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Reinforcing Struts and Ties in Concrete Ring Deep Beams - 
Behaviour and Strength 

 

ABSTRACT 

The current research work aims at studying the behavior and strength of 

reinforced concrete ring deep beams when replacing the conventional 

reinforcement by reinforcing the struts and ties only. The paths of the 

compressive struts and tensile ties are defined through adopting the STM of 

Chapter 23, ACI 318M-19. The experimental program contained casting and 

testing eight specimens divided into three groups, A, B and C. Group A and 

B contained the specimens that had a ring diameter of 1000 mm, a height of 

400 mm, a width of 120 mm, strut-tie angle of 30°, and they rest on 3 

supports. While group C contained the specimens that had a ring diameter of 

1000 mm, a height of 400 mm, a width of 100 mm, strut-tie angle of 38°, and 

they rest on 4 supports. More specifically, Group A contained three 

specimens in which the first one was the conventionally reinforced control 

ring deep beam.  

The second specimen was solid ring deep beam in which only struts and ties 

are reinforced, while the third specimen was proposed frame that took its 

geometry and dimensions from the stress paths of STM, ACI 318M-19. The 

first specimen in Group B was a solid control ring deep beam in which only 

ties were reinforced, while the second specimen was the proposed frame in 

which only ties were reinforced. Finally, group C contained three 4-

supported specimens that had a width of 100 mm. The first one was the solid 

conventionally reinforced control specimen. The second specimen was the 

proposed frame in which only struts and ties are reinforced, while the third 

one was the proposed frame in which only ties are reinforced. All specimens 

were tested using increasing monotonic static single midspan concentrated 

force.
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The experimental ultimate capacity load, load-deflection response, load-

lateral displacement response, first crack load, deflection at first crack, 

cracks characteristics such as type, width and propagation, average strain 

values in concrete surface, strain in steel bars, deflection at ultimate load 

capacity in addition to failure modes and failure loads are recorded and 

studied. It was concluded that the behavior of both the reference and 

proposed specimens is approximately similar except at the final loading 

stages. The proposed specimens did not exceed the reference specimens in 

terms of experimental ultimate capacity, but in all cases, they exceeded the 

theoretical STM, ACI 318M-19 design load. Wherefore, the specimens in 

groups A, B, and C showed a decline in the experimental ultimate capacity 

compared with their reference specimens by about 10.7-31%, 13.4% and 

12.9-15.6%, respectively, but in all cases, their theoretical design loads of 

STM, ACI 318M-19 remained less than the experimental ultimate capacity 

by about 2.5-32.9%, 22.4-32.8% and 13.6-33.1%, respectively. That is why, 

it is possible to conclude that the STM of ACI 318M-19 is very effective in 

analyzing reinforced concrete ring deep beams, despite its conservatism. 

It is worth to mention that the proposed specimens were less in 

weight and cost in addition to providing opening for services by about 10.28-

29.61%, 4.04-20.01%, and 23.48-30.16%, respectively in comparison with 

the solid reference specimens. It is also worth to mention that increasing 

number of supports from 3 to 4, i.e. decreasing shear span/effective depth 

ratio (a/d) by 25%, leads to increase load capacity by about 13.6-47.6%. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General  
 Curved members are back in the spotlight after Zaha Hadid's 

famous architectural rework. Architects and civil engineers re-evaluated 

curved beams from other perspectives. Noting that it is not new that it has 

been found advantageous to use horizontally curved beams or bow girders 

in building and bridge design. Arched in plan beams constructing 

considerably utilized for balcony in building, occasionally on the structure 

of the bridge and other structures. Meantime, domes, silos, circular tanks, 

offshore structures, and other structures use ring beams with a completely 

circular plan. Because of their high load resistance, industries have relied on 

ring deep beams (Al Qaicy, et al., 2014). 

Beam members whose axis are curved in the plan are ordinary 

continuous and monolithic with columns in reinforced concrete building. 

Figure (1-1) shows examples of horizontally curved beams in a building 

construction. This building is called "The First Round Office Building in the 

World" (Lee, 1956).  
   

Figure (1-1): Round Office Building, (Lee, 1956) 
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Deep beams, according to the ACI 318M-19 Code are defined as: 

''Structural Members supported on one face and loaded on the opposite face 

so that struts-similar compression elements can expand between the supports 

and the loads, that state (1) or (2): 

1) The clear span of the beam must not be more than four times the 

overall depth of the beam h. 

2) Concentrated loads are those that occur within 2h of the support face." 

In mathematical forms, (a/h  2) should be taken into consideration for 

simple span deep beams and continuous deep beams. 

1.2 Modeling with Struts and Ties (STM) 

Struts and Ties Modeling is a method of analyzing and designing 

the reinforced concrete deep structures and reinforced concrete deep 

prestressed structures. STM simplifies complex states of stress in a structure 

and suggests simple stress paths. The STM approach is based on the idea that 

any stresses within a deep structure are transported along valid and consistent 

paths from one point to another. The stress paths cause uniaxial stresses in 

suggested truss members. Truss members in compression are named struts, 

whereas the force paths in tension are called ties. The junctions of ties - struts 

are called nodes as shown in Figure (1-2). The combination of ties, struts and 

nodes is named a truss mechanism.  

 

Figure (1-2): Description of strut and tie model, (ACI 318M-19) 
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Struts are the resultant of the stress fields which are compression 

chords of the truss mechanism. Struts are located diagonally through the 

structure and transfer shear to supports. When struts are located diagonally 

and transfer shear, a crack appears along the strut under loading. Within the 

analysis stage, node equilibrium and overall equilibrium are considered. 

Empirical observation of ties, struts, and nodes is used to determine the 

constitutive relevance of these elements in order to set the yield conditions 

for these elements. As a result, strut and tie models follow the lower-bound 

of plasticity theory, which states that only yield conditions and equilibrium 

must be persuaded (Brown and Bayrak, 2006). According to the lower-bound 

of plasticity theory, if the load is large enough to allow the discovery of a 

stress distribution that is identical to stresses at the yield surface while 

maintaining external and internal equilibrium, the load will not cause the 

body to collapse (Nielsen, et al., 1978). More specifically, the capacity of a 

structure will be at most to or less than the actual collapse load, as determined 

by an approach lower bound. 

1.3 Regions of Discontinuities in Reinforced Concrete Members 

the element in a structure or in a reaction or 

concentrated load is changed as shown in Figure (1-3), an abruption in the 

that the stresses, because of bending and axial load, have linear distribution 

at a distance approximately equals to member height far from the 

discontinuity. For this reason, discontinuities are described as extending h 

from the section that change in geometry or load (ACI 318M-19). Therefore, 

a structural element can be divided into the following regions:    
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Loading discontinuities  Geometric discontinuities  

Figure (1-3): Typical D regions, (ACI 318M-19, Chapter 23) 

 

 B Regions: They are the parts of a member that can be used to 

solve the "plane section" assumptions of the conventional beam 

theory using a sectional design approach. In this region where the 

Bernoulli hypothesis of plane strain distribution is valid, a structure 

can be considered as a sectional block. 

 D Regions: When the region in a structure includes nonlinearity 

such as concentrated load, corners, opening or other geometric 

discontinuities, the Bernoulli hypothesis can no longer be utilized 

for design or analysis. They're all the areas outside of the B zones 

where cross sectional planes don't stay plain after loading. When 

there are discontinuities or disturbances in the distribution of stress 

at parts of a structure member, D regions are commonly assumed 

(ACI 318M-19).  
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1.4 Elements of Strut and Tie Model  

1.4.1 Struts  

In strut-tie models, struts are the components that carry 

compressive stresses. The geometry of a strut is determined by the applied 

load type. According to Nielsen et al. (1978), there are three types of struts: 

(a) Prismatic Strut: the most fundamental type of struts. The width of a 

prismatic strut is constant throughout its length, as shown in Figure (1-

4). When the compressive stresses are limited by the neutral axis, such a 

strut can exist in a beam. A prismatic strut is a representation of a beam's 

compressive stress block in a section of constant moment (Brown and 

Bayrak, 2006). 

(b) Bottle-Shaped Strut: A bottle-shaped strut can be developed because the 

compressive stresses flow is not restricted to a part of a structural 

element, as shown in Figure (1- ). The load is applied to a small area in 

this case, as stress flows through the member, it dissipates. The stress 

changes direction when it divides and forms an angle with the axis of the 

strut. In order to maintain equilibrium, a tensile force is developed to 

prevent the lateral component of the angled compression forces. 

(c) Compression Fan Strut: It is specialized due to the fact that it focuses 

care on such a small area. Stresses cause a radial flow from a large to a 

smaller area. When large uniform loads flow into a support, a 

compression fan is formed, as shown in Figure (1- ). Because the forces 

are collinear and there are no tension components perpendicular to the 

fan zone, the tensile stresses developed have no value (Brown and 

Bayrak, 2006). 
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Figure (1-4): Geometric shapes of struts,(El-Metwally and 
Chen, 2018) 

1.4.2 Ties  

Ties are the elements that carry tension, are mostly restricted to 

reinforcing. Therefore, the geometry of a tie is so simpler than the strut or 

the node. Geometrically, the tie is limited to elements can carry high tensile 

strengths, and the allowed force is derived mainly from the yield force.      

Ties are made up of deformed rebar, prestressing rebar, or both, as 

well as an enclosure concrete section concentric to the axis of the tie. The 

model almost never considers that the enclosure concrete can stand axial 

force. While the elongation of the tie is reduced, the strain in the tie, which 

under service loads is particularly useful, is also strengthened. The area 

where the ties and struts are to be anchored is also specified. 
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1.4.3 Nodes  

Nodes are the points at which the strut axes, ties and concentrated 

forces intersect, representing the joints of a strut and tie model (ACI 318M-

19). The location at which forces are redirected within a strut and tie 

modeling is another way of defining a node. To maintain equilibrium, at least 

three forces should be acting on a given node of the model, on the basis of 

the forces that act on them, nodes are listed as follows (Fu, 2001):  

 C-C-C: that implies the node that resists three compression forces.  

 C-C-T: that implies the node that resists two compression forces and              

one tensile force.  

 C-T-T: that implies the node that resists one compression force and              

two tensile forces. 

 T-T-T: that implies the node that resists three tensile forces. 

 C-C-C-T-T: that implies the node that resists three compression forces and              

two tensile forces (internal node in a continuous deep member). 

The amount of concrete presumed to transfer strut and tie forces 

through the node is referred to as the nodal region, Figure (1-5). The early 

strut and tie models used hydrostatic nodal zones, which have recently been 

supplanted by extended nodal zones. The hydrostatic term means that in all 

directions, the stress of the plane is the same.  

 

Figure (1-5): Nodal and extended nodal zones, (Brown and Bayrak, 2006) 
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1.5 Torsion in Reinforced Concrete Members 

When the external loads are applied at a distance from the vertical 

bending plane, or beam subjected of the twisting about its longitudinal axis, 

the beam behaves as a torsional member, in addition, shearing force and 

bending moment. Figure (1-6) shows two examples on the members 

subjected to twisting moment (Ghoeim, Mihilmy, 2007).  

In reinforced concrete structures, the torsion can be classified into 

two main types; primary torsion, usually called equilibrium torsion, exists in 

the case of supporting the external load by the torsional moment. The 

torsional moments play a role in achieving the equilibrium such as the 

cantilever slabs. The applied load to the slabs surface causes torsional 

moments that act along the span of the supported beam. They are equated by 

the internal resistance torque supplied at the columns. 

The second type of torsion is called secondary torsion, also named 

statically indeterminate torsion which exists between adjacent members of 

structure. In this case, an internal resistance arises from the requirements of 

continuity. Neglecting the continuity in the design and analysis will lead to 

significantly cracking, but this will not lead to collapse. An application of 

secondary torsion can be seen in the edge beam supporting concrete panel. 

 
(a) 

 
(b) 

Figure (1-6): (a) Cantilever canopy, (b) Spandrel beam, ( Ghoeim, Mihilmy, 2007) 
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If the edge beam has small torsional stiffness and does not contain torsional 

reinforcement, the cracks will occur and cause reduction in torsional stiffness 

and the slab edges will work as a hinged edge. If the moment is taken into 

account in design, the collapse will not occur (McCormac, et al. 2014). 

1.6 Horizontally Curved Beams  

The horizontally curved beam, unlike a straight beam, the neutral 

axis and the centroidal axis are not coincident of a horizontal curved beam. 

Furthermore, stresses do not vary linearly from the neutral axis (Anderson, 

et al. 1950). In horizontally curved beam, torsional moments occur because 

the reactions and the applied loads do not lie over the main axis along the 

curved beam. These torsional moments become zero at the midspan between 

any two successive columns in case of a circular beam that supported by 

equally spaced columns. Maximum torsional moments grow at sections 

closer to the supports in addition to the zones where the bending moment is 

zero, the maximum torque takes place at the points of contraflexure as shown 

in Figure (1-7). Furthermore, at sections between the supports, positive 

maximum bending moments develop, while, the maximum negative bending 

moments occur at the support sections. As for the shear forces, they are 

maximum at the support sections. 

 
Figure (1-7): Maximum moments and shear locations in curved beam segment, 

(Anderson et al. 1950) 
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The difference in design and analysis between the straight beams 

and the in-plan horizontally curved beams is fundamentally because of the 

presence of torsional movements caused by vertical load. Therefore, for such 

members, it is important to design both the twisting moments and the internal 

bending moments as well as the transverse shear. The capability of resisting 

torsional moment is expressed by torsional rigidity. That is defined as the 

torsional moment, which, when applied to one free to rotate end, produces a 

unit angle of twist with respect to the other end assumed to be completely 

fixed (Andersen, et al.1953). The greater the torsional rigidity, the greater 

the resistance to the torque. The value of torsional rigidity depends on the 

shape of the section. It was found that the box sections have comparatively 

large values of torsional rigidity (Iyse, I., 1941) and, that is why are widely 

used in bridge design. However, the rectangular section is also commonly 

used.  

1.7 Objectives of the current study  

The main objective of the present work is to investigate the 

behavior of reinforced concrete ring deep beams through using STM of ACI 

318M-19, especially when reinforcing the stress paths of the struts and ties. 

In other words, omitting of the concrete zones that are not located in the 

stress paths of the struts and ties. Thus, that leads to a decrease in weight and 

saving in cost while keeping the same theoretical design load of STM, ACI 

318M-19. 

1.8 Layout of the Thesis 

The current thesis consists of five chapters which can be summarized as 

follows:  

 Chapter One presents a general introduction about RC deep ring 

beams, STM, horizontal curved beam, analysis of ring deep beam, and 

the study objectives.  
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 Chapter Two presents a review of some experimental, theoretical and 

numerical previous research works that are achieved on reinforced 

concrete deep ring beams, horizontally curved beams, curved continuous 

deep beams in addition to the validation of STM.   

 Chapter Three deals with the properties of the utilized construction 

materials in addition to the experimental work plan.  

 Chapter Four deals with the test results of specimens, evaluating and 

discussing the experimental results of the current study.  

 Chapter Five provides the main conclusions drawn from the current 

study, recommendations, and suggestions for further studies. 

 


