommendations	150

6.1	Conclusions	150
6.2	Recommendations	151
	References	153
	Appendices	
1	Location Map of Baghdad City	196
2	Sample of Informed Consent	196
3	Administration Approvals	198
4	Sample Collection Data From Human	200
5	Animal Owner Questionnaires Form	201
6	Characteristic Colony Appearance on Culture Media	201
7	McFralandes Turbidity Standard (0.5) Preparation	202
8	Antibiotics Sensitivity Test According to CLSI	203
9	Results of Vitek 2 System	203
10	Extraction of Genomic DNA	204
11	Amplification Reaction	206
12	Sequencing of specific loci in Shigella flexneri	207
	Abstract in Arabic	Î
	Title in Arabic	

List of Tables

No.	Title	Pages
2.1	Species and Serogroups of Shigella	8
2.2	Biochemical Reactions for Shigella spp.	26
3.1	The equipment's and Instruments used in the Study	36
3.2	Chemicals, Reagents and their Suppliers	37
3.3	Culture Media used <i>Shigella</i> Species Isolation and their Manufacturing Companies	38
3.4	Antibiotics Used in Sensitivity test	39
3.5	Kits used in this study with their Suppliers	39
3.6	DNA Extraction Kit Components and their quantity	40
3.7	Primers for Detection of Shigella Genus and Species	40
3.8	β-lactamase Genes Primer	41
3.9	Primers for Identification of Virulence Associated Genes of <i>Shigella</i> spp.	41
3.10	Specimen, Type and Numbers of Samples Collected from Human, Animal and Food	45
3.11	Characteristic Colony Appearance on Culture Media (appendix 6)	201
3.12	McFarland Turbidity Standard (appendix 7)	202
3.13	The PCR Annealing Temperatures According to the Genes Target.	58
3.14	Program Cycles of PCR for detection of ShigellaGenus, Species and other genes.	58
3.15	The Specific primers' Pairs that Selected to Amplify Five Genetic Loci within the <i>Shigella Flexneri</i> Sequences.	60
4.1	Distribution of patients according to age groups	63

4.2	Distribution of patients according to gender and residence.	64
4.3	Distribution of patients according to occupation.	64
4.4	Distribution of patients according to clinical picture	65
4.5	Distribution of patients according to type of feeding	66
4.6	Microscopical findings of human stool sample	67
4.7	Distribution of type of bacterial growth and PCR results.	68
4.8	Biochemical tests of Shigella	70
4.9	The number and percentages of <i>Shigella</i> species as detected by PCR.	72
4.10	Distribution of antibiotic sensitivity of human <i>Shigella</i> isolates.	74
4.11	Multidrug resistance of <i>Shigella</i> isolates according to type of antibiotic used	75
4.12	Multidrug resistance of <i>Shigella</i> isolates to three or more antibiotics	76
4.13	Shigella genes detected by PCR.	77
4.14	Distribution of PCR results of <i>Shigella</i> isolates according to age groups.	78
4.15	Distribution PCR results of <i>Shigella</i> isolates according to gender and residence.	79
4.16	Distribution of PCR results of <i>Shigella</i> isolates according to occupation	79
4.17	Distribution PCR detection rate of <i>Shigella</i> isolates according to diarrhea.	80
4.18	Distribution of PCR detection rate of <i>Shigella</i> isolates according to type of diarrhea	81

4.19	Distribution of PCR detection rate of <i>Shigella</i> isolates	82
	according to clinical Symptoms.	
4.20	Distribution PCR results of Shigella isolates according	83
4.20	to type of feeding	05
4.21	Distribution of PCR detection rate Shigella isolates	84
7.21	according to stool findings.	0-
4.22	Distribution of PCR detection rate of <i>Shigella</i> isolates	85
4.22	according to type of growth.	05
4.23	Gender and type growth of animal specimens.	86
4.24	Bacteriological culture and PCR results of food	87
7.27	specimens	07
4.25	Distribution of antibiotic susceptibility testing of	89
4.23	isolates from food specimens.	09
4.26	Multidrug resistance of Shigella isolates according to	90
7.20	type of antibiotic used.	70
4.27	Multidrug resistance of Shigella isolates to three or	90
7.27	more antibiotics	70
4.28	Distribution of genes detected in isolated from food	91
7.20	specimens.	71
	PCR product sequencing part of <i>tet B</i> gene within the	
	Shigella flexneri genomic sequences. The amplified	
4.29	sequences were extended from 2568686 to 2569436	99
	nucleotides within the NCBI reference DNA sequence	
	(acc. no. CP055124.1 GenBank).	
	The pattern of the observed mutation in the 751 bp of	
	the tetB amplicon in comparison with the NCBI	
4.30	referring sequences (GenBank acc. no. CP055124.1).	101
L	I	

4.31	PCR product sequencing part of BLA_{TEM} gene within the <i>Shigella flexneri</i> genomic sequences region. The amplified sequences were extended from 63930 to 64488 of the NCBI reference DNA sequence (GenBank acc. no. MG767302.1). The grey color refers to both forward and reverse primers sequences.	104
4.32	The pattern of the observed mutation in the 559 bp of the BLA_{TEM} amplicons in comparison with the NCBI referring sequences (GenBank acc. no. MG767302.1).	105
4.33	PCR product sequencing part of <i>set1B</i> gene (147bp) within the <i>Shigella flexneri</i> genomic sequences region. The amplified sequences were extended from 1016452 to 1016598 of the NCBI reference DNA sequence (GenBank acc. no. CP055138.1). The grey color refers to both forward and reverse primers sequences.	108
4.34	The pattern of the observed mutation in the 147 bp of the <i>set1B</i> amplicons in comparison with the NCBI referring sequences (GenBank acc. no. CP055138.1).	110
4.35	PCR product sequencing part of <i>Ial region</i> (320 bp) within the <i>Shigella flexneri</i> genomic sequences region. The amplified sequences were extended from 123767 to 124086 of the NCBI reference DNA sequence (GenBank acc. no. CP034059.1). The grey color refers to both forward and reverse primers sequences.	113
4.36	The pattern of the observed mutation in the 320 bp of the <i>Ial</i> amplicons in comparison with the NCBI referring sequences (GenBank acc. no. CP034059.1).	114

4.27	PCR product sequencing part of <i>ipaH region</i> (422 bp)	
	within the Shigella flexneri genomic sequences region.	
	The amplified sequences were extended from 2667697	117
4.37	to 2668118 of the NCBI reference DNA sequence	11/
	(GenBank acc. no. CP055124.1). The grey color refers	
	to both forward and reverse primers sequences.	

List of Figures

NO.	Title	Pages
2.1	<i>Shigella</i> spreads via fecal – oral and person to person transmission.	20
3.1	Study design for collection of samples from human and animals and their processing	42
3.2	Study design for food samples of animal products origin.	43
4.1	Colonies of <i>shigella spp</i> . On XLD and MaCconkey agar, <i>S.S.</i> agar and Hektone enteric agar	69
4.2	Results of results of biochemical test of Shigella	70
4.3	Api20 E system represented positive result for <i>Shigella</i> species	71
4.4	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>invC</i> genes (875 bp) of <i>Shigella isolates</i> for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 1,2,3,4,5,6,7,8,9,10,11,12,13,14 and 15 amplified <i>invC</i> genes of <i>Shigella</i> isolates from human & food	92

4.5	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>wbgZ</i> genes (430 bp) of <i>S. sonnei</i> for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 1,2, 6and 7 amplified <i>wbgZ</i> gene of <i>Shigella sonnei</i> isolates from human & food	92
4.6	Gel electrophoresis of PCR products in 1.5% agarosestained with ethidium bromide conserved hypotheticalprotein genes (248 bp) of <i>S. boydii</i> 1 hrs. at 70 volt.Lane M: DNA marker. Lane (2) amplified conservedhypothetical protein gene of <i>Shigella boydii</i> isolatesfrom human	
4.7	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>rfc</i> genes (537 bp) of <i>S. flexneri</i> for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 2,3,4,5,6,7,8,9, and 10 amplified <i>rfc</i> genes of <i>Shigella flexneri</i> isolates from human & food	93
4.8	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>rfpB</i> genes (211 bp) of <i>S. dysenteri</i> for 1 hrs. at 70 volt. Lane M: DNA marker. Lane 2 amplified <i>rfpB</i> gene of <i>Shigella</i> <i>dysenteri</i> isolates from human .	94
4.9	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>setl A</i> genes (309 bp) of <i>S. enterotoxin</i> for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 2and 3 amplified <i>setl A</i> gene of <i>Shigella enterotoxin</i> isolates from human.	94

4.10	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>setl B</i> genes (147 bp) of <i>S. enterotoxin</i> for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 3 and 8 amplified <i>setl B</i> gene of <i>Shigella enterotoxin</i> isolates from human.	95
4.11	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>ipaH</i> genes (422 bp) of <i>Shigella</i> virulence factor for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 1,2,3,4,5,6,7,8,9,10,11,12,13,14 and 15 amplified <i>ipaH</i> of virulence factor gene of <i>Shigella</i> species isolates from human & food	95
4.12	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>iaI</i> gene (320 bp) of <i>Shigella</i> virulence factor for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 2,3,4,5,6,7,8,9,10,11,12,13,14 and 15 amplified <i>iaI</i> of virulence factor gene of <i>Shigella</i> species isolates from human & food	96
4.13	Gel electrophoresis of PCR products in 1.5% agarose stained with ethidium bromide for <i>Cat</i> genes (1003 bp) of Choramphenicol for 1 hrs. at 70 volt. Lane M: DNA marker. Lanes 2,4,5,6 and 7 amplified <i>cat</i> gene resistant to chloramphenicol of <i>Shigella species</i> isolates from human.	96

4.14	Gel electrophoresis of PCR products in 1.5%	
	agarose stained with ethidium bromide for <i>bla-TEM</i>	
	genes (559 bp) of ampicillin for 1 hrs. at 70 volt.	
	Lane M: DNA marker. Lanes	97
	1,2,3,4,5,7,10,11,12,13,14,15 and 16 amplified bla-	
	TEM genes resistance to ampicillin of Shigella	
	species isolates from human & food	
	Gel electrophoresis of PCR products in 1.5% agarose	
	stained with ethidium bromide for <i>bla</i> ctx - ^M genes	
4.15	(560 bp) of Cefotaxime for 1 hrs. at 70 volt. Lane M:	07
4.15	DNA marker. Lanes 2,3,4,5, 6, 7, 8, 10, 11, 12 and 13	97
	amplified <i>bla ctx-^M</i> gene resistance to Cefotaxime of	
	Shigella species isolates from human & food	
	Gel electrophoresis of PCR products in 1.5% agarose	
	stained with ethidium bromide for <i>tet</i> A^* genes (751)	
	bp) of tetracycline resistance for 1 hrs. at 70 volt.	98
4.16	Lane M: DNA marker. Lanes 1,2,3,4,5,6,7,8,9,10,11	
	and 12 amplified <i>tetB</i> gene resistance to tetracycline	
	of Shigella species isolates from human & food	
	The exact position of the retrieved 751 bp amplicon	
	that covered a portion of <i>tetB</i> locus within the <i>Shigella</i>	
4.17	flexneri genomic sequences (acc. no. CP055124.1).	99
	The blue arrow refers to the starting point of this	
	amplicon while the red arrow refers to its endpoint	
	DNA sequences alignment of two bacterial samples	
4.18	with their corresponding reference sequences of the	
	tetB gene within the Shigella flexneri genomic	
	sequences. The symbol "ref" refers to the NCBI	207
	reference sequences, while "S" refers to sample code.	
	(Appendix 12)	

4.19	The chromatogram profile of the observed genetic	
	variants of the <i>tetB</i> gene within the <i>Shigella flexneri</i>	
	bacterial isolates. The identified substitution mutation	208
	is highlighted according to its position in the PCR	200
	amplicon. The symbol ">" refers to "substitution"	
	mutation. (appendix 12)	
	Amino acid residues alignment of the detected	
	variations within the investigated samples of Shigella	
	flexneri sequences. Branch A) refers to the position of	
	the identified missense variation in the PCR amplicon,	
4.20	branch B) refers to the position of the same variation	209
	in the total mature tetB-encoded tetracycline efflux	
	MFS transporter protein. The highlighted colors refer	
	to the detected amino acid at which the nucleic acid	
	substitution was detected. (appendix 12)	
	The comprehensive phylogenetic tree of genetic	
	variants of the tetB gene within the Shigella flexneri	
	bacterial isolates. The variably colored numbered refer	
	to Genbank acc. numbers of deposited reference	
4.21	sequences. The number "0.1" at the top portion of the	210
	tree refers to the degree of scale range among the	
	comprehensive tree categorized organisms. The	
	symbol "S" refers to the code of the investigated	
	sample. (appendix 12)	
4.22	The exact position of the retrieved 559 bp amplicon	
	covered a portion of the BLA _{TEM} region within the	
	Shigella flexneri sequences (acc. no. MG767302.1).	102
	The blue arrow refers to the starting point of this	103
	amplicon while the red arrow refers to its endpoint.	
1		

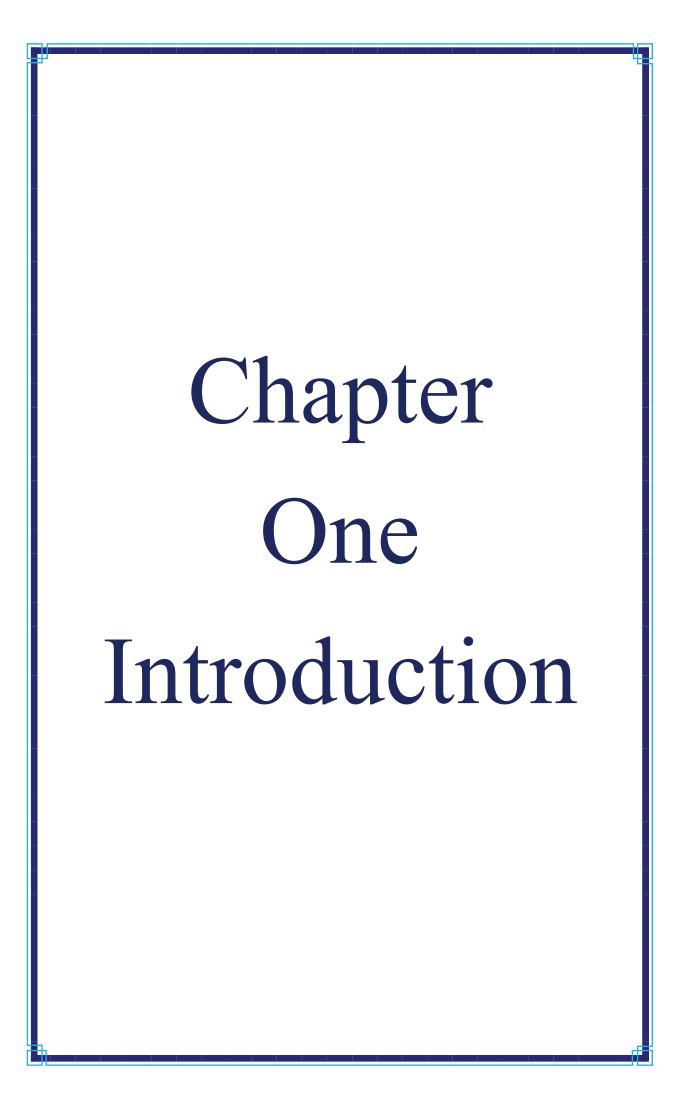
	Ι	
4.23	DNA sequences alignment of two bacterial samples	
	with their corresponding reference sequences of the	
	BLA _{TEM} locus within the Shigella flexneri genomic	211
	sequences. The symbol "ref" refers to the NCBI	211
	reference sequences, while "S" refers to sample code.	
	(appendix 12)	
	The chromatogram profile of the observed genetic	
	variants of the BLA_{TEM} gene within the Shigella	
4.24	flexneri bacterial isolates. The detected substitution	212
4.24	mutations are highlighted according to their positions	212
	in the PCR amplicon. The symbol ">" refers to the	
	observed "substitution" mutation. (appendix 12)	
	Amino acid residues alignment of the detected	
	variations within the investigated samples of Shigella	
	flexneri. Branch A) refers to the position of the	
	identified missense variations in the PCR amplicon,	
4.25	branch B) refers to the position of the same variation	212
	in the total mature BLA _{TEM} -encoded class A broad-	
	spectrum beta-lactamase TEM-1. The highlighted	
	colors refer to the detected amino acid at which the	
	nucleic acid substitution was detected. (appendix 12)	
	The comprehensive phylogenetic tree of genetic	
	variants of the BLA _{TEM} gene within the Shigella	
	flexneri bacterial isolates. The variably colored	
4.26	numbered refer to Genbank acc. numbers of deposited	
	reference sequences. The number "1.0" at the top	213
	portion of the tree refers to the degree of scale range	
	among the comprehensive tree categorized organisms.	
	The symbol "S" refers to the code of the investigated	
	sample. (appendix 12)	

	The exact position of the retrieved 147 bp amplicon covered a portion of the <i>set1B</i> region within the	
4.27	Shigella flexneri sequences (acc. no. CP055138.1). The blue arrow refers to the starting point of this amplicon while the red arrow refers to its endpoint.	108
4.28	DNA sequences alignment of two bacterial samples with their corresponding reference sequences of the <i>set1B</i> locus within the <i>Shigella flexneri</i> genomic sequences. The symbol "ref" refers to the NCBI reference sequences, while "S" refers to sample code. (appendix 12)	214
4.29	The chromatogram profile of the observed genetic variants of the <i>set1B</i> gene within the <i>Shigella flexneri</i> bacterial isolates. The detected substitution mutations are highlighted according to their positions in the PCR amplicon. The symbol ">" refers to the observed "substitution" mutation. (appendix 12)	214
4.30	Amino acid residues alignment of the detected variations within the investigated samples of <i>Shigella flexneri</i> . Branch A) refers to the position of the identified missense variations in the PCR amplicon, branch B) refers to the position of the same variation in the total mature <i>set1B</i> -encoded serine protease autotransporter toxin PIC. The highlighted colors refer to the detected amino acid at which the nucleic acid substitution was detected. (appendix 12)	215

4.31	The comprehensive phylogenetic tree of genetic variants of the <i>set1B</i> gene within the <i>Shigella flexneri</i> bacterial isolates. The variably colored numbered refer to Genbank acc. numbers of deposited reference sequences. The number "0.1" at the top portion of the tree refers to the degree of scale range among the comprehensive tree categorized organisms. The symbol "S" refers to the code of the investigated sample. (appendix 12)	216
4.32	The exact position of the retrieved 320 bp amplicon covered a portion of the <i>Ial</i> region within the <i>Shigella</i> <i>flexneri</i> sequences (acc. no. CP034059.1). The blue arrow refers to the starting point of this amplicon while the red arrow refers to its endpoint.	112
4.33	DNA sequences alignment of two bacterial samples with their corresponding reference sequences of the <i>Ial</i> locus within the <i>Shigella flexneri</i> genomic sequences. The symbol "ref" refers to the NCBI reference sequences, while "S" refers to sample code. (appendix 12)	217
4.34	The chromatogram profile of the observed genetic variants of the <i>Ial</i> gene within the <i>Shigella flexneri</i> bacterial isolates. The detected substitution mutations are highlighted according to their positions in the PCR amplicon. The symbol ">" refers to the observed "substitution" mutation. (appendix 12)	217

]
	Amino acid residues alignment of the detected	
	variations within the investigated samples of Shigella	
	flexneri. Branch A) refers to the position of the	
	identified missense variations in the PCR amplicon,	
4.35	branch B) refers to the position of the same variation	218
1.50	in the total mature Ial-encoded EscT/YscT/HrcT	210
	family-type III secretion system export apparatus	
	protein. The highlighted colors refer to the detected	
	amino acid at which the nucleic acid substitution was	
	detected.(appendix 12)	
	The comprehensive phylogenetic tree of genetic	
	variants of the Ial gene within the Shigella flexneri	
	bacterial isolates. The variably colored numbered refer	
	to Genbank acc. numbers of deposited reference	
4.36	sequences. The number "10" at the top portion of the	218
	tree refers to the degree of scale range among the	
	comprehensive tree categorized organisms. The	
	symbol "S" refers to the code of the investigated	
	sample.(appendix 12)	
	The exact position of the retrieved 422 bp amplicon	
	covered a portion of the IPAH region within the	
4.37	Shigella flexneri sequences (acc. no. CP055124.1).	117
	The blue arrow refers to the starting point of this	
	amplicon while the red arrow refers to its endpoint.	
	DNA sequences alignment of two bacterial samples	
	with their corresponding reference sequences of the	
4.38	IPAH locus within the Shigella flexneri genomic	2 10
	sequences. The symbol "ref" refers to the NCBI	219
	reference sequences, while "S" refers to sample code.	
	(appendix 12)	

Amino acid residues alignment of the detected	
variations within the investigated samples of Shigella	
flexneri. Branch A) refers to the amino acid	
alignments in the PCR amplicon of the IPAH	220
amplicons, branch B) refers to the amino acid	
alignments within the total mature IPAH-encoded E3	
ubiquitin-protein ligase. (appendix 12)	
	<i>flexneri</i> . Branch A) refers to the amino acid alignments in the PCR amplicon of the IPAH amplicons, branch B) refers to the amino acid alignments within the total mature <i>IPAH</i> -encoded E3


List of Abbreviations

Full name	Abbreviations
%	Percentage
&	And
±	Plus or Minus
μ	Micro
μg	Micro gram
μl	Microliter
g / ml	gram / milliliter
А	Acid
Amp	Ampicillin
AmpC	Ampler type C
API20 E	Analytical Profile Index 20 Enterobacteriacea
ASCO	Advanced Scientific Bureau
AST	Antibiotics Sensitive Test
BHI	Brain Heart Infusion
Вр	Base Pair
BSC	Bio Safety Cabinet
С	Choramphenicol
CAZ	Ceftazidime
CDC	Center for Disease Control

CIP	Ciprofloxacin
CFU	Colony Forming Unit
CLSI	Clinical and Laboratory Standards Institute
CRO	Ceftriaxone
СТХ	Cefotaxime
CTX-M	Cefotaxime Beta-Lactamase hydrolyze Cefotaxime
D.W	Distilled Water
DNA	Deoxyribonucleic Acid
dNTPs	Deoxy Nucleoside Tri-Phosphate
EDR	Extensively Drug Resistant
ESBL	Extended Spectrum β-Lactamase
F	Forward Primer
HEK	Hektone Enteric Agar
HIV	Human Immunodeficiency Viruses
hrs	Hours
IL	Interleukin
IMP	Imipenem
IND	Indole
Іра	Invasion Plasmid Antigen
ISO	International Organization for Standardization
JAMES	Advanced Kovacs Reagent
K	Alkaline
kb	Kilo Base
M Cell	microfold Cell
MAC	MacConkey Agar
MDR	Multi Drug Resistant
min	Minute
ml	Milliliter
mmol/L	mmol/Liter

MSM	Men Who Have Sex With Men
NA	Nalidixic Acid
NCBI	National center for biotechnology Information
°C	Degree Celsius
OXA	Oxacillinase b-Lactamase Active on Oxacillin
PCR	Polymerase Chain Reaction
PMN	Polymorphnuclear
PTZ	Pipracillin- Tazobactam
R	Reverse Primer
RBCs	Red blood cells
rRNA	Ribosomal Ribonucleic Acid
S & Sh	Shigella
Sec	Second
Setl A & B	Shigella Enterotoxin 1
SD	Standard Deviation
SF	Selenite F broth
SHV	β-lactamase Sulfahydral Variant
SOP	Standard Operating Procedure
Spp.	Species
S-S-agar	Salmonella Shigella Agar
STX	Shiga toxin
SXT	Trimethoprim- Sulfamethoxazole
T3SS	Type III Secretion System
Taq	Thermus Aquaticus
TDA	Tryptophan Deaminase
TE	Tetracyclin
TEM	Beta-Lactamase named after First Patient Isolated
	from Temarian named Temoneira
TSI	Triple Sugar Iron

USA	United States of America
UV	Ultra-Violet
VP	Voges-Proskauer
WHO	World Health Organization
XLD	Xylose Lysine Deoxycholate Agar
TE buffer	Tris – Acetate – EDTA Buffer

1.1. Background

Diarrheal diseases was ranked Worldwide as the third disabilityadjusted life - years among children younger than 10 years in 2019 (GBD, 2020). Annually, there are about (1.8) million death attributed to diarrhea due to different pathogens. Bacteria, viruses and protozoal pathogens, were the main causes of gastroenteritis in developing countries, was associated to increases in morbidity and mortality and considered as public health of first priority (Shahin *et al.*, 2019; Ugboko *et al.*, 2020).

Shigella species was reported among the eight enteric pathogens reported by CDC as it causes of the majority of bacillary dysentery in developing countries (Tack *et al.*, 2020).

Shigella species were classified within the family *Enterobacteriaceae* as it is facultatively anaerobic non-motile Gram's negative bacilli (Kotloff *et al.*, 2018). It included four species *S.boydii*, *S.dysenterai*, *S.flexneri and S.sonnei*. Furthermore, different serotypes were detected in each species, the identification of these serotypes depend mainly on differences in somatic antigen of LPS, and in the severity of the disease they caused watery diarrhea, fever, and cramps of abdomen were the main characteristics of Shigellosis (Anderson *et al.*, 2016).

The manifestation of *Shigella* infections ranged from watery diarrhea to bloody stool with fever, prostration and abdominal crump, extra intestinal or intestinal complications due to the infection were also reported (Miron *et al.*, 2000; Vubil *et al.*, 2018).

Many virulence factors were associated with *Shigella* infections, and these factors were carried or encoded pathogenicity islands on bacterial chromosome and the plasmid of virulence. They initiated the infection and reduced the acquired immune response making the host with possibility of reinfection (Mattock and Blocker, 2017).

The only natural hosts for *Shigella* are humans, as a number (180) of *S.sonnei* or *S.flexneri* units or as low as ten colony forming units of *S. dysenteriae* can produce infection with clear clinical symptoms (Niyogi, 2005).

Standard conventional culture methods and biochemical tests for isolation and identification of *Shigella* species are time consuming and sometimes not accurate when very few microbes are present and masked by other dominant normal flora. Accordingly most sensitive and accurate molecular biological techniques are used like polymerase chain reaction (PCR) and multiplex PCR to detect and identify *Shigella* species (Ojha *et al.*, 2013; Ranjbar *et al.*, 2014).

Antibiotics were used long time ago for treatment of shigellosis these antibiotics included ciprofloxacin, nalidixic acid, ampicillin, and trimethoprim sulfamethoxazole as these agents assist in killing of bacteria and helps in recovery from illness (Sati *et al.*, 2019).

Shigella species are resistant to some of these antibiotics, making the treatment is unable to terminate the infection particularly during outbreaks or in severe cases (Paula *et al.*, 2010; Bhattacharya *et al.*, 2012).

Chapter one

During the past decade, many *Shigella* species were resistant to wide range of antimicrobials were emerged and the rate of resistant has increased notably (Kosek *et al.*, 2010; Qiu *et al.*, 2012; Kahsay and Muthupandian, 2016).

Shigella flexneri and *Shigella dysenteriae* showed flouroquinolones resistance that increases yearly and was attributed to mutation in topoisomerase IV and gyrase DNA sequences, in addition to resistance to quinolone that mediated by plasmid genes reported in isolates from India, USA, China, and Japan (Taneja *et al.*, 2016; Muthuirulandi Sethuvel *et al.*, 2017).

Furthermore, resistance to cephalosporin mediated by AmpC and ESBL in species of *Shigella* were reported by Taneja et al., (2012). *Shigella flexneri* isolates from clinical human cases and tested for different antibiotics showed MDR that was attributed to *acrA* gene overexpression and efflux pump role (Yang et al., 2008).

Additionally, some other *Shigella* species that were isolated from stool samples of patients with dysentery showed MDR that was attributed to mutation in *tolC* and *acrA* genes DNA sequences (Mehata *et al.*, 2010).

Accordingly it has been suggested to reduce the burden of *Shigella* disease and restrict mobility with antimicrobial resistance required development of alternative modes of treatment and vaccines that may reduce the threat of shigellosis (Baker and The, 2018).

1.2. Aims of The Study

1- Molecular diagnosis of *Shigella* species using PCR technique from human and animal sources.

2- Exploring the antibiotic resistant patterns of *Shigella* species against (11) antibiotics or antibacterials and to detect the rate of resistance to different drugs to point out the (MDR) and (EDR) of these isolates.

3- Molecular detection and sequencing of certain antibiotic resistance gene and virulence gene by using conventional PCR technique.

4- Figure out the impact of certain demographic and strain diversity on the rate of antibiotic resistance.