Republic of Iraq Ministry of Higher Education And Scientific Research University of Diyala College of Veterinary Medicine

Isolation and Identification of Some Zoonotic Enterobacteriaceae spp. from Poultry Meat in Diyala Province

A Thesis

Submitted to the Council of the College of Veterinary Medicine, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Internal and preventive Veterinary Medicine -zoonosis

By

Ahmed Hussein Khamees Kache AL-Tamimi

B.V.M.S. - College of Veterinary Medicine - University of Diyala (2014)

Supervised by

Prof. (Dr.) Nazar Jabbar AL-Khafaji

2021A.D.

1442 A.H.

_ إِللَّهِ ٱلرَّحْزَرْ ٱلرِّحِيمَ ڊٽم

قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إِلا مَا عَلَمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صلق

اتس العظيم

(32) الآية سورة البقرة -

Examination Committee Certification

We, the examining committee, certify that after reading this thesis entitled (Isolation and Identification of Some Zoonotic Enterobacteriaceae spp. from Poultry Meat in Diyala Province). was prepared by Ahmed Hussein Khamees kache AL-Tamimi in its contents, we think it is adequate for the award Degree of Master of Science in Internal and Preventive Medicine- Zoonosis.

Prof. Dr. Ali Ibrahim Ali Chairman

Assist. Prof .Dr. Omar Althaani Shareef Saeid Member

Assist. Prof .Dr. Ahmed Hanash Khlaf Member

Prof .Dr .Nazar Jabbar AL-Khafaji Member and Supervisor Approved by Council of the College of Veterinary Medicine University of Diyala

Assist. Prof. Dr. Mohammed Youssef Mahmoud head of department of Internal and Preventive Medicine College of Veterinary Medicine University of Diyala Prof .Dr. Talib Jawed Kadhim Dean of college of Veterinary Medicine University of Diyala 2021

Supervisor Certification

We certify that this thesis entitled (Isolation and Identification of Some Zoonotic *Enterobacteriaceae spp.* from Poultry Meat in Diyala Province) was prepared by (Ahmed Hussein Khamees Kache AL-Tamimi) under my supervisor at the college of Veterinary medicine, University of Diyala, as partial Fulfillment of the Requirements for the Degree of Master of Science in Internal and Preventive Medicine-Zoonosis.

Supervisor

Prof. Dr.Nazar Jabbar AL-Khafaji

College of Veterinary Medicine

University of Diyala

2021

In view of the available recommendation, I forward this thesis for debate by the examining committee.

Assist. Prof. Dr.

Khalid Ibrahim Abd

Vice dean Postgraduate Studies and Scientific Affairs

College of Veterinary Medicine

University of Diyala

Date:/ / /2021

Dedication

In the name of Allah, the Creator Who illuminated the universe with His glorious light alone, Whom we worship alone, prostrate in reverence and thankful for His grace and favour upon me in completing this effort.

To the beacon and the enlightening of the nation and its prognostic intercessor of mankind the prophet Muhammad (peace be upon him).

To those who light the way for Science.

To the one whom Allah placed the heavens at her feet and honoured her in the holy Quran: (My dear mother).

To the immortal, who passed the way and was the best example of the head of the family and who never complain when providing ways to made me happy and grateful (My remarkable father). To whom who taught me the letter (My dear teachers in college).

To whom I see optimism and happiness in their laughter to those who looked forward to my success my (brothers and sisters and my wife).

To my, acquaintances and friends whom I respect and honour.

I dedicate my research to you

Ahmed

Acknowledgment

First and forever, I would like to thank our "Allah" the most Merciful for His blessings and favors to complete this work at this final shape. I have been blessed with the presence of many people who have assisted me with this research.

My deepest gratitude is to my supervisor Prof. Dr. Nazar AL-khafaji for all of his time, advice and guidance throughout my study I also thank the Staff of Laboratory and Specialized Doctors at the Consulting Clinic at Baldruz Hospital.

I would like to express my appreciation for the Assist. Prof.Dr. Raad Mahmood AL-Zubaedi for his kindness helps in the project.

Thanks also extend to the Department of Internal and Preventive Medicine especially the head of department Assist. Prof.Dr. Mohammed Youssef Mahmoud ; Assist. Prof.Dr. Tareq Rifaaht Minnat and Assist. Prof.Dr. Ahmed Hanash Khlaf . Teachers of the Veterinary Public Health Branch especially assist. Prof.Dr. Zahid Ismail Mohamed and Dr. Sheimaa Jabbar Hassoun for their kind help in this study.

I want to thank all my best friends, Aimen Abdhussein, Alaa Ismail Nasser, and Ahmed Kamil Awad. Erfan Abdulraheem Abdulkareem, Ahmed Talib Jassam, Ibrahim Kadhim Ibrahim, Ali Riyadh Hameed, who helped me in the collection of the samples of the study.

Last not least, I owe true love and gratitude to my big and small family for their kindness, help, encouragement and support. I also would like to thank everyone who help me directly or indirectly in performing this work.

Ahmed

Summary

The study was conducted on 250 samples, represented by 70 meat samples from each type of imported frozen and local fresh meat (Neck, Wing, Breast and Thigh), in addition to 110 swabs from worker's hands and equipment used in slaughterhouse and retail shops for meat in Diyala, from August 2020 – to April 2021. Samples were collected aseptically in clean polyethylene bag and transported to the laboratory in icebox and submitted to routine procedures of isolation, identification, specification, in depends on cultural, biochemical characteristics of colonies, level of contamination in addition to the sensitivities of isolates to 12 commonly used antibiotics. The results revealed that out of 250 samples, 54 (21.6%) were free from Enterobacteriaceae bacterial contamination; while 196 (78.4%) were contaminated, , single isolates 123/278(44.2%); others 155 (55.8%) in mixed forms, either in two isolates 65 (46.8%), or three 7 (7.6%) or four isolates 1 (1.4%) in a sample.

In current study E. *coli* was the highest 102/278 (36.7%); followed by *Klebseilla* spp. 84(30.2%), *Proteus* spp. 34(12.2%), *Enterobacter* 28(10.1%), *Salmonella* spp. 22 (7.9%), *Shigella* spp. 6(2.2%) and *Serratia* spp. 4(1.4%). From frozen meat, the highest isolates was *E. coli* 27/79 (34.2%); followed by *Klebsiella* spp. 21 (26.7%); *Proteus* spp. 11 (13.9%); *Enterobacter* spp. 10 (12.7%); *Salmonella* spp. 6 (7.6%); *Shigella* spp. 3(3.8%); and *Serratia* spp. 1 (1.3%). While in Fresh meat, the highest one was *Klebsiella* spp. 30/78(38.5%), followed by *E. coli* 26 (33.3%); *Enterobacter* spp. 10 (12.8%), *Proteus* spp. 8 (10.3%), and *Salmonella* spp. 4 (5.1%). Meanwhile from equipment the highest isolate was *E. coli* 49/121 (40.5%), followed by *Klebsiella* spp. 33(27.3%), *Proteus* spp. 15(12.4%) , *Salmonella* spp. 12(9.9%) , *Enterobacter* spp. 8(6.6%), *Shigella* spp.and *Serratia* spp. each 2 (1.7%).

The highest viable bacterial counts from frozen meat, were from neck log ${}_{10}(5.50 \pm 0.01)$; wing (5.40 ± 0.03) ; thigh (5.36 ± 0.03) and breast (5.18 ± 0.09) . While from fresh meat, from breast, log ${}_{10}$ (4.85± 0.01); followed by thigh (4.70±0.04); neck (4.60±0.03); and wing (4.50± 0.07). Coliform count from frozen meat, neck log ${}_{10}$ (5.46± 0.03); wing (5.00±0.04); thigh (4.99±0.10) and breast (4.79± 0.08). While from fresh meat, the highest was from thigh log ${}_{10}$ (4.42± 0.01); breast (4.41±0.07); wing (4.36± 0.02); and neck 3 (4.32± 0.08). The best antibiotics to which all isolates were sensitive were Amikacin (AK30µg); Chloramphenicol (C30 µg); Ceftriaxone (CRO 30 µg) Cefepime (FEP 30 µg). [At the same time all isolates were resistant to Amoxicillin (AML25 µg) and Ampicillin (AMP 10 µg). The sensitivities to other antibiotics were in between].

*Klebsiella pneumonia*e, *Proteus mirabilis* and *Enterobacter asburiae* 16S ribosomal RNA gene were registered after the correspondence of the National Center for Biotechnology Information and obtained accession number and became a reference to Iraq and the Middle East and the world.

The levels of contamination exceeded the limit level depended in this field. The highest contamination was with *E. coli* and *Klebsiella*. The isolates showed multiple antibiotics resistant Amoxicillin (AML25 μ g) and Ampicillin (AMP 10 μ g). Microorganisms that are transmitted through food from the family of Enterobacteriaceae, such as poultry meat. These organisms lead to diseases transmitted through contaminated food. example, shigellosis, Salmonellosis, the runs etc. Chloramphenicol showed the highest zones of inhibition, and all the *E.coli*, *Klebsiella*, *proteus*, *Enterobacter* salmonella Shigella Serratia were susceptible to it, hence it should be preferred over novobiocin,. Which showed resistance in all . Sensitivity of Enterobacteriaceae group of microorganisms to known antibiotics is decreasing. Decreased sensitivity to carbapenem group of antibiotics is a matter of concern. The study that was conducted on fresh local chicken meat and frozen chicken meat of the Turkish type, the results show the pollution rate in both types is very high, and the authorities must. Regulatory and

health authorities move quickly to prevent this contamination in the markets. The spread of the Iraqi picture is very high .

	List of content	
Series	Title	page
	Summary	A-C
	List of content- continued	Ι
	List of Table	IV
	List of Figures and Picture	VI
	List of Abbreviation	VII
1.	Introduction	1
1.1.	introduction	1
1.2.	Aims of study	2
2.	Literature Review	3
2.1.	Introduction	3
2.2.	Meat	4
2.2.1.	Contamination	4
2.2.2.	Sources of contamination	5
2.3.	Enterobactericeae	6
2.3.1.	Scientific classification	7
2.3.2.	Metabolism	7
2.3.3.	Taxonomy	7
2.3.4.	Characteristics	8
2.3.4.1.	Enterobacter spp.	8
2.3.4.2.	Escherichia spp.	8
2.3.4.3.	Klebsiella spp.	9
2.3.4.4.	Proteus spp.	10
2.3.4.5.	Salmonella spp.	10
2.3.4.6.	Serratia spp.	14
2.3.4.7.	<i>Shigella</i> spp.	14
2.4.	Methods of detection	14
2.5.	Bacterial counts	15
2.6.	Sensitivity to antibiotics	16
3.	Materials and Methods	17
3.1.	Materials	17
3.1.1.	Laboratory Equipment: Appliances	17
3.1.2.	Instruments and Tools	17
3.1.3.	Preparation of culture media	20
3.1.3.1.	Blood Agar	20
3.1.3.2.	Brain Hearth Infusion Broth	20
3.1.3.3	Eosin Methylene Blue Agar	21
3.1.3.4.	MacConkey Agar	21
3.1.3.5.	Muller Hinton Agar	21

3.1.3.6.	Nutrient Broth	21
3.1.3.7.	Salmonella Shigella (SS)Agar	21
3.1.3.8.	Xylose-lysine Deoxycholate (XLD) Agar	22
3.1.3.9.	Simon citrate	22
3.1.4.	Preparation of Reagents and Solutions	23
3.1.4.1.	Buffer Peptone Water (BPW)	23
3.1.4.2.	Physiological Normal Saline	23
3.1.4.3.	Triple Sugar Iron TSI	23
3.2.	Methods	24
	Study Design	24
3.2.1.	Collection of samples	25
3.2.2.	Sample preparation	26
3.2.2.1.	Meat sample	26
3.2.2.2.	Swab sample	26
3.2.3.	Plating and culture on media	26
3.2.4.	Identification of colonies	26
3.2.5.	Gram stain	28
3.2.6.	Purification of colonies	29
3.2.7.	The biochemical tests	29
3.1.3.9.	Simon citrate test	29
3.2.7.2.	Indole production	30
3.2.7.3.	Lactose fermentation	31
3.2.7.4.	Methyl red test	31
3.2.7.5.	Oxidase test	32
3.2.7.6.	Triple Sugar Iron TSI slant reaction	32
3.2.7.7.	Urease	32
3.2.7.8	Voges proskaur	32
3.2.8.	VITEK2	34
3.2.9.	Polymerase Chain Reaction PCR	34
3.2.9.1.	Gel Extraction (Sequencing) protocol	37
3.2.9.2.	Gel Dissociation	37
3.2.9.3.	DNA Binding	38
3.2.9.4.	Wash	38
3.2.9.5.	DNA Elution	38
3.2.9.6	The primers used in the interaction	38
3.2.9.7.	Sequencing and Sequence Alignment	39
3.2.9.8.	E value and score	39
3.2.9.9.	Agarose gel electrophoresis of DNA	40
3.2.9.10.	Prepare of the Agarose gel	40
3.2.9.11.	Preparation of sample	41

3.2.9.12.	Red safe Nucleic acid staining solution	41
3.2.9.13.	Bacterial stain	42
3.2.9.14.	Genomic DNA extraction	42
3.2.9.14.	Maxime PCR PreMix kit (i-Taq)	43
3.2.9.15.	Diagnosis of Gene	43
3.2.10.	Sensitivity to antibiotics	44
3.2.10.1.	Agar disc method	44
3.2.11.	Total viable bacterial count	45
3.3	Statistical analysis	45
4.	Results	46
4.1.	Level of contamination	46
4.2.	Isolates in the study	46
4.3.	Forms of isolates	48
4.4.	Specification of isolates	48
4.4.1.	Biochemical characters	49
4.4.2.	VITEK 2	51
4.5.	Submission of local Iraqi isolate in NCBI	52
4.5.1.	PCR assay	52
4.5.1.a.	Klebsiella pneumoniae	52
4.5.1.b.	Proteus mirabilis	52
4.5.1.c	Enterobacter asburiae	52
4.5.2.	Reaction of PCR	53
4.5.3.	Genetic changes that occurred in <i>Klebsiella</i>	54
1 E 1		5(
4.5.4.	Iree Klebsiella pneumoniae of 168	3 6
4.3.3.	mirabilis	61
4.5.6.	Tree Proteus mirabilis 16s	63
4.5.7.	Genetic changes that occurred in	68
	Enterobacter asburiae	
4.5.8.	Tree Entertobacter asburiae 16s	69
4.6.	Isolates counts	74
4.6.1.	Total viable bacterial counts	74
4.6.2.	Coliform count	75
4.7.	Sensitivity to antibiotics	78
5.	Discussion	80
5.1.	General	80
5.2.	Forms of isolates	80
5.3.	Frozen meat	81
5.4.	Escherichia coli	81

5.5.	Salmonella spp	83
5.6.	PCR assay	84
5.6.1.	Submission of local Iraqi isolates in NCBI	84
5.7.	Bacterial counts	86
5.8.	Sensitivity to antibiotics	89
6.1.	Conclusion	91
6.2.	recommendation	92
	References	93

List of Table

Series Items

Laboratory equipment : Appliances	17
Instruments and Tools	17
Culture media	18
Chemical reagent used in the study	18
Antibiotic discs	19
Apparatus used in PCR	19
The specific primer 16s RNA of gene	20
Samples used in the study	25
Characterization of the colony on MacConky Agar	27
Typical colony morphology on XLD Agar	28
Reagents used in PCR	35
ZR Bacterial DNA miniPrep ¹	35
The components of the Maxime PCR Pre Mix kit(i-Taq)	36
Mixture of the specific interaction for diagnosis gene	36
The optimum condition of detection	36
Level of contamination	46
Numbers and percentages of isolates in the study	47
Total numbers of isolates in the study	48
Biochemical tests used in identification of isolates	50
Gene 16s ribosomal RNA gene	54
Multiple sequences of Klebsiella pneumoniae 16s	61
Ribosomal RNA gene	
Multiple sequences of Proteus mirabilis of 16s	67
ribosomal RMNA gene	
Multiple sequences of Enterobacter asburiae of 16s	74
ribosomal RNA gene	
Total viable bacterial counts	75
Coliform counts	76
Sensitivity of isolates to antibiotics	78
	Laboratory equipment :Appliances Instruments and Tools Culture media Chemical reagent used in the study Antibiotic discs Apparatus used in PCR The specific primer 16s RNA of gene Samples used in the study Characterization of the colony on MacConky Agar Typical colony morphology on XLD Agar Reagents used in PCR ZR Bacterial DNA miniPrep Tm The components of the Maxime PCR Pre Mix kit(i-Taq) Mixture of the specific interaction for diagnosis gene The optimum condition of detection Level of contamination Numbers and percentages of isolates in the study Total numbers of isolates in the study Biochemical tests used in identification of isolates Gene 16s ribosomal RNA gene Multiple sequences of <i>Klebsiella pneumoniae</i> 16s Ribosomal RNA gene Multiple sequences of <i>Enterobacter asburiae</i> of 16s ribosomal RNA gene Total viable bacterial counts Coliform counts

List of Figures

Series	Titles	page
Figure 3.1.	Gel electrophoresis of genomic DNA extraction from	37

Figure 3.2.	bacteria Gel electrophoresis of genomic DNA extraction from 40 bacteria	
Abbreviation	Key or full name	

Figure 3.3.	Working the electrophoresis system	41
Figure 4.1.	Morphological characters of isolates colonies	49
Figure 4.2.	Biochemical tests	51
Figure 4.3.	PCR product the band size 1250bp	53
Figure 4.4.	Represent type of polymorphism of Klebsiella	55
	pneumoniae of 16s ribosomal RNA gene	
Figure 4.5.	Neighbor – joining tree Klebsiella pneumoniae of 16s	56
	ribosomal RNA gene	
Figure 4.6.	Neighbor – joining tree Klebsiella pneumoniae of 16s	57
	ribosomal RNA gene	
Figure 4.7.	Multiple sequences of KLebsiella pneumoniae of 16s	60
	ribosomal RNA gene	
Figure 4.8.	Represent type of polymorphism of Proteus mirabilis of	62
	16s ribosomal RNA gene	
Figure 4.9.	Neighbor – joining tree Proteus mirabilis of 16s	63
	ribosomal RNA gene	
Figure 4.10	Neighbor – joining tree Proteus mirabilis of 16s	64
	ribosomal RNA gene	
Figure 4.11	Multiple sequences of Proteus mirabilis of 16s	66
	ribosomal RNA gene	
Figure 4.12	Represent type of polymorphism of Enterobacter	68
	asburiae of 16s ribosomal RNA gene	
Figure 4.13.	Neighbor – joining tree Enterobacter asburiae of 16s	69
	ribosomal RNA gene	
Figure 4.14.	Neighbor – joining tree Enterobacter asburiae of 16s	70
	ribosomal RNA gene	
Figure 4.15.	Multiple sequences of Enterobacter asburiae of 16s	73
	ribosomal RNA gene	
Figure 4.16	Coliform counts on MacConkey Agar	77
Figure 4.17.	Total viable bacterial count on Muller Hinton Agar	77
Figure 4.18	Sensitivity of isolates to antibiotics	79

BLAST	Basic local alignment search toolp
BP	Base Pair
CFU	Colony Forming Unit
DNA	Deoxyribonucleic Acid
dNTP	Deoxyribonucleotide triphosphate
ESBL	extended spectrum Beta lactamase
EDTA	Ethylene Diamine Tetra-acetic acid
EMB	Eosin Methylene blue Agar
EtBr	Ethidium Bromide
ID	Identifier number
Mac	MacConkey Agar
μm	Micromole
Mg	Milligram
MI	Mole
mM	Mill Molar
MDR	Multi Drug Resistant
NCBI	National Center for Biotechnology Information
nM	Nano molar
PBS	Peptone Buffer Solution
PCR	Polymerase Chain Reaction
RPM	Revolutions per minute
RNA	Ribonucleic Acid
SS	Salmonella Shigella Agar
TSI	Triple Sugar Iron
Taq	Themus aquaticus
TAĒ	Tries-acetate EDTA
TBC	Total bacterial count
TC	Total count
TE	Tries-EDTA
Tm	Melting temperature
TDB	Dry Block thermostat
XLD	Xylose-lysine Desoxycholate Agar
UV	Ultra Violet
WHO	World Health Organization
	List of abbreviation

1.1. Introduction:

Food safety issues are becoming more important in international trade (Kenneth H. Mathews, Jr. *et al 2014*). Outbreaks of food – borne diseases have leading to

considerable illness and even death (Quintavalla and Vicini 2002). It has found that every year there are between 24 to 81 million cases of food- borne illness every year and out of which 50% are associated with meat and poultry (Gravani 1987; Mcbean, 1988; Albrecht 1986)

The increase in chicken meats' consumption is associated with the high nutritional value, lower cost, conveniences, and various aspects for the consumer (Islam *et al.*, 2004).

It is believed that meat from healthy animals is free from microorganisms. Meat contamination occurs due to the handling of raw meat and transmitted by the liquid in raw meat more than cooked meat (Javadi and Saeid, 2011; Koffi-Nevry *et al.*, 2011; Darshana *et al.*, 2014).

Slaughter shops in the markets usually has various sources of meat contamination with microbes as skin, attached soil, and the contents of the animal's digestive tract. Fecal materials are a significant source of contamination via direct deposition and indirect contact through contaminated tools used in slaughtering, cutting and transport, as well as people working in the slaughterhouses (Holzapfel, 1998; Borch and Arnder, 2002; Mead, 2004; Salihu *et al.*, 2010; Keshab, 2015).

The refrigerated poultry meat would be spoilage when stored for an extended period due to the microorganism actions and the biochemical transformations inside the product (Asghar *et al.*, 1988).

In Iraq, poultry slaughtered manually, therefor contaminated by different microorganisms bacteria, fungus even parasites from soil or contaminated earth with other poultry wastes (Fayad and Naji, 1989).

Multiplex PCR technique is used to identify the organisms (Edel *et al.*, 2008; Lee *et al.* 2009). This technique detects the microorganism with high sensitivity and specificity (Anbazhagan *et al.*, 2010). The mechanism work of PCR depends on replicating the DNA segment for the identification of microorganisms (White *et al.*, 2013).

1.2. Aims of study:

1. Isolate and Identified Enterobacteriaceae of zoonotic importance from chicken's meat.

2. Simultaneously detect some of the Enterobacteriaceae isolates from chicken's meat through Multiplex PCR based method.

3. Determine the level of meat contamination

4. Determine the sensitivity of isolates to most commonly used antibiotics.

2. Literature Review

2.1. Introduction

Poultry meat is considered a main source of meat in the world (Kearney, 2010). Chicken and turkey are the major types of poultry meat. Chicken meats comprise