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Abstract 

Box beams are very commonly used structural members due to their high 

performance, their ability to minimize the dead load and the number of 

supports which lead to reduce cost. Accordingly, it became a major 

requirement to focus on studying the structural behavior of this type of 

structural members.  

In this thesis, an experimental study was conducted in order to investigate 

and improve the structural behavior of reinforced self-compacted concrete 

box beams by using different number of cells with the same cross-section 

dimensions as well as studying the effect of using longitudinal shear steel 

plates that contain vertical and inclined rectangular spacings as shear 

reinforcement instead of using traditional reinforcement bars (stirrups). 

Also, the study focused on the effect of using vertical and horizontal 

corrugated steel plates in strengthening the cells and studying the effect of 

using circular-shape cell instead of rectangular-shape one with the same web 

width and strengthening the circular cell with steel plate in the shape of steel 

pipe. 

The experimental program consisted of casting and testing ten reinforced 

self-compacted concrete box beam specimens with identical cross-section of 

overall depth of (320mm), top flange width of (420mm), bottom flange width 

of (270mm), web width of (60mm) and overall length of (1500mm). The 

specimens were divided into five groups according to the number of cells, 

reinforcement type, strengthening and the shape of cell. All the specimens 
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were tested under four-point monotonic-static load to obtain the ultimate 

load capacity, crack pattern, mode of failure, crack width, central vertical 

deflection, ductility and strain in concrete and steel. 

The test results showed that increasing the number of cells from one cell into 

two and four cells has increased the ultimate load capacity by (20.12% and 

23.37%) respectively and has increased the ultimate deflection by (30.65% 

and 13.82%) respectively.  

Also, the use of longitudinal shear steel plates that contain vertical and 

inclined rectangular spacings instead of vertical stirrups has increased the 

ultimate load capacity by (7.14% and 20.12%) respectively and has 

increased the ultimate deflection by (20.73% and 38.23%) respectively.  

It was found that using corrugated steel plates strengthening with vertical 

and horizontal corrugation has increased the ultimate load by (7.14% and 

11.03%) respectively and has increased the ultimate deflection by (10.92% 

and 2.67%) respectively. 

Also, the use of circular cell without and with steel strengthening instead of 

rectangular cell has increased the ultimate load capacity by (17.85% and 

29.22%) respectively and has increased the ultimate deflection by (63.54% 

and 33.77%) respectively. 

Finally, the use of horizontally corrugated steel plate strengthening and 

circular cell with steel plate strengthening has increased the ultimate load by 

(3.63% and 20.60%) respectively, with a decrement in the ultimate 

deflection for the use of horizontally corrugated steel plate strengthening by 

(7.43%) and an increment in the ultimate deflection by (20.60%) for the use 

of circular cell with steel plate strengthening compared with the use of 

vertical corrugated steel plate strengthening. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General 

Box girder is a commonly used structural member, it consists of two or 

more webs that are either vertical or inclined, connected with top and bottom 

flanges to produce single-cell or multi-cell box girder with rectangular or 

trapezoidal cross-section (Saxena and Maru, 2013). As the span increases, 

the dead load is an important increasing factor, in order to reduce the dead 

load, the unnecessary materials that do not utilize their full capacity are 

removed out of the section, which result the shape of the box girder or the 

cellular structure. The usual reason for choosing the box girder configuration 

is that the formed closed cell has a very greater torsional stiffness and 

strength compared to the open section (Upadhyay and Maru, 2017).  

The concrete box girders are cast in situ or precast in segments (García-

Segura, et al., 2015). Decks can be reinforced concrete or prestressed 

concrete or steel. The cross section of the box girder may be in the form of 

single cell with one box, multiple-spine with separated boxes or multicell 

with common bottom flange as shown in Figure (1-1) (Sennah and 

Kennedy, 2002).  

Box girder bridges are chosen for the span that is ranging from (20m 

to 40m) for reinforced concrete bridge and (40m to 100m) for prestressed 

concrete bridges (Raju, 2016). 
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Figure (1-1): Box girder cross sections (Sennah and Kennedy, 2002) 

1.1.1 Advantages of Box Girder 

1. Hollow sections have been used quite often in the development of 

bridges, buildings, towers and offshore structures (Hemzah, et al., 

2020) 

2. Hollow cross sections are widely known for being economical, light 

weight and long span members. (Waryosh, et al. 2015) 

3. Box concrete sections are commonly used beams, especially for long 

span bridges to reduce the dead load and save construction and 

materials cost (Hemzah, et al., 2020). And the web can be relatively 

thin in order to reduce the deadweight (Lin and Yoda, 2017). 

4. The geometry of box girder has strength to the torsional stresses and 

to positive and negative bending moments because it has both of top 

and bottom flanges (García-Segura, et al., 2015) and (Rodriguez., 

2004). 

5. Box girder has better load distribution under eccentric load (Lin and 

Yoda, 2017). 
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6. The large torsional strength and rigidity of the closed section of box 

girder are favorable to resist the torsional moments due to the curved 

alignments or the eccentric live load (Rodriguez., 2004). 

7. The span range for box girder bridge is more compared to T-beam 

girder bridge, hence, there is less requirement for support points which 

results in making box girder more economical (Upadhyay and Maru, 

2017). 

8. The box girder section requires less post-tensioning compared to other 

sections (Rodriguez., 2004). 

9. Box girder has the ability to carry more load than the I-beam with 

equal height. 

10. The interiors of box girder bridges can be used to accommodate 

services such as gas pipes, water mains etc. 

11. The maintenance of the large box girder is easier in the interior space, 

it is directly accessible without the use of scaffolding. 

12. The alternative space is sealed hermetically and enclosed air may be 

dried and provide non-corrosive atmosphere. 

1.1.2 Disadvantages of Box Girder 

1. greater cost associated with fabrication compared with other types of 

normal beams 

2. hard to implement the cold forms 

3. risks associated with the working within enclosed spaces 

1.1.3 Multi-Cell Box Girder 

Reinforced concrete box girders with a multiple cell are widely used. 

The closed cross-section of the multi-cell makes this structure an ideal 

one for carrying eccentric loads or torques that are introduced by skew 

supports. The high internal-statical indeterminacy of this structure allows 

an excellent transverse distribution for the reactions and the applied load 
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even without intermediate transverse diaphragms. The reinforced 

concrete multi-cell box girders are with overload capacities features due 

to the availability of force redistribution through the structures. Figure (1-

2) shows the box girder with three cells (Seible and Scordelis, 1994). 

 

Figure (1-2): Multicell box girder (Seible and Scordelis, 1994) 

1.2 Self-Compacted Concrete  

Self-compacted concrete (SCC) is the kind of concrete which has the 

ability to flow freely through the places by its own weight and to fill the areas 

between the crowded steel bars without the need for vibration (Kaszynska, 

2004).  

Self-compacted concrete has many further names such as flowing 

concrete (Bui, et al., 2002), high-workability concrete and Self-leveling 

concrete (Yang, 2004). 

SCC has a great flow capability, can spread and fill the mold without 

segregation (ACI Committee 237R-07). 

Self-compacted concrete can be casted in a condition where it is difficult 

or impossible to use the vibration, for example, underwater concreting, cast 

in site pile foundations and walls or columns that contain congested steel 

bars and machine bases (Patel, et al., 2011). 
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1.3 Steel Plates 

Some efforts have been made in order to discover a new technique for 

shear reinforcement including the using of elongated steel plates as shear 

reinforcement instead of traditional stirrups due to the fast development of 

the manufacturing by Computer Numerical Control machine (CNC) and 

some difficulties in the stirrups stand with high cost and time entailed 

(Ibrahim, et al., 2016).  

1.4 Objective of Study 

This research was conducted in order to experimentally investigate the 

structural behavior of reinforced concrete box beams. The main objectives 

of this study are: 

1- Studying the effect of using different numbers of cells (one cell, two 

cells and four cells) in the box beam.  

2- Studying the effect of using longitudinal shear steel plates contain 

vertical and inclined rectangular spacings instead of traditional 

stirrups in the box beam.  

3- Studying the effect of using vertical and horizontal corrugated steel 

plates strengthening in the box beam. 

4- Studying the effect of using circular cell without and with steel 

plates strengthening instead of rectangular cell in the box beam. 

1.5 Study Justification 

In recent years, the use of box beam increases significantly, this makes 

researchers investigate the structural behavior of this type of structural 

member. Yet, there are no many researches that study the number and the 

shape of cells in the box beam and the using of steel plates as alternative 

shear reinforcement as well as the use of steel plates strengthening. 
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1.6 Research Methodology 

The experimental program of this study includes casting and testing ten 

reinforced concrete box beams and discussing the results in terms of ultimate 

load, crack pattern, mode of failure, load-deflection relationship, ductility, 

concrete compressive strain, steel tensile strain, strain in shear reinforcement 

and strain in steel plates. The experimental work consists of many variables 

such as: 

 Number of cells 

 Type of reinforcement  

 Type of strengthening 

 Shape of cells 

1.7 Thesis Layout 

The thesis consisted of five chapters: 

 Chapter One included an introduction to box girder, its advantages 

and disadvantages, definition of SCC, objective of study, study 

justification and research methodology. 

 Chapter Two included a review of previous studies which are related 

to the present study. 

 Chapter three explained the experimental program and the properties 

of the used materials, details of the tested box beams, concrete mix 

and the test set up. 

 Chapter Four presented the results of specimens, and the discussion 

of these results. 

 Chapter Five viewed the conclusions drawn from this study, in 

addition to recommendations and suggestions for future research 

works. 


