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ABSTRACT 

The current research focuses on the design and fabrication of an efficient 

miniature thermoacoustic cooler capable of producing sufficient cooling power 

to cool electric boards.  

In theory, it was aimed that the thermoacoustic cooler was assigned to achieve 

30 - 50 W of cooling power at a temperature difference of 25°C between the 

cold and the ambient sides. 

The first part of the research deals with how the loudspeaker is coupled with a 

travelling wave thermoacoustic cooler. This includes analyzing the equations 

that govern the dynamic behavior of the loudspeaker, which leads to achieving 

the appropriate acoustic conditions for the optimum performance of the cooler. 

A series of DeltaEC simulations were performed to verify the possible acoustic 

network configurations to meet the required acoustic conditions of the used 

ordinary loudspeaker.  

As for the second part, it deals with the geometry of the experimental apparatus. 

The fabricated travelling-wave thermoacoustic cooler operates by frequency of 

95Hz (practically optimal) and uses helium gas at 1bar of gauge pressure. The 

experimental apparatus achieved a maximum temperature difference of 5.7°C 

(between the ambient/hot and cold ends when no cooling load was applied) and 

1°C (at maximum cooling power of 37W).  
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1 CHAPTER ONE 
INTRODUCTION 

In this chapter, the concepts and fundamentals of Thermoacoustics will be 

reviewed along with the governing equations and some selected important 

parameters. 

1.1 Thermoacoustics 

Nicholas Rott (Rott, 1980), who was the first to introduce the term 

Thermoacoustics which laid to establishing the theoretical foundations of this 

phenomenon. Thermoacoustics is the science name to describe a 

thermoacoustic effect that defines the conversion from the acoustics to thermal 

powers and vice versa. In other words, it is an interaction between the heat and 

soundwaves to achieve either cooling power (refrigeration) or electricity (prime 

movers). To achieve the conversion from the thermal power into an acoustic 

power a thermoacoustic engine is required, while the reverse process can be 

achieved via a thermoacoustic refrigerator. 

1.2 History of Thermoacoustics 

The history of Thermoacoustics dates back to several centuries. The first to 

report the phenomenon of thermoacoustic effect was Bryan Higgins in 1802 

(Graiff, 1964). Higgins proved in 1777 that burning an amount of hydrogen near 

the opening of a vertical glass tube produces a sound (Putnam & Dennis, 1956), 

which is called singing flame  (see Figure 1.1). Higgins noted that the sound 

generated in the tube depends on the location and intensity of the flame as well 

as the length and diameter of the tube. 
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Figure 1.1: Higgins singing flame (Putnam & Dennis, 1956). 

(Sondhauss, 1850) performed different experiment using an open-closed tube 

(see Figure 1.2). A flame was placed on the bulb at the closed end producing in 

a sound at the open end. Sondhauss indicated that the oscillation of sound 

depends on the size of the bulb and the intensity of the flame, and the sound 

increases at more heated. 

 

Figure 1.2: Sondhauss tube (Sondhauss, 1850). 
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(Rijke, 1859) investigated the acoustic oscillations in a similar apparatus while 

replacing the flame with a mesh of heated wire (see Figure 1.3), Rijke found 

that sound is produced only when the tube is perpendicular and the heated mesh 

is fixed to the bottom of tube, and indicated that the convection flow produced 

from heating the air in the tube is important in the generation of acoustic 

oscillation. 

 

Figure 1.3: Rijke tube (Rijke, 1859). 

(Taconis et al., 1949) observed another form of Sondhauss vibration by dealing 

with liquid helium in a glass tube. A large temperature gradient was imposed 

between the temperature of tube and surrounding causing sound oscillations 

inside the tube. 

In 1969, a major breakthrough occurred with Rott investigations into 

Thermoacoustics, Rott managed to develop his theory of designing 
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thermoacoustic devices (refrigerators and engines). An investigation was 

beginning at Los Alamos National Laboratory (LANL) in the early 1980s.

Hofler and Swift (Hofler, 1986, Swift, 1997) were among those most interested 

in largely developing thermoacoustic devices. The first to design and build a 

fully functioning thermoacoustic refrigerator is Hofler in 1986. Later, a lot of 

studies and research have emerged that contributed significantly to 

development of thermoacoustic devices, and to this day, this study is an 

extension of them. 

1.3 Thermoacoustic Effect 

Acoustic waves are pressure oscillations in the space that  can create 

temperature fluctuations associated with the compression and expansion of the 

pressure waves (Garrett & Backhaus, 2000). One method of extracting useful 

work from acoustic waves is to place a solid with high specific heat capacity 

and a large surface area in contact with oscillating gas. Due to the higher 

specific heat capacity of the solid compared to gas, the solid can store heat and 

exchange it with gas. When the volume of gas expands in the oscillation cycle, 

the gas cools and absorbs heat from the solid, while rejecting heat to the solid 

when gas compressed as it becomes hot. The working principle of 

Thermoacoustics is illustrated by the following example (see Figure 1.4) by 

taking a long tube filled with gas, this tube includes a solid metal with a high 

specific heat capacity and a low thermal conductivity known as the stack 

(random or regular porous medium). The geometry of the stack is characterized 

by containing pores for the acoustic waves to travel through it. 

To create the thermoacoustic effect requires a large temperature gradient across 

the ends of the stack by placing two heat exchangers in contact with the ends, 

one at low temperature (cold heat exchanger) and the other at high temperature 

(hot heat exchanger). 
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Figure 1.4: Schematic of a simple thermoacoustic refrigerator (a). The heat transfer process by 
thermoacoustic oscillations in the stack (b) (Mohd Saat & Jaworski, 2017). 

Here, an acoustic driver can be used to generate the necessary oscillating 

acoustic power/wave moving back and forth inside the tube (see Figure 1.4). 

The gas will be compressed during its movement towards the hot heat 

exchanger (velocity node) and its temperature will increase to become higher 

to heat transfer to the solid. When the gas moves towards the cold heat 

exchanger (pressure node) it will be expanded and become colder than the metal 

of the stack and heat will be transferred to the gas. The process of gas absorption 

of heat from a solid metal with a low temperature and conversion heat to another 

solid with high temperature is thermoacoustic refrigeration (thermoacoustic 

effect). 

The difference in gas temperature at both the ends of the stack is due to the 

adiabatic compression and expansion of the gas. The perpendicular distance to 

the direction of propagation of the acoustic wave mainly effects the heat transfer 

(a) 

(b) 
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is known as the thermal penetration depth ( ). This distance depends on the 

frequency of the acoustic wave and the properties of the gas, which will be 

explained later. For the finest heat transfer between the gas and solid, the 

recommended spacing between one plate and another of the stack through the 

gas passes should be about twice as the thermal penetration depth (Swift, 2001). 

1.4 The Governing Equations 

For one-dimensional acoustic wave oscillating at an angular frequency , 

where ( ) is the frequency of oscillation, the governing equations of such wave 

can be expressed with the dependence of the typical quantities of pressure, 

velocity, temperature, density and entropy considered in Thermoacoustics and 

according to the following equations (Swift, 2001): 

 

 

 

 

 

Where:  

( ) is the distance along the direction of penetration of the acoustic wave.          

( ) is the direction perpendicular to the direction of penetration.                                        

( ) is the direction perpendicular to the plane of the paper in depth.                      

The number (1) denotes first order expansion of the complex terms. ( ) denotes 

the mean value of the variable. The term ( ) represents the oscillating portion 

associated with the acoustic wave. 

The above equations depend on some assumptions (Swift, 2001). For example, 

the dependence of oscillating pressure in the direction of (x) and its neglected 
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in the direction (y & z), the mean velocity is assumed to be zero (no mean flow) 

because the flow in the system is uniform and independent in all directions. 

Equations (1.1) to (1.5) are derived from the three basic equations which are the 

continuity, momentum and heat transfer equations. Here some assumptions 

were considered as follow: the propagation of the acoustic wave in the direction 

of (x) only, steady oscillating flow with the terms of the second order being 

neglected (Swift, 2001): 

- Continuity equation:  

 

- Momentum equation: 

 

- Heat transfer equation: 

In general, any thermoacoustic system includes a network of channels/pipes 

consisting of  compliance, inertance and resistance are necessary to produce a 

near traveling-wave phasing within the regenerator, where the compliance in 

the acoustic networks similar to the capacitance in an electric network, while 

the inertance in similar to the inductance in an electric network (Swift, 2001).

The gas compressibility  with a short channel volume ( ), or compliance 

(C) is as follows: 

 

Where ( ) is the specific heat ratio, ( ) is the mean pressure. 
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Similarly, the inertial properties of the gas within a long channel, or inertance 

is as follows: 

  

Where ( ) is the density of the gas, ( ) and ( ) are the length and cross-

sectional area of the channel respectively. 

The acoustic characteristics combine to form the acoustic impedance ( ), 

which is the ratio of pressure to volume flow rate , the acoustic 

impedance describes the resistance of thermoacoustic system network to the 

working gas. 

1.5 Principle of Thermoacoustics 

In this section, the important parameters used in the design and operation of 

thermoacoustic devices will be presented and described (Swift, 2001). 

1.5.1  

When an acoustic wave is propagated in a gas, it must have length which known 

as the wavelength and has a great effect on the length of thermoacoustic devices 

and the energy density of the system, usually the thermoacoustic device has a 

length less than the wavelength, it can be calculated by the following equation: 

  

Where ( ) is the speed of the sound. 

1.5.2 Thermal Penetration Depth ( ) 

Thermal penetration depth is an important parameter which gives an idea about 

heat diffusion according to the distance between the gas and solid surface of the 

stack or regenerator. In other words, it is the thickness of the layer surrounding 
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depth is perpendicular to the direction of propagated acoustic wave and can be 

calculated by the following equation: 

 

Where ( ), ( ) and ( ) are the thermal conductivity, the density and the 

specific heat of the gas respectively. 

1.5.3 Viscous Penetration Depth ( ) 

This depth is the thickness of the layer around the stack or regenerator which 

shows the important viscous effects, as the viscous share forces occur within 

this layer and lead to the dissipation of the acoustic power, it can be expressed 

by the following equation: 

 

Where ( ) is the dynamic viscosity.

The viscous penetration depth is one of the important parameters to determine 

the optimum spacing between the plates of stack or regenerator, the distance 

between these plates should be less than the thermal penetration depth. As an 

illustrative example, the gas does not feel any thermal and viscous contact when 

moves through the plates because the distance between the solid boundaries is 

much greater than the thermal and viscous penetration depth (Swift, 2001). It 

must be noted that there is a trade-off between thermal and viscous penetration 

depth, the Prandtl number ( ) determines the ratio of the differentiation between 

two penetration depths by the following equation: 
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To reduce the effect of viscous shear forces the Prandtl number should be less 

than one (Swift, 2001). 

1.5.4 Gas Displacement Amplitude ( )  

It is an important length scale in the direction of propagation of the acoustic 

wave, calculated by the following equation: 

 

Where ( ) is the volume flow rate amplitude. 

The gas displacement represents half of the total tour of the gas during one 

acoustic cycle. The maximum displacement amplitude of the gas (2 ) 

represents back and forth from the peak-to-peak for each acoustic oscillation 

cycle (Abduljalil et al., 2012; Swift, 2001). In thermoacoustic engines and 

refrigerators, the gas displacement amplitude is much greater than the 

penetration depths but much less than the acoustic wavelength (Swift, 2001), as 

shown in the following equation: 

 

The displacement amplitude of the gas is very small fraction when compared to 

the length of tube that is equal to the half or quarter wavelength for standing 

wave devices. It can be seen that the maximum displacement is larger in the 

medium and decreases towards the velocity node, as shown in the Figure 1.5. 
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Figure 1.5: The gas displacement amplitude variation (Swift, 2001). 

The displacement amplitude can be used to determine the length of the heat 

exchanger in thermoacoustic devices. The length of the heat exchanger, which 

equals to the maximum displacement amplitude (2 ), ensures that most of the 

heat is transferred to and from the stack or regenerator plate when the gas moves 

back and forth within the maximum displacement amplitude (2 ) from the 

peak-to-peak see Figure 1.6(a), the amount of the heat transferred will decrease 

when the length of heat exchanger is less than the maximum displacement 

amplitude (2 ) because part of the gas parcel will lose their heat outside the 

heat exchanger as shown in Figure 1.6(b). Finally, if the length of the heat 

exchanger is greater than  the maximum displacement amplitude (2 ), then 

all the gas parcel  will move along the heat exchanger only, thus it cannot 

transfer heat to and from the stack or regenerator plate as shown in Figure 1.6(c) 

(Saechan, 2014). 
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Figure 1.6: Heat transfer when gas parcel moves along the heat exchanger and stack, when 

the length of the heat exchanger is equal to 2  (a), shorter than 2  (b), and longer 

than 2  (c) (Saechan, 2014). 

Therefore, the ideal length of the heat exchanger is equal to the maximum 

displacement amplitude of the gas. 

1.5.5 Relative Pressure Amplitude ( ) 

It is the ratio of pressure amplitude ( ) to the mean pressure ( ) and 

expressed it according to the following equation: 

 

Relative pressure amplitude also known as the drive ratio is an important 

parameter for determining the strength of thermoacoustic oscillation which 

effects the intensity of the acoustic power. 

1.5.6 Lautrec Number ( ) 

The Lautrec number can be used to distinguish between stacks and regenerators. 

If the Lautrec number is greater or equal to one, then the porous medium is 

called the stack, while the porous medium is called the regenerator if Lautrec 

number is less than one (Garrett, 2004), which is the ratio of hydraulic radius of 
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stack or regenerator ( ) to the depth of thermal penetration and expressed it 

according the following equation:. 

 

1.5.7 Working Gas 

The working gas plays an important role in thermoacoustic applications with 

many considerations such as, power, efficiency, etc. The ideal properties of the 

gas that used in thermoacoustic devices are the Prandtl number (should be less 

than one as mentioned earlier), high thermal conductivity that increases the 

low viscosity to avoid the viscous shear forces causing the dissipation of the 

acoustic power (Swift, 2001). In addition, Swift has noted that the higher speed 

of sound can produce higher power. Inert gases such as, air, nitrogen, helium, 

neon and other are suitable for use in thermoacoustic devices because they are 

characterized by low Prandtl number, high sound speed, high thermal 

conductivity, low viscosity and being environmentally friendly. Helium gas is 

used more frequently in thermoacoustic devices for its best properties among 

the inert gases. Therefore, helium will be used in this project as a working gas 

for the current miniature thermoacoustic cooler. 

1.5.8 Mean Pressure ( ) 

The power density is directly proportional to the mean pressure (  ) in the 

thermoacoustic system (Ceperley, 1979), the acoustic power increase with the 

increase of the mean pressure. However, higher mean pressure (few bars higher 

than the atmospheric pressure) can lead to quite complicated design due to the 

requirements of special design of high pressure vessels in addition to the higher 

cost. It is important to note that  the thermal penetration depth is inversely 

proportional to the square root of the mean pressure , the high mean 
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pressure results in building a small flow channel size in the regenerator, which 

makes it difficult and more expensive (Z. Yu et al., 2010). 

1.5.9 The Frequency ( ) 

The power density in thermoacoustic devices is proportional to the frequency 

( ) (Z. Yu & Al-Kayiem, 2014), while the thermal penetration depth is 

inversely proportional to the frequency . The cost of building the 

regenerator can be increased as high operating frequency being used to operate 

thermoacoustic devices (Putnam & Dennis, 1956). 

1.6 DeltaEC Software 

DeltaEC is a computer program/software that used to provide an estimation of 

Environment for Low-amplitude Thermo Acoustic Energy Conversion). The 

program was previously written by Bill Ward and Gregory Swift of Los Alamos 

National Laboratory (LANL). 

The DeltaEC program is numerical tools to solve/integrate the continuity, 

momentum and energy equations for thermoacoustic devices. DeltaEC is based 

on the linear thermoacoustic theory which means that all variables oscillate in 

one direction (x-direction). The program uses a simplified one-dimensional 

approximation and consider that the amplitude oscillation is low and has a 

sinusoidal time dependence. The model include a number of segments 

assembled together by the user that reflect the physical properties of the 

thermoacoustic devices and assume one-dimensional problem throughout the 

segment. It assumes that all oscillating variables have a time dependence on 

Re(eiwt). This assumption transforms the governing equations from differential 

equations in time to algebraic equations for time, making them much easier to 

solve than the initial partial differential equations (Chinn et al., 2011). 
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The program integrates the one-dimensional wave equation numerically to 

obtain a convergent solution through the use of an iterative shooting process. 

The shooting process begins with a guess value of model parameters and then 

being integrated through the model. After each round of integration, DeltaEC 

comperes the targets values (output) with the guesses values (input). If the 

targets do not match, the guesses are adjusted and the integral is repeated. If the 

difference between guess and target is equal to zero, then this leads to 

convergent solution (target is met) and vice versa (Mitchell, 2012). 

Essentially, the user can build a thermoacoustic system by selecting the required 

acoustic elements as needed. DeltaEC program gives a high flexibility to choose 

different thermoacoustic system segments, such as volume and shape of 

compliance and inertance channels, heat exchanger type, regenerator, etc. After 

the system is fully built, DeltaEC begins solving the appropriate one-

dimensional wave equation through each of these segments. The program does 

this by ensuring that the pressure and volume flow rate are matched at the 

boundaries of each segment (Telesz, 2006). 

1.7 The Motivation behind the Study 

There are several reasons that motivated the study, design and development a 

thermoacoustic cooler. 

 unlike the traditional refrigerators (vapor compression refrigerators), 

thermoacoustic coolers have no moving mechanical parts which can lead 

to more reliability, low maintenance and a much longer operating life. 

 Traditional refrigerators use highly effective gases that deplete the ozone 

layer and cause environmental pollution, and despite the use of 

alternative gases that do not harm the environment such as propane and 

butane, they are highly flammable gases that pose a great danger if a leak 
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occurs in the system of these refrigerators. Hence, this has motivated 

many of the researchers to find an alternative cooling system that is safer 

and less harmful to the environment. Thermoacoustic refrigerators are the 

very strong candidate to accomplish this. They are safe and 

environmentally friendly because the use of inert gases as working gas in 

their systems. Inert gases has the advantages of being low chemical 

effectiveness as well as non-flammable and non-toxic. 

 Thermoacoustic systems has the advantage of using different sources of 

energy (as the input work), including the solar, biomass and waste 

thermal energies (Shen et al., 2009). 

Although the advantages of thermoacoustic devices in the mechanical 

simplicity, low cost, environmental and personal safety, they are still unable to 

compete with the vapor compression refrigerators due to their low production 

of cooling powers and relatively low efficiency as being a new technology in 

the process of research. This technology is supposed to go through the stages of 

development as those previously passed by traditional devices to reach the stage 

of vast production. 

1.8 Objectives of the Present Study 

The aim of the present study is to design and fabricate a miniature 

thermoacoustic cooler to produce sufficient cooling power to cool electric 

boards for future coupling. 

The most important challenges to face during this project can be as follow:  

- Designing a traveling-wave thermoacoustic refrigerator driven by an 

ordinary loudspeaker. 
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- The overall dimensions of the constructed refrigerator should be 

relatively small to enable the potential of coupling with 

electrical/electronic boards for thermal management. 

- Achieving certain acoustic conditions of the ordinary loudspeaker by 

altering the phase difference between the oscillating velocity (volume 

flow rate) and pressure together with the appropriate acoustic impedance 

to reach the optimum performance in terms of electrical to acoustic 

powers conversion. 

- Reducing acoustic power losses within the resonator to increase the 

overall efficiency of the designed thermoacoustic refrigerator. 

- Finally, keeping the total cost of the fabricated thermoacoustic cooler as 

minimum as possible. 
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1.9 Outline of Thesis 

The thesis consists of six chapters and three appendices. 

Chapter One: presents a brief description of the background of thermoacoustic, 

the motivations for research and the aims and objectives of the current study. 

Chapter Two: introduces and reviews the practical configurations of 

thermoacoustic devices. 

Chapter Three: firstly, the main focus in this chapter is on the performance 

and analysis of the given acoustic driver available for this project. In additional, 

it describes a preliminary design of a thermoacoustic looped-tube cooler, and 

studies the effect of the parameters of each component of the cooler on acoustic 

conditions. It then provides an optimum (theoretically) design for 

thermoacoustic cooler. Finally, it provides the actual design of the cooler. 

Chapter Four: It describes the construction of the experimental device and its 

components in addition to the instrumentation used. 

Chapter Five: Shows the experimental results and discusses them. Firstly, the 

results of the preliminary experiments regarding the optimum operating points 

of the experimental device are shown and discussed. The effects of the applied 

cooling load, operating frequency and mean pressure on the performances of 

thermoacoustic cooler have been also presented and discussed in this chapter.  

Chapter Six: presents the conclusions and recommended based on the findings 

of this research. 

 

 


