Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

Prediction of Cost and Delay of Construction Projects Using Artificial Intelligence Techniques

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

> By Mohammed Hadi Ali BSc. Civil Engineering, 2018

Supervised by Ass. Prof. Dr. Abbas Mahde Abd

2021 A.D

IRAQ

1443 A.**H**

بِسَمِ ٱللهِ ٱلرَّحْمَنِ ٱلرَّحِيمِ

﴿ هَٰذَا بَيَانٌ لِّلَنَّاسِ وَهُدًى وَمَوْعِظَةٌ لِّلْمُتَّقِينَ)

صَدَّقَ اللهُ الْعَظِيمِ سُورَة ال عُمْرَان الاية (١٣٨)

Supervisor Certification

We certify that the thesis entitled "Prediction of Cost and Delay of Construction Projects Using Artificial Intelligence Techniques" presented by "**Mohammed Hadi Ali**" was prepared under our supervision in Civil Engineering Department, University of Diyala, in partial Fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering.

Signature:

Asst. Prof. Dr. Abbas Mahde Abd

Supervisor

Date: / /2021

In view of the available recommendations, we forward this thesis for debate by the Examining Committee.

Signature:

Name: Prof. Dr. Wissam D. Salman

Title: Head of Department of Civil Engineering

Address: University of Diyala

Date: / /2021

Scientific Certification

I certify that this thesis entitled "Prediction of Cost and Delay of Construction Projects Using Artificial Intelligence Techniques" presented by "Mohammed Hadi Ali" has been evaluated scientifically, therefore, it is suitable for debate by the examining committee.

Signature.....

Name: Prof. Dr. Walid Mustafa Kamas

Address: University of Baghdad/ College of Engineering

Date: / / 2021

Signature.....

Name: Assist. Prof. Dr. Mervit Razak Wali

Address: University of Baghdad/ College of Engineering

Date: / / 2021

Linguistic Certification

I certify that this thesis entitled "Prediction of Cost and Delay of Construction Projects Using Artificial Intelligence Techniques" presented by "Mohammed Hadi Ali" has been corrected linguistically, therefore, it is suitable for debate by the examining committee.

Signature.....

Name: Assist. Prof. Dr. Luma Ibrahim Shaker

Address: University of Diyala/College of Education for Human

Science

Date: / / 2021

Examining Committee Certification

We certify that we have read the thesis entitled "Prediction of Cost and Delay of Construction Projects Using Artificial Intelligence Techniques" and we have examined the student "Mohammed Hadi Ali" in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

Examination Committee	Signature
Assist. Prof.Dr.Hatim Abdul-Kareem Rashid(Member)	•••••
Assist. Prof. Dr. Saad Albawi (Member)	•••••
Asst. Prof. Dr. Abbas Mahde Abd (Supervisor)	•••••
Assist. Prof. Dr. Sedqi Esmaeel Rezouki (chairman)	•••••
Prof. Dr. Wissam D.Salman (Head of Department)	•••••••

The thesis was ratified at the Council of College of Engineering / University of Diyala.

Signature

Name: Prof. Dr. Anees Abdullah Khadom Dean of College of Engineering / University of Diyala Date: / /2021

DEDICATION

I dedicate this thesis to;

My Dear Father

The man who did not know the taste of comfort in order to provide all the requirements of family life.

> *My Dear Mother* The tree that is fruitful in my life.

My Brothers and Sister The courage and importance you bring to me when I leave the house each day are unparalleled.

My Dear wife That was always supporting me up until this beautiful moment.

My best Friends Those who leave us happy things that make me smile when life seems bleak.

ACKNOWLEDGEMENTS

Thanks to Allah firstly and lastly...

I would like to express my great gratitude and appreciation to everyone who helped me in performing this study:

I would like to express my sincere gratitude to Dr. Abbas Mahde Abd for his valuable comments, excellent guidance, and lots of patience. His unprecedented and continuous support.

To the Department of Civil Engineering, College of Engineering Diyala university represented by the Head Prof. Dr.Wissam D.Salman and all the academics and staff.

To the Deanship of the College of Engineering for assisting in overcoming the difficulties.

I would like to express my gratitude to the Al-Zawraa State Company in Baghdad Governorate especially the Engineer Essam that gave me necessary data during the period of the study also sharing expertise, sincere, and valuable guidance.

To all engineers working in Engineering Affairs Department in University of Diyala who helped me by their notices and information.

Last but not least, I own a very special thanks to my friends and colleagues Eng. Hayder R. Abed, Senior Lecture Dr.Ali Ahmed Mohammed, Eng. Ali Ghalib Idris and Eng.Wissam Abdul Latif for their help and support throughout the courses of my study.

ABSTRACT

Artificial Intelligence as Smart Optimization Tool in Construction Projects Management

By

Mohammed Hadi Ali

Supervised By:

Ass. Prof. Dr. Abbas Mahde Abd

The construction industry is subject to a high level of risks and uncertainties than any other industry. In reality, most participants experience risks in cost and time overruns and often fail to meet quality standards and operational requirements. In order to overcome these risks and make decisions with high accuracy, traditional and smart techniques have been applied to predict the cost and delay of construction projects with a high degree of accuracy and minimal errors.

This aimed to investigate the research accuracy of five Artificial Intelligent techniques (Artificial Neural Network, Support Machine. Extreme Learning Machines. Artificial Neural Vector Network-Particle Swarm Optimization, and the Adaptive Neuro-Fuzzy Inference System) to demonstrate the impact of risk factors on and delay of construction projects. These prediction the cost techniques were represented through a virtual graphical user interface allowing the user to ease and clarify use.

This study collected data from 47 construction projects from the AL-ZAWRAA state company in Baghdad city. Thus, the factors of risk were specified as well as analyzed employed Probability and Impact Analysis which were adopted as the inputs of the models. In contrast, the outputs of models were represented contractor's profit ratio to the costs of project and the delay in the construction project.

vii

Root Mean Squared Error (RMSE), correlation coefficient (R), and the coefficient of determination (R^2) were utilized as the indices of performance of the models to evaluate the results accuracy.

The results showed that the optimal method based on root mean squared error, and enabling to predict the cost and delay of projects was (ELM) with percentage (0.003) while the optimal method based on correlation factor and coefficient of determination were (ANFIS and ELM) with percentage (0.999, 0.999) and (0.999, 0.999) respectively.

It was concluded that artificial intelligence techniques could be used as successful tools to solve essential problems in construction projects, especially in estimating the costs and delays. Besides, it supported construction companies in analyzing and evaluating risks affecting the management of new projects.

Table of Contents

Number	Subject	Page
	Supervisor Certification	i
	Scientific Certification	ii
	Linguistic Certification	iii
	Examining Committee Certification	iv
	DEDICATION	v
	Acknowledgements	vi
	ABSTRACT	vii
	Table of Contents	ix
	List of Figures	xiii
	List of Tables	xvi
	List of Abbreviations	xviii
Chapter One	Introduction	
1.1	General	1
1.2	Research Problems and Justifications	2
1.3	Research Aims and Objectives	3
1.4	Research Scope and Limitations	4
1.5	Research Methodology	5
1.7	Review of Previous Studies	6
1.6	The Structure of the Thesis	10
1.8	Summary	11
Chapter Two	Literature review	
2.1	Introduction	13
2.2	Cost Management	14
2.2.1	Types of Construction Cost Estimates	16
2.2.2	Purpose of cost estimation	18
2.3	Delay in Construction Projects	19
2.3.1	Definition of Delay	21
2.3.2	Types of Construction Delays	22
24	Risk factors affecting on construction project	23
2.7	management	23
2.4.1	Owner risk-related factors	24
2.4.2	Contractor risk-related factors	25
2.4.3	Consultant risk-related factors	25
2.4.4	Organization risk-related factors	26
2.4.5	Resources of project risk-related factors	27
2.4.6	Natural risks related factors	28
2.4.7	Political and environmental risk related factors	29
2.4.8	Financial & economic risk-related factors	30
2.4.9	Design risk-related factors	30
2.4.10	Management and contract risk-related factors	31

2.5	Summary	32
Chapter	Artificial intelligent techniques	
Three		
3.1	Introduction	33
3.2	Artificial neural networks (ANNs)	33
3.2.1	Artificial neural network operations	35
3.2.2	Activation function	37
3.2.3	Architecture of neural networks	38
3.2.3.1	One -layer feed-forward networks	39
3.2.3.2	Feed-forward networks	39
3.2.3.3	Recurrent networks	41
3.3	Support vector machines (SVMs)	41
3.3.1	Support vector machines operation	42
3.4	Fuzzy logic	43
3.4.1	Membership functions	45
3.4.2	Rules of fuzzy	47
3.4.3	Fuzzy set operations	47
3.4.4	Defuzzification	47
3.5	Extreme learning machine (ELM)	48
3.6	Optimization	49
3.6.1	Particle swarm optimization	50
3.7	Hybrid ANN-PSO	51
3.8	Adaptive Neuro-Fuzzy Inference System (ANFIS)	52
3.8.1	(A.N.F.I.S) operation	53
3.9	Summary	56
Chapter	The Framework for identifying the project risks	
Four	and performance of the AI models	
4.1	Introduction	57
4.2	Data Collection	57
4.3	An overview of AL-ZAWRAA state company	58
4.4	Identification of Risk Factors	59
4.5	Assessment of Risk Factors	59
4.6	Input and Output Data for AI Techniques	60
4.7	Program Used	61
4.8	Model Structure	62
4.9	Performance Evaluation of AI Techniques	63
4.9.1	Correlation coefficient (R)	63
4.9.2	Coefficient of determination (R^2)	63

4.9.3	Root mean square error (R.M.S.E)	64
4.10	Summary	65
Chapter Five	Results and discussions	
5.1	Introduction	66
5.2	Using A.N.N for developing the cost&delay	66
5.2	prediction models	00
5.2.1	Data and Preparation	66
5.2.2	Model architecture	67
5.2.3	Developing model	67
5.2.4	Results and discussion	70
53	Using A.N.N-P.S.O for developing the cost&delay	73
5.5	prediction models	73
5.3.1	Model architecture	73
5.3.2	Developing model	74
5.3.3	Results and discussion	77
5 4	Using A.N.F.I.S for developing the cost&delay	80
5.4	prediction models	00
5.4.1	Data and preparation	80
5.4.2	Model architecture	81
5.4.3	Developing model	81
5.4.4	Results and discussion	83
55	Using A.N.F.I.S for developing the cost&delay	86
5.5	prediction models	00
5.5.1	Building the model	86
5.5.2	Results and discussion	89
5.6	Using S.V.M for developing the cost&delay	92
5.0	prediction models	
5.6.1	Model architecture	92
5.6.2	Developing model	93
5.6.3	Results and discussion	95
	A comprehensive summary of AI prediction	
5.7	techniques and visualization in a graphical user	98
	interface	
5.7.1	Choosing the optimal technique	98
5.7.2	visualization of AI prediction techniques in a	100
	graphical user interface(GUI)	100
5.8	Summary	102
Chapter Six	Conclusions and Recommendations	1.0.0
6.1	Introduction	103
6.2	Conclusion	103
6.3	Recommendations	103
6.4	Suggestion of Future Studies	104
	REFERENCES	105

Appendix	
Arabic Abstract	

List	of F	igures
------	------	--------

Figure	Title	Page
1.1	The Research Methodology	5
2.1	Cost Management steps (Stephenson and FAACE, 2015)	16
2.2	Types of construction delays	23
3.1	The difference between the artificial and biological neural networks	35
3.2	A typical neuron in an artificial neural network (ANN)	35
3.3	Process of neural network (Shahin, et al., 2008)	36
3.4	The types of activation function	37
3.5	(a) The Hyperbolic Tangent Function (Karlik,2011),(b) The Logistic Sigmoid Function (Karlik,2011)	38
3.6	One-layer feed-forward network	39
3.7	Multiple Layer Perceptron (Zare, et al., 2013)	40
3.8	General Feed Forward networks organization (Principe, et al., 2010)	41
3.9	General model of SVM	42
3.10	The general structure of the fuzzy logic	45
3.11	Type of membership functions	46
3.12	The structure of ELM	49
3.13	The algorithm of the PSO	51
3.14	Hybrid particle swarm optimization algorithm flow chart	52
3.15	ANFIS operation	56
4.1	Proposed framework to assess construction project risk factors	60
4.2	The structure of MATLAB program	62
4.3	The structure of model	63
5.1	Developing ANN model in Matlab	67
5.2	The ANN architecture.	69
5.3	Impact of the number of neurons on RMSE value by using ANN-BP model : (a) Output = cost; (b) Output = delay	70
5.4	The result of measured and predicted output (output=cost): (a) The phase of training of ANN-BP model and (b) The phase of testing of ANN-BP model.	71
5.5	The prediction of cost in the phase of testing via employing the model of (ANN-BP).	71
5.6	The result of measured and predicted output (output=delay): (a) The phase of training of ANN-BP model and (b) The phase of testing of ANN-BP model.	72
5.7	Delay prediction in the phase of testing via employing the model of (ANN-BP).	73
5.8	Developing ANN-PSO model in Matlab	74

5.9	The swarm size impact upon the value of (RMSE) using ANN-PSO model:(a) Output = cost and (b) Output = delay.	76
5.10	Impact of the number of neurons on RMSE value using ANN-PSO model: (a) Output = cost and (b) Output = delay.	76
5.11	The result of measured and predicted output (output=cost): (a) The phase of training of (ANN-PSO) model and (b) The phase of testing of (ANN-PSO) model.	77
5.12	Cost prediction in the testing phase using ANN-PSO model.	78
5.13	The result of measured and predicted output (output=delay): (a) The phase of training of (ANN-PSO) model and (b) The phase of testing of (ANN-PSO) model.	79
5.14	Delay prediction in the testing phase using ANN-PSO model.	80
5.15	Neuro-Fuzzy Designer architecture.	81
5.16	A.N.F.I.S model architecture.	82
5.17	The optimization methods impact upon the value of (RMSE) employing the model of (ANFIS): (a) Output = costand (b) Output = delay.	83
5.18	The result of measured and predicted output (output=cost): (a) The phase of training of (A.N.F.I.S) model and (b) The phase of testing of (A.N.F.I.S) model.	84
5.19	Cost prediction in the testing phase using ANFIS model.	84
5.20	The result of measured and predicted output (output=delay): (a) The phase of training of (A.N.F.I.S) model and (b) The phase of testing of (A.N.F.I.S) model.	85
5.21	Delay prediction in the testing phase using ANFIS model.	86
5.22	ELM architecture.	88
5.23	Impact of the number of neurons on RMSE value using ELM model: (a) Output = cost; (b) Output = delay.	89
5.24	The result of measured and predicted output (output=cost): (a) The phase of training of (ELM) model and (b) The phase of testing of (ELM) model.	90
5.25	Cost prediction in the testing phase using ELM model.	90
5.26	The result of measured and predicted output (output=delay): (a) The phase of training of (ELM) model and (b) The phase of testing of (ELM) model.	91
5.27	Delay prediction in the testing phase using ELM model.	92
5.28	Regression Learner architecture.	93
5.29	Kernel Function Impact upon te value of (RMSE): (a) Output = cost and (b) Output = delay.	94

5.30	The result of measured and predicted output (output=cost): (a) The phase of training of (SVM) model and (b) The phase of testing of (SVM) model.	95
5.31	Cost prediction in the testing phase using SVM model.	96
5.32	The result of measured and predicted output (output=delay): (a) The phase of training of (SVM) model and (b) The phase of testing of (SVM) model.	97
5.33	Delay prediction in the testing phase using SVM model.	97
5.34	Result among the indices of performance of the (AI) models for cost prediction.	100
5.35	Result among the indices of performance of the (AI) models for delay prediction.	100
5.36	Graphical User Interface (GUI) of the AI models.	101

List of Tables

Table	Title	Page
1.1	The Reviews of Previous Studies	6
1.2	Result of the proposals based on risk factors that affect	0
	construction project management	9
2.1	Three types of construction cost estimating methods.	19
	(Holm et al., 2005)	10
5.1	Performance of the ANN model for different	68
	architectures (output = Cost)	08
5.2	Effect of Activation Function on ANNs Performance	68
	(output=cost)	00
5.3	Performance of the ANN model for different	68
	architectures (output = Delay)	00
5.4	Effect of Activation Function on ANNs Performance	69
	(Output=delay)	07
5.5	The number of neurons impacts on ANN-PSO	74
	performance (output = cost).	, ,
5.6	The number of particles impacts on ANN-PSO	75
	performance (output = cost).	75
5.7	The number of neurons impact on ANN-PSO	75
	performance (output = delay).	15
5.8	The number of particles impact on on ANN-PSO	75
	performance (output = delay).	, 0
5.9	Table (5.9) The optimization methods impact on ANFIS	82
5 10	performance (output=cost)	
5.10	The optimization methods impact on on ANFIS	82
	performance (output=delay)	
5.11	Performance of the ELM model for different Neurons	87
	$\begin{array}{c} (\text{output} = \text{Cost}) \\ \hline \end{array}$	
5.12	effect of Activation Function on ELM Performance	87
5.12	Derformance of the ELM model for different Neurone	
5.15	Performance of the ELM model for different Neurons (output = Delay)	87
5.14	Effect of Activation Function on ELM Performance	
5.14	(output=Delay)	88
5.15	Table (5.15.) Performance of the SVM model for	
5.15	different Kernel Function (output = cost)	93
5.16	Table (5.16) Performance of the SVM model for	
	different Kernel Function (output = delay)	94
5.17	Table (5.17) selection of optimal AI prediction	
	techniques depending of Performance Evaluation (output	98
	$ =\cos t$).	

	Table (5.18) selection of optimal AI prediction	
5.18	techniques depending of Performance Evaluation (output	99
	- delay)	

Abbreviations	Explanation
AI	Artificial intelligence
ANFIS	Adaptive neuro-fuzzy inference system
ANN	Artificial neural network
ANN-PSO	Artificial neural network- particle swarm optimization
СМ	Construction management
СР	Contractor profit
DB	Design-build
DBB	Design-bid-build
DF	Delay factor
ELM	Extreme learning machines
FEM	Finite Element Method
FSM	Finite Strip Method
GA	Genetic algorithm
GFF	General feed forward
GUI	Graphical user interface
ML	Machine learning
MLP	Multilayer perceptron
MPC	Monthly Payment Certificates
PI	Performance indices
QR	Quoted Rates
R	Correlation coefficient
R^2	Coefficient of determination
RF	Risk factor
RMSE	Root mean square error
SM	Site Memorandums
SVM	Support Vector Machine
TD	Total delay
VO	Variation Orders

Chapter One Introduction

1.1 General

The sector of construction has a vital part in enhaencing the developed states economics (Tiruneh et al., 2020). This success of sector is measured via the cost, time and the quality performance of the construction projects. The procedure of construction being exposed to numerous parameters as well as unforeseen variables that outcome from several sources. Such sources avert the projects completion within the identified time and cause a delay risk in the procedure of construction. The delay risk being regarded as a main challenge that is tackled via the firms of construction (Najafi et al., 2018). The delay can be described as an event or action which prolongs the needed time for completing the project specified in a contract. (Cheng et al., 2020) The delay of project possesses an inverse effect upon the performance of project, which results in the overruns of cost and the reduction of productivity. The influence of delay prolongs to comprise the contractor, owner and consultant in the argument, lawsuit and negotiation (Rahimian et al., 2020) and (Chou et al., 2013).

Assessing the costs of project are crucial to the success of project right from the project conceptual phases to its accomplishment. Whereas, the assessment of conceptual cost makes a benchmark for the whole other decisions of project, and the main variations in the thorough project assessments through the construction (also named the overruns of cost) can be harmful to the project accomplishment and success. The cost assessment of construction is the best instance of knowledge-intensive engineering functions. The exactness and completeness in the assessment of cost are subtle topics and can be simply influenced via numerous varios factors. Such cost effective factors can be widely categorized into: (a) the estimatorspecific factors and (b) the design-specific factors (Lu et al., 2017). Where the first type can be govrned by the assistance of the appropriate decision support tools and computer-based algorithms, the second type is highly indirect and more reliant upon the project-specific parameters.

The construction costs analysis for supporting the estimator-specific parameters can be widely categrized into two types of techniques: (a) statistical and model analysis techniques and (b) artificial intelligence techniques. The first type comprises analysis of the costs that utilize the conventional statistical approaches, like via computing the mean, median, variance, standard deviation and so on. Also, this type involves the intricate analysis of multi-variate project circumstances employing the methods of the linear and multiple regression analysis. The second type includes, namely the techniques of Artificial Neural Networks, case-based reasoning, and machine learning (Elfaki et al., 2014). Therefore the author of the current research focused on optimizing the cost and delay using the artificial intelligence (AI) models.

1.2 Research Problems and Justifications

Research problems and justifications are addressed below accordingly:

- The Ministry of Construction and Housing in Iraq addressed the truth that the majority of construction projects surpassed their prearranged time and being delayed. The delay means loss of productivity and incomes, because the contractor cannot get concerned in the else projects. Therefore, the profit of contractor is equivalent to the chance cost of the projects that the contractor loses. The efficient bidding system condition that a contractor with the minimum price of tender gains the project; this is an important reason that results in a deprived performance as well as delays in the public construction projects.
- 2. Because of the feeble performance of the present projects in Bagdad (for various sectors), the projects being entirely very frequently possible for

stumbling, it has often become alike to a phenomenon, making seminars and conferences for discussing such dilemma and trying to arise with recommendations and solutions for treating it.Certain pertinent authorities issued papers warning about the government projects' status from time to time.The existing cost and delay optimization practices are fragile or independable.Therefore, a need for a new technique for optimizing the cost delay in Iraq has become an urgent need.

3. Develop a smart tool using the artificial intelligence techniques to optimize the cost and delay in Baghdad's construction industry can sustain engineers and contractors in planning and optimizing engineers and contractors in a rapid, accurate, and easy procedure.

1.3 Research Aims and Objectives

Development mathematical smart optimization models using five techniques such as artificial neural networks (ANN), support vector machine (SVM), Extreme Learning Machines (E.L.M), artificial neural networks-Particle Swarm Optimization (A.N.N.-P.S.O), and the adaptive neuro-fuzzy inference system (A.N.F.I.S) to estimate the final cost of construction project and risk of delay of items at tendering prepare stage and made comparing between the models in term of accuracy in estimation.

The current aim, there are some objectives must be obtained as follows:

- 1. Investigation and identification of cost risks in construction projects.
- 2. Examining the uses of the five techniques in the field of project management.
- 3. Analyzing the cost risks in the construction projects and this done by adopting quality risk management techniques.
- 4. Analyzing the delay risks in the construction projects and this done by adopting quality risk management techniques.

- 5. Building and validation the mathematical smart optimization models equations to compute the budget of the construction and cost indices for items of the project.
- 6. Representing artificial intelligence predictive techniques with a graphical user interface to allow the user to easily use these techniques.

1.4 Research Scope and Limitations

This study was carried out in a public sector of construction projects in the Baghdad governorate, including the tendering preparation phase. Many building projects implemented in 2020 were collected, so it could apply this kind of risk management process that manages the cost risks generated from risk responses in construction projects without affecting the project's budget preparation.

1.5 Research Methodology

The steps below summarize the methodology that used to achieve the objectives of the study :

1. Literature review

The literature review includes a collection of references related to the research topic such as thesis, papers, books, and website sources, particularly related to artificial intelligence and its application to the cost and delay.

2. Collecting the data

Historical cost data and delay of the project, Project assignment year, and detailed quantities of these projects were gathered.

3. Building the models

This stage involves choosing the software program, selecting the kind of models, and developing models. Furthermore, to execute the models and do training several times and validate the models. Additionally, this stage contains testing the models and discussing the findings carefully.

4

4. Validating the models

Finally, the models developed by the artificial neural network (A.N.N), Support Vector Machine (S.V.M), Extreme Learning Machines (E.L.M), artificial neural network-Particle Swarm Optimization (A.N.N.-P.S.O), and the adaptive neuro-fuzzy inference system (A.N.F.I.S) which validated at this stage, when the best model is found. It Can be summarized the research methodology, as shown in Figure (1.1).

Figure (1.1): The Research Methodology .

1.6 Review of Previous Studies

Table (1.1) summarizes the previous studies based on two issues. The first issue is the intelligent technique used in a proposal. The second issue is the type of validation that is used to prove the applicability of the proposal. Table (1.2) shows the result of surveyed proposals based on risk factors that affect on construction project management. The symbol " \checkmark " means that this factor has been considered in this proposal, while the symbol "-" means that this factor has not been considered.

NO.	Researcher	Technique	Validation
	Previous Studies	on Causes of Delay in	Construction projects
1	S. Kouhestani et al.2020	Build process models to describe the as happened process and make the diagnosis to discover potential reasons for failure and delays. machine-	Process discovery and diagnose .
		learning (ML) system.	
2	Burkina Faso,2020	Retrieve the most frequent command sequences for productivity monitoring and evaluation, hybrid systems (HS).	Pattern extraction.
3	Pan, Y., Zhang,2020.	Discover social networks in the design process to increase collaboration opportunities,(ANN).	Social network analysis.
4	Zhang,2018.	Make intelligent design command predictions towards	Time-series analysis.

Table (1.1):	The Reviews	of Previous	Studies
--------------	-------------	-------------	---------

		automation and							
		intelligence of the							
		design process,(AI)							
	AT Appli	system.	voiest Duration						
_		Cations Concerning Pr							
5	Elfaki, A. O.,	AI, machine-learning	The methodology has been						
	Alalawi, S., α	(IVIL), rule-based	proposed as a standard						
	Adustianul, E. (2014)	systems (KDS),	seat estimation proposals						
	(2014).	(FS) agent based	cost estimation proposais.						
		system (ABS) and							
		hybrid systems (HS)							
6	Marinelli M	Machine-learning	The critical role of the						
U	Petroutsatou	(ML) ANN	implementation of						
	K Fragkakis		appropriate tools and						
	N &		informed decision-making in						
	Lambropoulos.		design and construction and						
	S. (2018).		present alternative solutions						
			of enhanced cost efficiency						
			for the required value for						
			money to be achieved in						
			each of the above projects.						
7	Wauters, M., &	Forecasting with	The technique is employed						
	Vanhoucke, M.	Artificial	as a predictor and to						
	(2017).	Intelligence.	hybridize existing methods						
			and The performance of both						
			Nearest Neighbour purposes						
8	Hashemi S T	Machine learning	By result with previous						
0	Fbadati O M	techniques SN	concentual cost estimation						
	& Kaur H	Applied Sciences	studies						
	(2020).	ripplied Sciences.	studies.						
9	Ji S-H et al	Cost Model CBR.	It relates to provide a						
	(2019).		modified parameter-making						
			process to enhance						
			reliability of a cost						
			estimation.						
	Previous Stud	ies on Cost Risks in C	onstruction projects						
10	Yuan, T.,	A Monte Carlo	To achieve sustainable cost						
	Xiang, P., Li,	simulation.	control, decision-makers						
	H., & Zhang, L.		should pay more attention to						
	(2020).		the effects of cost-estimating						
11			risks.						
	Kostami A &		Line investigation of risk						

	Oduoza, C. F.	ANN.	factors in construction
	(2017).		projects in Italy from
			contractors' perspective.
12	Liu, J., Zhao,	Structural equation	The identification of risk
	X., & Yan, P.	modeling technique.	path scenarios enables
	(2016)		practitioners to gain a better
	(2010).		understanding of the sources
			and impact areas of risks
			and to better deal with the
			rights thereby contributing to
			the granting
10			the practice.
13	Aminbakhsh,	Analytic hierarchy	Adequate prioritization of
	S., Gunduz, M.,	process (AHP).	safety risks during risk
	& Sonmez, R.		assessment is crucial for
	(2013).		planning, budgeting, and
			management of safety.
14	Hwang, B. G.,	Low level of Risk	It can provide an in-depth
	Zhao, X., &	management (RM).	understanding of RM in
	Toh, L. P.		small projects in Singapore
	(2014).		as well as create the
			advantages of (RM)
			satisfactory to the members
			-
			of small projects.
	AI Ap	plications Concerning	of small projects. Project Cost
15	AI Ap Sharma, et al.,	plications Concerning Artificial	of small projects. Project Cost It greatly assists the civil
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre-	of small projects. Project Cost It greatly assists the civilengineers in efficiently using
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk-
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems
15	AI Ap Sharma, et al., (2021).	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga Le	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN)	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems.It suggests a risk evaluation framework utilizing the
15 16	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Ouang Trunga	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018.	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018.	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the company of construction in
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018.	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the company of construction in evaluating the risk and
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018.	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the company of construction in evaluating the risk and assessing their influence
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018.	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the company of construction in evaluating the risk and assessing their influence upon the profit of project for
15	AI Ap Sharma, et al., (2021). Le Hong Haa, Le Hunga, Le Quang Trunga, 2018.	plications Concerning Artificial Intelligence for Pre- Parametric and in Internet of things (IoT). Artificial Neural Network (ANN).	of small projects. Project Cost It greatly assists the civil engineers in efficiently using the capabilities of AI for solving complex and risk- sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems. It suggests a risk evaluation framework utilizing the artificial neural network (ANN) for supporting the company of construction in evaluating the risk and assessing their influence upon the profit of project for fresh projects.

	2021.	machine (SVM),	the MFO-SVM model
		gray Wolf	confirmed that this hybrid
		optimization (GWO),	SVM model is a powerful
		moth flame	and applicable technique
		optimization (MFO).	addressing problems related
			to TBM Performance with a
			high level of accuracy.
18	He, X, et al.,	It identifies the key	The current conceptual cost
	2021.	tasks of	estimation studies, from the
		implementing	perspective of data modeling
		conceptual cost	process for the first time.
		estimation models.	-
19	Jin, X., Liu, Q.,	Fuzzy optimal back	BPNN can be used to
	& Long, H.	propagation neural	calculate the cost and benefit
	(2021).	network (BPNN).	and predict the financial
			benefit of investment
			projects.

Table (1.2) : Result of the proposals based on risk factors that affect the construction project management

Researcher	Owner risk	Contractor risk	Consultant risk	Organization risk	Resources of Project Risk	Natural risks	Political and environmental risk	Financial & Economic risk	Design risk	Management and contract risk
S. Kouhestani et al.2020.	~	~	-	✓	-	~	~	-	\checkmark	~
Burkina Faso,2020.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	-
Pan and Zhang,2020.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓
Zhang, 2018.	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Elfaki et al., 2014.	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	 ✓
Marinelli et al., 2018.	~	~	~	~	\checkmark	~	~	<	✓	~
Wauters et al., 2017.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓
Hashemi et al.,2020.	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	 Image: A start of the start of
Ji et al., 2019.	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	✓	\checkmark	\checkmark	✓
Yuan, et al., 2020.	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	✓
Rostami, et al., 2017.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	-	\checkmark	✓
Liu, et al., 2016.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
Aminbakhsh, et al., 2013.	~	-	~	~	-	✓	~	~	\checkmark	~

Hwang, et al., 2014.	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Sharma, et al., 2021.	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Le Hong Haa, Le										
Hunga, Le Quang	-	-	-	-	-	\checkmark	\checkmark	\checkmark	✓	\checkmark
Trunga, 2018.										
Zhou, et al., 2021.	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
He, X, et al., 2021.	\checkmark	-	<	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Jin, X., Liu, Q., &					1			1		
Long, H. (2021).	-	v	v	-	¥	-	-	v	v	•

1.7 The Structure of the Thesis

The structure of the research involves the following :

Chapter One: Introduction

This chapter provides an overview of the research topic and the justification of research, hypothesis, aim and objectives, research methodology, as well as research structure.

Chapter Two: Literature review

Chapter two includes an explanation of cost management and cost estimation methods. It also includes an explanation of the delay in construction projects and their types and clarifying the risk factors that affect the management of the construction project.

Chapter Three: Artificial intelligent techniques

This chapter offers a complete explanation of the research techniques regarding their kinds, classifications models, taxonomies, architecture, and models' evolution.

Chapter Four: The framework for identifying the project risks and performance of the AI models

This chapter includes clarifying the structure of the research and identifying risk factors in construction projects, and clarifying performance indicators for artificial intelligent techniques.

Chapter Five: Results and discussions

This chapter attempts to develop and evaluate the construction cost and delay models using smart optimization artificial technique to offer an instrument to help guess the costs and delays of construction through several stages.

Chapter Six: Conclusions and Recommendations

In this chapter, some recommendations and conclusions are presented, and some suggestions for future studies that may be undertaken for developing smart prediction models in the area of managing construction project risk factors.

1.8 Summary

This chapter demonstrates a brief introduction for using Artificial intelligent techniques in optimizing the cost and delay in construction project management . The description of a research problem and Justifications, explanation research aim and objectives, research scope andlimitations, brief research methodology, the structure of the thesis, andreview of previous studies.