Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

Sustainability in Airport Construction Project By Using BIM

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

By

Fatima Mahmood Kareem BSC. Civil Engineering, 2018

Supervised by

Asst. Prof. Abbas Mahdi Abd Asst. Prof. Dr. Rauqim Nihad Zehawi

A

Supervisor Certification

We certify that the thesis entitled "Sustainability in Airport Construction Projects

" presented by "Fatima Mahmood Kareem" was prepared under our supervision in Civil Engineering Department, University of Diyala, in partial Fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering.

Signature:Signature:Asst. Prof. Abbas Mahdi AbdAsst. Prof. Dr. Raquim Nihad

Supervisor

Co- Supervisor

Date:

Date:

In view of the available recommendations, we forward this thesis for debate by the Examining Committee.

Signature:

Name: Prof. Dr.

Title: Head of Department of Civil Engineering

Address: University of Diyala

Date: / /2021

Scientific Certification

I certify that this thesis entitled "Sustainability in Airport Construction Projects" presented by "Fatima Mahmoud Kareem" has been evaluated scientifically, therefore, it is suitable for debate by the examining committee.

Signature.....

Assist. Prof Dr.

Address:

Department

Date:

Language Certification

I certify that this thesis entitled "Sustainability in Airport Construction Projects" presented by "Fatima Mahmoud Kareem" has been corrected linguistically, therefore, it is suitable for debate by the examining committee.

Signature.....

Name: Assist. Prof. Dr.

Address:

Date:

Examining Committee Certification

We certify that we have read the thesis entitled "Sustainability in Airport Construction Projects" and we have examined the student "Fatima Mahmoud Kareem" in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

Examination Committee	Signature
Assist. Prof. Dr. , (Member)	
Assist. Prof. Dr. , (Member)	
Assist. Prof. , (Supervisor)	
Assist. Prof. Dr. , (Co-Supervisor)	
Prof. Dr. , (chairman)	
Prof. Dr (Head of Department of Ci	vil

Engineering), The thesis was ratified at the Council of College of Engineering / University of Diyala.

> Signature Name: Prof. Dr. Dean of College of Engineering / University of Diyala Date:

Dedication

I dedicate this study with much Gratitude and Love to;

My Dear Father;

His words of inspiration and encouragement in pursuit of excellence.

My Affectionate Mother;

Whose prayers and love took me to zenith of glory and transform my dreams into reality

My Brothers & Sisters;

Which always encouraged and supported me.

Finally, to My Friends.

Acknowledgements

First and foremost, I thank Allah for His Blessings and Bestow to me with patience, perseverance, and high spirit.

I would like to express my sincere gratitude to Dr. Abbas Mahdi Abd and Dr. Raquim Nihad Zehawi for their valuable comments, excellent guidance and lots of patience.

Their unprecedented and continuous support.

In this opportunity, I would like to express my gratitude to all my lecturers in Department of Civil Engineering at University of Diyala from whom I learned much and developed my skills during my study.

I would like to express my gratitude to all the engineers working in the Department of Engineering Affairs at Baghdad International Airport, especially the civil engineer Mustafa and Shahla, who helped me with a lot of information during my study period.

I would like to express my gratitude to Engr. Islam Khalil, Engr. Awad El Sayed Awad , and Engr. Mohamed Qasim from them I learned much and developed my skills during my study period.

Last but not least, I own a very special thanks to my friends and colleagues Eng. Farah Taha and Eng. Nagham Nawar for their help and support throughout the courses of my study.

vi

LIST OF CONTENTS

List of Contentsvii
CHAPTER ONE
INTRODUCTION
1.1Introduction2
1.2 Background
1.3 Research Problem and Justifications
1.4 Research Aims and Objectives5
1.5 Research Limitations6
1.6 Research Methodology6
1.7 Review of Previous Studies7
1.8 Summary 15
CHAPTER Two
METHODOLOGY 17
2.1 Introduction
2.2 Research Methodology17
2.3 Case Study: Baghdad International Airport20
2.4 Obstacles to Applying the Research Methodology20
2.4 Creating 2D AutoCAD Model for Case Study 21
2.5 Creating 3D BIM Model for Case Study21
2.6 Sustainability Analyses
2.7 Integrating BIM Model with Building Performance Analysis (BPA)22
2.8 Summary
Chapter Three
CHAPTER THREE
LITERATURE REVIEW
3.1 Introduction
3.2 Sustainable Construction
3.3 Sustainability Assessment Systems25
3.3.1 Leadership in Energy and Environmental Design (LEED) System
3.3.2 Building Environmental Assessment Method Plus (BEAM Plus) System27
3.3.4 Pearl Rating System (PRS)
3.3.5 Building Research Establishment Environmental Assessment Method(BREEAM) 31

	3.4 Definitions of Sustainability And Sustainability Construction	. 33
	3.4.1 Sustainability	. 33
	3.5.2 Sustainability Construction	. 34
	3.5.2.1 Concepts of Sustainability in Construction	. 34
	3.6 Sustainability Scales	. 34
	3.8 Airport Sustainability (AS)	. 35
	3.9 Green Airport and sustainable airport	. 36
	3.9.2 Sustainable Terminal Building	. 37
	3.9.3 Energy consumption and Co ₂ emission of terminal buildings	. 39
	3.10 Airport Capacity	. 40
	3.10.1 Airport Landside Sustainable Capacity	41
	3.10.2 Peak-Hour Basis For Design	. 42
	3.11 Sustainability And Building Information Modeling	. 47
	3.11.5 BIM-Sustainable Integration	. 47
	3.11.6 Sustainable (Performance) Analysis Tools	. 48
	3.11.7 Sustainability (Performance) Functional analysis	. 50
	3.11.8 Sustainable building rating systems and their relation with BIM	. 51
	3.11.9 Sustainable building standard and methodologies with BIM	. 52
	3.11.10 Sustainable Interoperability With BIM	. 54
	3.11.11 Using BIM in Sustainable Design	. 55
	3.11.12 Green BIM Concept	. 57
	3.11.13 Building Performance Analysis (BPA)Tools	. 58
	3.11.13.1 Autodesk Revit Software	. 59
	3.11.13.2 Autodesk Green Building Studio(GBS) Cloud	. 60
	3.11.14 Utilizing BIM Technology for Solar & Daylighting Analysis	. 62
	3.11.15 Utilizing BIM Technology for Wind Analysis	. 62
	3.11.16 Utilizing BIM Technology for Water Efficiency Analysis	. 63
	3.11.17 ASHRAE 90.1 Standard	. 63
	3.12 Summary	. 63
Cl	napter Four	. 66
	4.1 Introduction	. 66
	4.1 Case Study: Baghdad International Airport (Terminal of Nineveh)	. 66
	4.2 Motives and Reasons for Selecting the Case Study	. 67
	4.3 Creating 2D AutoCAD Model for Case Study	. 67
	4.4 Creating 3D BIM Model for Case Study	. 68

4.5 Sustainability Analyses	72
4.5.1 Sun Path Analysis	72
4.5.2 Photo-voltaic (PV) Panels Analysis	74
4.6 Integration BIM Model with Building Performance Analysis(BPA)	
4.6.1 Integration Method of BIM Model	78
4.6.2 Sustainable Design Options	
4.6.2.4 Window Shades	
4.6.2.5 Wall Construction	
4.6.2.6 Roof Construction	
4.6.2.7 Lighting Efficiency	
4.6.2.8 Lighting Control System	
4.6.2.9 Plug Load Efficiency	
4.6.2.10 Heating Ventilation and Air Conditioned(HVAC) System	
4.6.2.11 Energy Operating Schedule	
4.6.2.12 Photo-voltaic(PV) Panels	
4.6.3.1 Monthly Energy Analysis	
4.6.3.3 Monthly Fuel Analysis	
4.7 Monthly Electrical Energy Cost	93
4.9 Water Usage Analysis	96
4.10 Natural Ventilation	
4.11 Summary	
Chapter Five	
RESULT DEDICATION AND SCENARIOS	
5.1 Introduction	
5.2 Scenarios	
5.2.6 Replacing Part of the Curtain Walls by Block Walls	106
5.3 Selecting the Best Alternatives:	
5.5 Summary	115
CHAPTER SIX	117
CONCLUSIONS AND RECOMMENDATIONS	117
6.1 Introduction	117
6.2 Conclusions	
6.3 Recommendations	
6.4 Suggestion of Future Studies	

List of Figures

Figure	Title	
<i>NO</i> .		No.
(2.1)	Interaction of three basic pillars of sustainability concepts	33
(2.2)	Sustainability indicators	39
(2.3)	Snake line at level of service C	54
(2.4)	Snake line at level of service E.	54
(2.5)	Distribution of level of service provided by a space over a period.	56
(2.6)	Project stages for sustainability analyses based on BIM	72
(2.7)	Green BIM triangle	73
(2.8)	Data interchange between modeling software and	74
	performance analysis software	
(2.9)	Integration BIM and BPA	75
(2.10)	Data extraction process by Autodesk Insight 360 cloud	
(2.11)	Uses of BIM tools by construction companies	
(2.12)	Uses of sustainable analysis tools& software's in Middle East	
(2.13)	User interface of GBS	78
(3.1)	shows the framework of the research methodology	83
(4.1)	Electricity supply/demand in Iraq	87
(4.2)	Electricity demand	88
(4.3)	Reality pictures of Baghdad International Airport)	89
(4.4)	Pictures of the traditional maps of Nineveh Terminal	91
(4.5)	2D for ground &first floor	91
(4.6)	Rendering of case study in Revit 2021 after completing the	93
	finishing work	
(4.7)	Relationship between thermal resistance (R) and heat transfer	95
	coefficient (U)	
(4.8)	Creating actual orientation of case study	96
(4.9)	Sun path analysis	97

(4.10)	Method for creating PV panels analysis	98
(4.11)	Result of PV panels analysis for all the roof	
(4.12)	Result of PV panels analysis for external part of roof	
(4.13)	Result of PV panels analysis for part of roof	
(4.14)	Integration method of BIM model with the BPA tools	102
(4.15)	Framework to assess sustainable design options	103
(4.16)	The 3D model in Autodesk Insight 360 cloud	104
(4.17)	Building orientation	104
(4.18)	Model history of sustainable design options	111
(4.19)	Import setting method	112
(4.20)	Summary of energy simulation	112
(4.21)	Monthly energy consumption	113
(4.22)	Monthly electricity energy consumption	114
(4.23)	Monthly fuel consumption	114
(4.24)	annual energy consumptions	115
(4.25)	actual annual electricity consumptions and cost	116
(4.26)	Result of water usage analysis	117
(4.27)	Change fixture efficiency and efficiency saving in GBS	118
(4.28)	Net-zero measures of water usage	118
(5.1)	Using double glazing	123
(5.2)	Using foam material	123
(5.3)	Using lime stone	124
(5.4)	Using Granite	125
(5.5)	Using fiber glass	126
(5.6)	Replacing part of the Curtin Wall to a block wal	127
(5.7)	shows the effect of alternatives on electric and fuel	128
	consumption	
(5.8)	shows the effect of alternatives on Co2 emissions	128
(5.9)	ground floor with actual numbers of counters	130
(5.10)	ground floor with increasing numbers of counters	131

List of Tables

Table	Title	Page
<i>NO</i> .		<i>No</i> .
(1.1)	Review of previous researches	
(1.2)	Comparison between the current study and previous studies	15
(2.1)	Sustainable building issues	22
(2.2)	Categories in the LEED system	24
(2.3)	Levels of certificate in LEED system	25
(2.4)	Categories in the BEAM Plus system	25
(2.5)	Levels of certificate in BEAM Plus system	26
(2.6)	Categories in the green star system	27
(2.7)	Levels of certificate in green star system	27
(2.8)	Estidama categories and the credit distribution	28
(2.9)	Pearl building rating levels	29
(2.10)	Standard criteria in BREEM system	30
(2.11)	BREEAM certifications Levels	31
(2.12)	Definition of Level of Service Standards	55
(2.13)	Original Guidelines for Space to be Provided for Passengers in	56
	Different Functions (m2 /passenger)	
(2.14)	BIM framework for sustainability(performance) analysis	74
(4.1)	Material and components of case study	94
(4.2)	Wall construction type and heat resistance (R)	106
(4.3)	Roof construction type and heat resistance (R)	107
(4.4)	HVAC system and type	109
(4.5)	PV panels effect details	110
(5.1)	annual energy analysis & Co2 emissions by using alternatives	129
(5.2)	shown the steps to calculate Average flight	133
(5.3)	Capacity and Co2 emissions before and after improvement	135

List of Abbreviations and Symbols

Abbreviations	Explanation
BIM	Building Information Modeling
LEED	Leadership in Energy and Environmental Design
PRS	Pearl Rating System
PORS	Pearl Operational Rating System
2D	Two Dimension
3D	Three Dimension
4D	Four Dimension
5D	Five Dimension
6D	Six Dimension
7D	Seven Dimension
8D	Eight Dimension
BPA	Building Performance Analysis
GBS	Green Building Studio
ASHRAE	American Society of Heating, Cooling and Air Conditioning
	Engineers
gbXML	Green Building Extensible markup language
R	Thermal Resistance
U	Heat Transfer Coefficient
EUI	Energy Use Intensity
HVAC	Heating, Ventilation and Air conditioned
PV	Photo-voltaic(PV) Panels
VRML	Virtual Reality Modeling Language
DPH	design Peak Hour Traffic
GHG	Green House Gases

Abstract

Airport construction is the most important infrastructure projects, which has a remarkable influence on the environment and economics. The airport terminals are the largest parts of buildings of energy consumption. Meanwhile there is a lack of research available in Iraq on how to obtain an optimal use of the available resources such as electricity and water efficiency in airport project and space management that can be used to obtain an environmentally and economically sustainable airport.

In this research, the adopted methodology was applied as three parts, the first part was related to Building Information Modeling (BIM) techniques in 3D simulation and energy analysis as well as comparison of simulated energy consumption results with real energy consumption, The second part includes adding different alternatives to the existing building and studying their impact on the energy consumption and gases emissions by simulation of 3D model in green building studio. Finally, the third part studied the possibility of increasing the capacity of terminal by increasing the number of passport counters on the passenger arriving floor was studied to increase the number of passengers as a pivotal strategy in airport renovation, beside the reduction of Co_2 emissions factor per passengers.

This research aims to use modern technologies in designing and constructing airports to control energy consumption and to know the possible strategies to obtain the lowest consumption and the most appropriate cost, by investigating the impact of sun path analysis on energy performance, analysis and evaluation of energy performance and water usage analysis using BIM technology tools.

The results illustrate that BIM technique is a very useful tool to perform various analyses that help to find different strategies for improving the energy efficiency in the project, in case study (Baghdad Airport), the GBS tool based on BIM technique was a fruitful tool to energy analysis as its results illustrate the energy Use Intensity to this case study is $924 \text{ MJ/m}_2/\text{year}$.

Also, the results concluded that applying BIM technology using different alternatives in early design stages, using photo-voltaic(PV) panels reducing annual energy consumption around 45%,13% and 23% when used in different places of roof, and achieves cost-saving about (258,601\$/year, 76,471\$/year, 130,483\$/year) respectively, and the use of double glazing, foam material and replacing part of the curtain wall to a block wall is the most effective alternative in reducing energy use intensity from 924 MJ/m₂/year to 857, 856,851 respectively, and reduce Co_2 emissions from 472.2 Mg to 343.9Mg,344.2 Mg,339.9 Mg respectively. Also the results showed that rearrangement of counters distribution allows to add two counters in arrival floor, this leads to increasing of the annual terminal passengers from 2500000 to 2762000 passengers, therefore, increasing annual airport passengers in Baghdad International Airport from 7,500,000 to 8,762,000, and achieving terminal environment sustainable by reducing Co_2 emissions from 0.17 Mg to (0.11Mg).

Chapter One

Introduction

CHAPTER ONE

INTRODUCTION

1.1Introduction

This chapter presents an introductory overview of the research that has been made, the research problem and justifications, clarifying the aim and objectives of the research. In addition, the research limitations, research methodology is specified, as well as discussing previous studies.

1.2 Background

Airports are an essential component of the complex international air transport system that supports and promotes the movement of passengers, cargo, and tourists all over the world ((Brouder, 2010)). Over the past 20 years or so the awareness of the environmental impacts of human activity has increased substantially (Cowper-Smith and de Grosbois, 2011).

The concentration of carbon dioxide Co_2 in the atmosphere has increased, and it remained above 400 ppm for the first time in 2016. The aviation industry is a significant contributor to greenhouse gas emissions. In this sense, the aviation sector in general, and airports in particular, are attempting to reduce their carbon footprint. A potential alternative is to replace the airport's traditional power energy use with clean energy sources. Although solar PV is a non-polluting energy source, a MW-scale plant need more land, because large expanses are required as buffer zones in airports, this property can be successfully utilized for utility scale solar PV plant (Sukumaran and Sudhakar, 2017).

The ability to meet the needs of modern human growth without jeopardizing future generations is the widely accepted definition of sustainability (Brundtland *et al.*, 1987). Airports are networks that are a

2

part of today's society and play an important role in meeting the need for mobility (Knudsen, 2002).

According to the UN Intergovernmental Panel on climate change, the aviation industry is responsible for up to 2.5 percent of worldwide co_2 emissions. Although the aviation industry will not become more environmentally friendly overnight, airports have the capacity, means, and opportunities to engage in long-term development(Ruble, 2011).

The electricity crisis in Iraq creates air pollution and low quality, which has a significant impact on the health and safety of Iraqi inhabitants (Chaichan, 2016). The traditional CAD planning process does not allow for early judgments; energy and performance analyses are often undertaken after the preparation of architectural and construction design documents (Azhar, Brown and Farooqui, 2009). Building information modeling (BIM) is a novel technique that combines a variety of tools for assessing the energy performance of a building (Najjar *et al.*, 2017).

The most major role of a terminal building is to provide a link between "landside" and "airside," and it is thus interconnected to all other airport activities (Kılkış, 2014). Airport passenger buildings cater to a wide range of consumers' requirements. The buildings not only serve passengers, but also the airlines that manage the planes, the owners who give the funds, and the operators of the many services(De Neufville *et al.*, 2013)

As demand for passenger and freight air traffic increased, there was a need to build new passenger terminals or expand and operate existing stations, reducing environmental costs and the impacts of their operations by being aware of and considering the challenges of sustainable development. Various practices to develop a balanced approach in order to maximize their potential and potential In terms of the environment, society, and the economy (Hussain and Ramdan, 2020).

3

Building Information Modeling(BIM) technology is one of the modern technologies that allow multidisciplinary information to overlap in one model, which creates an opportunity to perform sustainability measures percentages of Co₂ emissions in the early design stage by simulated project from Revit to green building studio.

Green Building Studio(GBS) is a cloud service that allows the user to simulate the performance of the building for improving energy performance, work towards carbon neutrality, increase water efficiency, and climate analysis in the early design stage (Studio, 2008).

1.3 Research Problem and Justifications

The research problems are clarified in the following:

- 1. The existence of airports play a substantial role in the terminal building's construction and operation are primarily concerned with sustainability, thus sustainable approaches to create a "clean" airports may be considered as a necessity, architectural designs included.
- 2. A sustainable airport construction usually encounter rather high investment cost as well as the annual and periodical maintenance operations, while on the other hand, this kind of projects have minimal impact on the environment what may add substantial benefits to the society, users, and stakeholders in a justifiable values.
- 3. The case study of Baghdad International Airport terminal building(Nineveh terminal) which has been designed and constructed without considering the sustainability issues due to the history of establishment.
- 4. The need for an analyses technique by which the newly designed airport could be analyzed in order to explore the impact of its various

Chapter one

components on multiple parties involved as well as its environmental impact.

- 5. High energy consumption in Iraqi construction projects, which indicates a poor assessment of energy performance at the design phase due to using traditional methods that depend on 2D schemes and experiences which is an ineffective way to assess energy performance. In fact, this led to an increase in the rate of energy consumption and pollution in recent years.
- 6. study how can the BIM modern techniques in improve energy performance.

1.4 Research Aims and Objectives

The research main objective is to assess the impact of a sustainable local airport design and construction project both economically and environmentally. To achieve this objective, many steps are in order:

- 1. BIM Modeling for the local airport in its traditional form
- 2. Modeling the same project considering sustainable compliance case
- Cross comparison is conducted on the various outcomes of the BIM analyses in order to identify the pros and cons of adopting sustainable airport structures.
- Study the Sun's path analysis and its role in assessing the actual building orientation, and improve indoor daylight performance of building.
- 5. Study the effect of photovoltaic(PV)panels on improve energy performance.
- 6. Study the role of BIM in analyzing energy performance as well as creates and evaluate design alternatives.
- 7. Investigating the capabilities offered by BIM technique in water usage analysis and improve natural ventilation.

Chapter one

8. The final conclusion represents a decisive tool to the decision maker

1.5 Research Limitations

The limitation of this research include the following:

- 1. This research focused mainly on energy performance, water usage, ,natural ventilation and increase the capacity of terminal.
- 2. This research will be limited to the design stage of the project; other stages not will be included in this research because the researcher cannot study other stage such as change selections of site and it's orientations was selected in planning stage or choice of selected material used in construction stage, and other.
- 3. Case study: selecting is Baghdad International Airport in Iraq as a case study.
- 4. Temporal limitation: the research period is only one the year 2020-2021.

1.6 Research Methodology

The research methodology mainly includes :

1. Theoretical Study: A literature review is conducted for previous studies related to the scope of research, including books, papers, thesis.

2. Practical Study:

The practical part of research includes the explorations for selected case study, which selected Baghdad International Airport of Nineveh terminals ,it is one of three identical terminal building. After selecting the study case, the researcher made frequent visits to the specified building to collect the data required to achieve the research methodology, such as described in the chapter three.

1.7 Review of Previous Studies

Table (1.1) shows summarizes the previous studies related to improve energy performance.

NO.	Researcher and	The Work
	country	
1	(Kaszewski and Sheate, 2004) (UK)	Title "Enhancing the sustainability of airport developments". Aim: this paper focuses on improving the sustainability of airports – their terminals and operation, and whether existing, expanded or new. Methodology: examined the feasibility of options for encouraging more sustainable airport development through the use of a scenario-based approach, focusing on airport surface access transport and terminal building design. Results: The economy, social equity and environmental sustainability of a given UK region could be improved, and possibly each element improved to an equal extent, by properly managing the demand for air travel and making the <i>best use of</i> <i>existing infrastructure</i> .
		Title "Green Airport Design Evaluation (GrADE) – methods and tools improving infrastructure planning"

Table (1.1): Review of previous researches

		Aim : aimed to develop method and tools to check
		and evaluate the sustainability design performances
		during the whole project development. In order to
		maximize opportunities for growth, it is necessary to
		consider all the specific factors involved in airport
		design that can have an influence upon the
		environmental consequences of its subsequent
2		operations and therefore impact upon integrated
	(Ferrulli, 2016)	sustainability strategies
	$(\mathbf{I}_{t,2})$	Methodology: GrADE method will contribute in
	(Italy)	achieving the goal of sustainable development of
		airport infrastructure providing a methodological
		framework to measure and monitor environmental
		sustainability Performance
		Results: The goal of the GrADE method and tools is
		to help airports identify, evaluate, priorities, and
		select sustainability practices for airport capital
		projects, programs, and operations. The Green
		Airport Design Evaluation (GrADE) method and its
		respective tools will contribute in achieving the goal
		of sustainable development of airport infrastructure
		providing a methodological framework to measure
		and monitor environmental performance and creating
		new opportunities for the aviation regulatory
		organisations and airport owners to define business
		model and strategies to enhance sustainable airport
		infrastructure design within the regional transport

		network.
3	Setiawan, M. I. et al. 2019 (Vietnam)	Title "Green sustainable airports: The deployment of renewable energy at Vietnam airports." Aim: this paper includes two groups of recommendations: developing PPP policy framework and building institutional capacity and enhancing the facilities for domestic capital market. Methodology : summaries the deployment of renewable energy in airports worldwide, then critically assess both prospects and constraints of renewable energy projects in Vietnam. Results: The government needs to recognize that the efficiency and improved infrastructure services gains that can be accrued through successful PPPs are, over the long term, more important than the simple objective to mobilize private investment and to help fill a public sector budget gap. In this context, government needs to ensure greater policy clarity and consistency with respect to opening up more private sector participation opportunities.
		Title "Sustainable Construction Practices in Aviation Facilities "
	(Vélez-Vega	Aim: Sustainable airport design principles all

	and Bardt,	contribute to sustainability's triple bottom line, which
	2013)	includes social, environmental, and economic
		benefits. The practices described here are just few
		examples; there are many more sustainable practices
		that can be instituted at airport rehabilitation projects.
		The keys to successfully implementing these
		practices include both the design team and the
4		owner's review team taking an informed design
		approach that openly considers the best material use,
		as well as close collaboration between the design
		team and the owner's review team.
		Methodology: This paper will discuss current
		sustainable practices used in the new construction of
		airport facilities at FXE and other airports across the
		United States, such as buildings and airfield
		pavement rehabilitation projects. The City of Fort
		Lauderdale's Executive Airport is the fifth busiest
		general aviation airport in the United States based on
		itinerant operations.
		Results: General aviation projects offer a once-in-a-
		lifetime opportunity to incorporate sustainable
		practices into the design and construction phases.
		The project's scope, size, and approach are typically
		more flexible than those of other types of airport
		projects. Close collaboration among the designer,
		consultant, and client provides more opportunities to
		investigate more innovative material and pavement
		recycling techniques, as well as acceptance for these

		practices.		
		Title "Sustainability in the Design of Passenger		
	(Hussain and	Terminals for Airports "		
	Ramdan 2020)	Aim: The primary goal is to introduce this		
	Kanidan, 2020)	knowledge in a more clear and comprehensive		
		manner as well as to provide the option of achieving		
	Iraq	it locally. To achieve this goal studies and practical		
		projects have required the use of a descriptive-		
		analytical approach in order to construct a		
5		comprehensive theoretical framework that defines the		
5		various dimensions of sustainable passenger		
		terminals.		
		Methodology: Baghdad International Airport,		
		specifically its passenger terminals, has been chosen		
		to represent the model, which includes: Samarra,		
		Babylon, and Nineveh terminals, which are		
		equivalent in repeated design, consistent with the		
		time and capacity of the search (due to the difficulty		
		of implementation on all passenger terminals at Iraqi		
		airports), and as a general model that can be adopted		
		in the future.		
	Results : The application findings showed that the			
	constructed local passenger terminals			
		environmental issues, as well as the demands of		

		water efficiency and site sustainability, with the
		highest values when compared to the results of the
		other secondary vocabularies, while the economic
		sustainability also met high levels. When compared
		to the results of the other secondary vocabularies, the
		results revealed that the dependence on achieving
		airline revenues, among other concessions, had the
		highest values, whereas the constructed local
		passenger terminals lacked the social dimension of
		passenger satisfaction.
		Title " Energy consumption and Co ₂ emission
		responsibilities of terminal buildings: A case study
		for the future Istanbul International Airport 6
6	(Brunetta, Righi and Andreatta, 1999) <i>Turkey</i>	for the future Istanbul International Airport 4 Aim: This paper broadens the scope of the terminal building energy performance analysis and expands the analysis envelope to reveal the true impact of a terminal building on energy consumption and total emissions. In this regard, this study investigates whether a green terminal building in a new airport planned for the city of Istanbul with an annual passenger capacity of 150 million can offset the loss of Co ₂ sequestration potential from cutting at least 657000 trees for airport construction. Additional Co ₂ emissions associated with the estimated longer approach and climb out flights as a result of the unfavorable site selection have also been considered. Methodology: This article compares a conventional

	terminal building to four green	terminal building
	scenarios, each with a different	potential for Co ₂
	emission reduction. The first-la	w and second-law
	thermodynamic analyses revealed	d that constructing
	an environmentally friendly	terminal building
	complex may not offset its	s Co ₂ emissions
	responsibility unless a highly inte	nsive re-forestation
	action is implemented and the s	site is properly re-
	selected.	
	Results : This study illustrated the	e critical boundaries
	for an airport terminal building's e	energy consumption
	analysis envelope and its	true emissions
	responsibility.	

In addition, Table 1.2 shows a comparison between the current study and previous studies in term of (location, software used, brief description about research).

Table 1.2 Comparison between the current study and previous studies

Location	Iraq	
Software	Autodesk Revit(ver. 2021), AutoCAD (ver.2020), Autodesk Insight 360, Autodesk GBS)21)

	This research explores to study the sustainability of		
	airport to improve energy performance of terminal		
	buildings in Baghdad International Airport Iraq. Where		
	the researcher take advantage of the benefits provided		
brief	by the BIM technique represented by visualization and		
description	analysis to researcher carried out different		
about	sustainability analyses and integration 3D model with		
research	building performance analysis(BPA) tools for purpose		
	improve energy performance efficiency, and Study the		
	Possibility of Increasing the capacity of terminal to		
	increase the number of passengers in the same area and		
	in the same level of service for decreasing Co ₂		
	emissions per passengers . also study the Possibility of		
	study various alternatives to improve the performance		
	of building.		
T (
Location	Iraq, Vietnam, Italy, <i>Turkey</i>		
Software	Autodesk Revit, Autodesk Ecotect analysis, Autodesk GBS		
	Previous studies BIM technique in improve energy	_	
	performance. The pervious researcher using different		
	software's to give acceptable result in the topic	ies	
brief	(Autodesk Revit, Autodesk Ecotect analysis Autodesk	tudi	
description	GBS). Most of these studies did not used Autodesk	ns s	
about	Insight 360 cloud in assess design options as well as did	evio	
research	not address used different process to achieve	Pre	
	sustainable airport such as assume different alternatives		
	and study effects on sustainability , increase in		
	passengers to decreasing Co ₂ emissions per passengers		

1.8 Summary

This chapter illustrates a brief introduction, an explanation of the research problem and justifications, illustration the aim and objectives of the research, research limitations, and the methodology of research