Ministry of Higher Education and Scientific Research University of Diyala College of Engineering Civil Engineering Department



# **BOND BEHAVIOR OF LIGHTWEIGHT FOAMED REINFORCED CONCRETE**

A Thesis Submitted to Council of College of Engineering, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

## By Rafal Ahmed Hadi

Supervised by Assist. Prof. Dr. Suhad M. Abd

## **COMMITTEE DECISION**

We certify that we have read the thesis entitled (**Bond Behavior Of Lightweight Foamed Concrete**) and we have examined the student (**Rafal Ahmed Hadi**) in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

| Examination Committee                        | Signature |
|----------------------------------------------|-----------|
| Assist. Prof. Dr. Suhad M. Abed (Supervisor) |           |

Prof. Dr. Khattab Saleem Addul-Razzaq..... (Head of Department)

The thesis was ratified at the Council of College of Engineering /University of Diyala.

Signature.....

Name: Prof. Dr. Anees Abdullah Khadom

**Dean of College of Engineering / University of Diyala** 

Date:

بى رول رار مى رول مى

# 

صــــــدقاللــــــهالعظيـــــــــــ

(من سورة المجادلة – الاية ١١)

### ${\it D\!E\!D\!I\!C\!A\!T\!I\!O\!N}$

To my parents, whose I miss their presence every day but their soul is still in the sky of my life and I feel with their pride of being their daughter, may God have mercy on them.

To my sister, for her support and encouragement.

Rafal Ahmed Hadi

## ACKNOWLEDGEMENTS

First and foremost, before anything, I thank Allah for endowing me with health, patience, and knowledge to complete this study.

I would like to express my special thanks of gratitude, the inspiration encouragement, valuable time, knowledge and guidance given to me by Assist. Prof. Dr. Suhad M. Abd, who served as my advisor.

My sincere thanks to everyone who supported me with knowledge, especially my distinguished teachers in the Department of Civil Engineering / University of Diyala.

Finally, I would like to express my sincere appreciation and thanks to everyone who helped me in my study, and special thanks to my friend Eng. Wurood Hameed.

Rafal Ahmed Hadi

#### Bond behavior of lightweight foamed concrete

By

Rafal Ahmed Hadi Supervised by Assist. Prof. Dr. Suhad M. Abd

#### ABSTRACT

The lightweight foamed concrete (LWFC) applications in the structural building are very restricted due to its low strength and brittleness. The experimental work of this study includes two parts: the first involves improving the LWFC as structural material using additives and fibers. Where many trial mixes were made based on the density and design compressive strength. Then, the mechanical properties of the ideal mixture (1800kg/m<sup>3</sup>, 40MPa) are covered in detail for their effect on the bonding behavior of LWFC. The test results showed that the addition of the fibers into the LWFC mix decreases the flowability by 16.67%, and the other mechanical properties [compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity] are enhanced by 20%, 90.79%, 130.55%, and 113.36% respectively.

The second part of this work is the investigation of bond behavior of (Lightweight foamed, Normal) concrete using (GFRP) bars and conventional deformed steel bars. This part includes 54 specimens of the concrete cube with different dimensions (dimensions= $10d_b$ ). The main variables considered are the concrete type (LWFC, NWC), reinforcement type (GFRP bars, Steel bars), embedded length ratios ( $3\phi$ ,  $4\phi$ , and  $5\phi$ ) and bar diameters ( $\phi$ 10,  $\phi$ 12, and  $\phi$ 16). And, when comparing between the two types of reinforcing bars it was noted that the diameter  $\phi$ 12 of GFRP bars gives better results as the bond strength ranged (82%-92\%) of the bond strength of steel

I

bars depending while the comparison between the two types of concrete showed that the efficiency of LWFC towards the bond strength is very good and close to the bond strength of NWC and it also surpasses it when using diameter  $\emptyset$ 12 regardless of the relatives' embedded lengths, using the shorter embedded lengths ratios of diameter  $\emptyset$ 10 and 4 $\emptyset$  embedded length ratio of diameter  $\emptyset$ 16. Also, all specimens of foamed concrete failed by pull out and the cracks were less and narrower compared to normal concrete.

Equations with a high correlation coefficient were derived to represent the laboratory results of a pullout test of LWFC for the two types of reinforcing bars.

| List | of | Contents |
|------|----|----------|
|      |    |          |

| Subject                                            | Page |  |
|----------------------------------------------------|------|--|
| Title                                              |      |  |
| Committee Decision                                 |      |  |
| Dedication                                         |      |  |
| Acknowledgments                                    |      |  |
| Abstract                                           | Ι    |  |
| List of Contents                                   | III  |  |
| List of Figures                                    | VIII |  |
| List of Plates                                     | X    |  |
| List of Tables                                     | XII  |  |
| List of Symbols and Terminology                    | XIV  |  |
| List of Abbreviations                              | XIV  |  |
| CHAPTER ONE                                        |      |  |
| INTRODUCTION                                       |      |  |
| 1.1 General                                        | 1    |  |
| 1.2 Characteristics of Lightweight Foamed Concrete | 2    |  |
| 1.3 Applications of Lightweight Foamed Concrete    | 4    |  |
| 1.4 Fiber Reinforced Polymer Bars (FRP)            | 6    |  |
| 1.5 Research Significance                          | 7    |  |
| 1.6 Research Objectives                            | 8    |  |
| 1.7 Outline                                        | 8    |  |
| CHAPTER TWO                                        |      |  |
| LITERATURE REVIEW                                  |      |  |

| 2.1 Introduction                                                                                                                                                                                                                      | 10                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2.2 Lightweight Concrete                                                                                                                                                                                                              | 10                                                                                      |
| 2.3 Bond Strength of Lightweight Aggregate Concrete                                                                                                                                                                                   | 11                                                                                      |
| 2.4 Bond Strength of Lightweight Concrete By Using Different Admixtures                                                                                                                                                               | 16                                                                                      |
| 2.5 The Effect of Rebar Variables on The Bond Strength of Lightweight<br>Concrete                                                                                                                                                     | 19                                                                                      |
| 2.5.1 Reinforcing Type                                                                                                                                                                                                                | 19                                                                                      |
| 2.5.2 Diameter of Bar                                                                                                                                                                                                                 | 21                                                                                      |
| 2.5.3 Bond Length                                                                                                                                                                                                                     | 23                                                                                      |
| 2.6 Bond Strength of Lightweight Aerated Concrete                                                                                                                                                                                     | 24                                                                                      |
| 2.7 Bond Behavior                                                                                                                                                                                                                     | 25                                                                                      |
| 2.8 Summary                                                                                                                                                                                                                           | 26                                                                                      |
|                                                                                                                                                                                                                                       |                                                                                         |
| EXPERIMENTAL WORK                                                                                                                                                                                                                     |                                                                                         |
| 3.1 Introduction                                                                                                                                                                                                                      | 28                                                                                      |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials                                                                                                                                                                                  | 28<br>31                                                                                |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials   3.2.1 Cement                                                                                                                                                                   | 28<br>31<br>31                                                                          |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate                                                                                                                                            | 28<br>31<br>31<br>32                                                                    |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate   3.2.2.1 Silica Sand                                                                                                                      | 28<br>31<br>31<br>32<br>32                                                              |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate   3.2.2.1 Silica Sand   3.2.2.2 Natural Fine Sand                                                                                          | 28   31   31   32   32   32                                                             |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate   3.2.2.1 Silica Sand   3.2.2.2 Natural Fine Sand   3.2.3 Coarse Aggregate                                                                 | 28<br>31<br>31<br>32<br>32<br>32<br>32<br>32                                            |
| EXPERIMENTAL WORK   3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate   3.2.2.1 Silica Sand   3.2.2.2 Natural Fine Sand   3.2.3 Coarse Aggregate   3.2.4 Silica Fume                                             | 28   31   31   32   32   32   32   32   32   32   32   32   32   32   32   32   32      |
| 3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate   3.2.2.1 Silica Sand   3.2.2.2 Natural Fine Sand   3.2.3 Coarse Aggregate   3.2.4 Silica Fume   3.2.5 Water                                                   | 28   31   31   32   32   32   32   32   32   32   32   32   32   32   32   32   33      |
| 3.1 Introduction   3.2 Materials   3.2.1 Cement   3.2.2 Fine Aggregate   3.2.2.1 Silica Sand   3.2.2.2 Natural Fine Sand   3.2.3 Coarse Aggregate   3.2.4 Silica Fume   3.2.5 Water   3.2.6 Superplasticizers (Mega Flow110)          | 28   31   31   32   32   32   32   32   32   32   32   32   32   32   32   32   32   33 |
| EXPERIMENTAL WORK3.1 Introduction3.2 Materials3.2.1 Cement3.2.2 Fine Aggregate3.2.2.1 Silica Sand3.2.2.2 Natural Fine Sand3.2.3 Coarse Aggregate3.2.4 Silica Fume3.2.5 Water3.2.6 Superplasticizers (Mega Flow110)3.2.7 Foaming Agent | 28   31   31   32   32   32   32   32   32   32   32   32   32   33   33   33           |

| 3.2.9 Glass Fiber Reinforced Polymer (GFRP) Bars              | 35 |
|---------------------------------------------------------------|----|
| 3.2.10 Steel Reinforcement                                    | 35 |
| 3.3 Preparing Foaming Agent                                   | 36 |
| 3.4 Lightweight Foamed Concrete Mix Design                    | 37 |
| 3.5 Lightweight Foamed Concrete Mix Procedure                 | 40 |
| 3.6 Normal Weight Concrete Mixing Procedure                   | 42 |
| 3.7 Test Program For Mechanical Properties of Concrete Mixes  | 43 |
| 3.7.1 Fresh Concrete Mix Properties                           | 43 |
| 3.7.1.1 Fresh Density Test For Concrete Mixes                 | 43 |
| 3.7.1.2 A Flow Table Test For Lightweight Foamed Concrete Mix | 44 |
| 3.7.1.3 Slump Test For Normal Concrete Mix                    | 45 |
| 3.7.2 Tests of The Hardened Concrete Mixes                    | 45 |
| 3.7.2.1 Compression Test                                      | 45 |
| 3.7.2.2 Splitting Tensile Strength Test                       | 46 |
| 3.7.2.3 Modulus of Rupture (Flexural Strength Test)           | 47 |
| 3.7.2.4 Modulus of Elasticity                                 | 47 |
| 3.8 Pull-out Test                                             | 48 |
| 3.8.1 Pull-out Specimens                                      | 49 |
| 3.8.2 Specimens Designation                                   | 51 |
| 3.8.3 Testing Machine And Setup                               | 51 |
| 3.9 Crack Width                                               | 55 |
| CHAPTER FOUR                                                  |    |
| RESULTS AND DISCUSSIONS                                       |    |
| 4.1 Introduction                                              | 56 |
| 4.2 Trial Mixes For LWFC                                      | 56 |

| 4.2.1 Results of Trial Mixes For LWFC                              | 56 |
|--------------------------------------------------------------------|----|
| 4.2.2 Discussions of Trial Mixes Group 1                           | 57 |
| 4.2.3 Discussions of Trial Mixes Group 2                           | 58 |
| 4.2.4 Discussions of Trial Mixes Group 3                           | 58 |
| 4.3 Summary of Trial Mixes For LWFC                                | 59 |
| 4.4 Mechanical Properties For Optimum LWFC Mix                     | 59 |
| 4.4.1 Properties of Fresh LWFC                                     | 60 |
| 4.4.1.1 Flowability                                                | 60 |
| 4.4.1.2 Fresh Density                                              | 61 |
| 4.4.2 Properties of Hardened LWFC                                  | 61 |
| 4.4.2.1 Compressive Strength                                       | 61 |
| 4.4.2.2 Splitting Tensile Strength                                 | 63 |
| 4.4.2.3 Modulus of Rupture (Flexural Strength)                     | 65 |
| 4.4.2.4 Modulus of Elasticity                                      | 66 |
| 4.5 Mixes Selected For Pullout Test                                | 67 |
| 4.6 General Remark For Pullout Test                                | 68 |
| 4.6.1 Introduction                                                 | 68 |
| 4.6.2 Mechanism of Failures                                        | 68 |
| 4.7 Results of Pullout Test                                        | 71 |
| 4.7.1 Group1/ Effect of Bonded Lengths of LWFC +Steel Bar          | 71 |
| 4.7.1.1 Effectiveness of Bond Lengths For 10mm Steel Bar Diameter  | 71 |
| 4.7.1.2 Effectiveness of Bond Lengths For 12mm Steel Bar Diameter  | 72 |
| 4.7.1.3 Effectiveness of Bond Lengths For 16mm Steel Bar Diameter  | 73 |
| 4.7.2 Group1/ Effect of Bars Diameter of LWFC +Steel Bar           | 75 |
| 4.7.2.1 Effectiveness of Bars Diameter For 3@ and 4@ Bonded Length | 75 |

| 4.7.2.2 Effectiveness of Bars Diameter For 5@ Bonded Length                   | 76  |  |
|-------------------------------------------------------------------------------|-----|--|
| 4.7.3 Group2/ Effect of Bonded Lengths of LWFC + GFRP                         | 77  |  |
| 4.7.3.1 Effectiveness of Bond Lengths For 10mm GFRP Bar Diameter              | 77  |  |
| 4.7.3.2 Effectiveness of Bond Lengths For 12mm GFRP Bar Diameter              | 78  |  |
| 4.7.3.3 Effectiveness of Bond Lengths For 16mm GFRP Bar Diameter              | 79  |  |
| 4.7.4 Group2/ Effect of Bar Diameters of LWFC + GFRP                          | 81  |  |
| 4.7.4.1 Effectiveness of Bars Diameter For 3@ Bonded Length                   | 81  |  |
| 4.7.4.2 Effectiveness of Bars Diameter For 4@ Bonded Length                   | 82  |  |
| 4.7.4.3 Effectiveness of Bars Diameter For 5@ Bonded Length                   | 82  |  |
| 4.7.5 Summary For Group1 And Group2                                           | 83  |  |
| 4.7.6 Group3/ Effect of Bonded Lengths of NWC + Steel Bar                     | 84  |  |
| 4.7.6.1 Effectiveness of Bond Lengths For 10mm And 16mm Steel<br>Bar Diameter | 84  |  |
| 4.7.6.2 Effectiveness of Bond Lengths For 12mm Steel Bar Diameter             | 87  |  |
| 4.7.7 Group3/ Effect of Bars Diameter of NWC + Steel Bar                      | 89  |  |
| 4.7.7.1 Effectiveness of Bars Diameter For 3@ Bonded Length                   | 89  |  |
| 4.7.7.2 Effectiveness of Bars Diameter For 4@ Bonded Length                   | 89  |  |
| 4.7.7.3 Effectiveness of Bars Diameter For 5@ Bonded Length                   | 90  |  |
| 4.7.8 Effect of Reinforcing Bar Type                                          | 90  |  |
| 4.7.9 Effect of Concrete Type                                                 | 96  |  |
| 4.8 Theoretical Analysis of Pullout Test Results For LWFC                     | 102 |  |
| 4.8.1 LWFC + Deformed Steel Bar                                               | 103 |  |
| 4.8.2 LWFC + Sand Coated GFRP Bar                                             | 107 |  |
| CHAPTER FIVE                                                                  |     |  |
| CONCLUSION                                                                    |     |  |
| 5.1 General Remark                                                            | 110 |  |

| 5.2 Conclusion                      | 110 |
|-------------------------------------|-----|
| 5.3 Recommendations And Future Work | 112 |
| References                          |     |
| Appendix-A                          | 1   |
| Appendix-B                          | 13  |

## List of Figures

| No. | Figure Title                                                                                                      | Page |
|-----|-------------------------------------------------------------------------------------------------------------------|------|
| 2-1 | The effect of W/C ratio on bond stress-slip curve                                                                 | 13   |
| 2-2 | The effect of fine and coarse agg. On bond stress-slip curve                                                      | 14   |
| 2-3 | The effect of adding both silica fume and superplastisizer on bond<br>strength of lightweight aggregates concrete | 17   |
| 2-4 | The effect of adding silica fume on bond strength of lightweight aggregates concrete                              | 17   |
| 3-1 | Schematic diagram of part 1 from experimental work                                                                | 30   |
| 3-2 | Schematic diagram of part 2 from experimental work                                                                | 31   |
| 4-1 | The best result of compressive strength for each group                                                            | 59   |
| 4-2 | Results of flowability test                                                                                       | 60   |
| 4-3 | Results of fresh density                                                                                          | 61   |
| 4-4 | Results of compressive strength                                                                                   | 63   |
| 4-5 | Results of splitting tensile strength                                                                             | 65   |
| 4-6 | Results of flexural strength                                                                                      | 66   |
| 4-7 | Results of modulus of elasticity test                                                                             | 67   |
| 4-8 | Effect of bond length for 10mm bar diameter                                                                       | 71   |
| 4-9 | Effect of bond length for 12mm bar diameter                                                                       | 72   |

| 4-10 | Effect of bond length for 16mm bar diameter                     | 74 |
|------|-----------------------------------------------------------------|----|
| 4-11 | Effect of bar diameter for 3@ bonded length                     | 75 |
| 4-12 | Effect of bar diameter for 40 bonded length                     | 76 |
| 4-13 | Effect of bar diameter for 50 bonded length                     | 77 |
| 4-14 | Effect of bonded lengths for @10 bar diameter                   | 78 |
| 4-15 | Effect of bonded lengths for Q12 bar diameter                   | 79 |
| 4-16 | Effect of bonded lengths for @16 bar diameter                   | 80 |
| 4-17 | Effect of bar diameters for 30 bonded lengths                   | 81 |
| 4-18 | Effect of bar diameters for 40 bonded lengths                   | 82 |
| 4-19 | Effect of bar diameters for 50 bonded lengths                   | 82 |
| 4-20 | Maximum bond strength values for different steel bars diameters | 84 |
|      | used                                                            |    |
| 4-21 | Maximum bond strength values for different GFRP bars diameter   | 84 |
|      | useu                                                            |    |
| 4-22 | Effect of bond lengths for 10mm steel bar diameter              | 87 |
| 4-23 | Effect of bond lengths for 16mm steel bar diameter              | 87 |
| 4-24 | Effect of bond lengths for 12mm steel bar diameter              | 88 |
| 4-25 | Effect of bars diameter for 30 bonded length                    | 89 |
| 4-26 | Effect of bars diameter for 40 bonded length                    | 90 |
| 4-27 | Effect of bars diameter for 50 bonded length                    | 90 |
| 4-28 | Results of Group1 and Group2 for bar diameter @10 and bond      | 91 |
|      | lengths 30, 40 and 50                                           |    |
| 4-29 | Results of Group1 and Group2 for bar diameter @12 and bond      | 92 |
|      | lengths 30, 40 and 50                                           |    |
| 4-30 | Results of Group1 and Group2 for bar diameter @16 and bond      | 93 |
|      | lengths 30, 40 and 50                                           |    |

| 4-31 | Results of Group1 and Group3 for bar diameter @10 and bond         | 97  |
|------|--------------------------------------------------------------------|-----|
|      | lengths 30, 40 and 50                                              |     |
|      |                                                                    |     |
| 4-32 | Results of Group1 and Group3 for bar diameter @12 and bond         | 98  |
|      | lengths 30, 40 and 50                                              |     |
| 4-33 | Results of Group1 and Group3 for bar diameter @16 and bond         | 99  |
|      | lengths 30, 40 and 50                                              |     |
|      |                                                                    |     |
| 4-34 | Compared the ratios of average experimental and predicted ultimate | 104 |
|      | bond strength by proposed and previously derived bond strength eq. |     |
|      | for 3db and 4db embedded length ratio                              |     |
|      |                                                                    |     |
| 4-35 | Compared the ratios of average experimental and predicted ultimate | 106 |
|      | bond strength by proposed and previously derived bond strength eq. |     |
|      | for 5db embedded length ratio                                      |     |
|      |                                                                    |     |
| 4-36 | Comparison between the predicted and previously existing           | 108 |
|      | equations, of average pullout results for @10 GFRP bar.            |     |
|      |                                                                    |     |
| 4-37 | Comparison between the predicted and previously existing           | 108 |
|      | equations, of average pullout results for @12 and @16 GFRP bar.    |     |
|      |                                                                    |     |

## List of Plates

| No.  | Plate Title                                                         | Page |
|------|---------------------------------------------------------------------|------|
| 1-1  | The separate and rise up of the foam layer from concrete due to the | 4    |
|      | increased mixing time in the presence of the superplasticizer       |      |
| 1-2  | (a) Details related to foundations, (b) Installation of molds and   | 6    |
|      | casting, (c) Remove the molds after 20 days                         |      |
| 1-3  | The use of LWFC in Al Hussain Quran School in Karbala city, Iraq,   | 6    |
|      | 2017.                                                               |      |
| 3-1  | Standard Fine Silica Sand.                                          | 32   |
| 3-2  | Superplasticizer (Mega Flow110)                                     | 33   |
| 3-3  | Foam agent                                                          | 34   |
| 3-4  | hooked-ends steel fiber                                             | 34   |
| 3-5  | Polypropylene fiber                                                 | 34   |
| 3-6  | Polyolefin fiber.                                                   | 35   |
| 3-7  | Corrugated steel fiber.                                             | 35   |
| 3-8  | The Geometry of GFRP Bars Used In This Work.                        | 35   |
| 3-9  | Tensile strength test for steel bars                                | 36   |
| 3-10 | Foam generator machine                                              | 36   |

| 3-11 | The foam used                                                                           | 37  |
|------|-----------------------------------------------------------------------------------------|-----|
| 3-12 | Density of foam test                                                                    | 37  |
| 3-13 | homogeneous balls                                                                       | 40  |
| 3-14 | homogeneous mixture                                                                     | 40  |
| 3-15 | Preformed foam                                                                          | 41  |
| 3-16 | Adding foam                                                                             | 41  |
| 3-17 | Homogeneous foamed concrete                                                             | 41  |
| 3-18 | Distribution of fibers on mix                                                           | 42  |
| 3-19 | Procedure for NWC mix; (a) Mix sand and gravel, (b) Adding                              | 43  |
|      | cement, (c) Get a homogeneous mixture after adding water                                |     |
| 3-20 | Lightweight foamed concrete fresh density checking.                                     | 44  |
| 3-21 | Flow table test.                                                                        | 44  |
| 3-22 | Slump test for normal concrete mix.                                                     | 45  |
| 3-23 | Compression test.                                                                       | 46  |
| 3-24 | Splitting tensile strength test.                                                        | 46  |
| 3-25 | Modulus of Rupture Test.                                                                | 47  |
| 3-26 | Modulus of Elasticity Test.                                                             | 48  |
| 3-27 | Molds of casting specimens                                                              | 50  |
| 3-28 | Cover the unbonded lengths with plastic hollow tube                                     | 50  |
| 3-29 | Specimens during casting.                                                               | 51  |
| 3-30 | Foamed concrete sample without using rubber mallet.                                     | 51  |
| 3-31 | a) Fixation of specimen with steel reinforcing bar to a pull out test                   | 52  |
|      | machine, b) Sketch of the specimen under test.                                          |     |
| 3-32 | The effect of hydraulic pressure of pull out test machine on the                        | 53  |
|      | GFRP bar                                                                                |     |
| 3-33 | Strengthening of GFRP bar, a)GFRP bar before test, b,c,d)Slip                           | 54  |
|      | failure outside the scope of the study, e,f,g)Yeild failure, no slippage                |     |
| 3-34 | Microscope Crack Meter.                                                                 | 55  |
| 4-1  | Failure pattern of splitting tensile test of a)FC, b)FC(Hs+PP                           | 64  |
| 4-2  | Close up failure surface for FC(Hs+PP)                                                  | 64  |
| 4-3  | Flexural failure of a)FC, b)FC(Hs+PP)                                                   | 66  |
| 4-4  | Excluded specimens due to the change in bonding length during the                       | 68  |
| 4.5  | cast process of foamed concrete                                                         | (0) |
| 4-5  | Splitting failure patterns of concrete; a) splitting accompanied with                   | 69  |
| 1.6  | Crown 1: LWEC   Steel her                                                               | 70  |
| 4-0  | Group1: LWFC+Steel bar                                                                  | 70  |
| 4-/  | Group2: NWC+ Steel her                                                                  | 70  |
| 4-0  | Foilures notterns of I WEC for different handed lengths on steel her                    | 70  |
| 4-9  | 1 and conditions of L w C for different bonded lengths on steel bar                     | 12  |
|      | a) $FC3010$ b) $FC4010$ c) $FC5010$                                                     |     |
| 4-10 | Failures patterns of LWFC for different bonded lengths on steel                         | 73  |
|      | bar $(012 \text{ a})$ FC3 $(012 \text{ b})$ FC4 $(012 \text{ c})$ FC5 $(012 \text{ c})$ |     |
| 4-11 | Failures patterns of LWFC for different bonded lengths on steel                         | 74  |
|      | bar@16                                                                                  |     |
|      | a) FC3@16, b) FC4@16, c) FC5@16                                                         |     |
| 4-12 | Failures patterns of LWFC for different bonded lengths on GFRP                          | 78  |
|      | bar@10 a) FC3@10, b) FC4@10, c) FC5@10                                                  |     |

| 4-13 | Failures patterns of LWFC for different bonded lengths on GFRP      | 79 |
|------|---------------------------------------------------------------------|----|
|      | bar@12 a) FC3@12, b) FC4@12, c) FC5@12                              |    |
| 4-14 | Failures patterns of LWFC for different bonded lengths on GFRP      | 80 |
|      | bar@16 a) FC3@16, b) FC4@16, c) FC5@16                              |    |
| 4-15 | Failures patterns of NWC for different bonded lengths on steel      | 86 |
|      | bar@10 a) FC3@10, b) FC4@10, c) FC5@10                              |    |
| 4-16 | Failures patterns of NWC for different bonded lengths on steel      | 86 |
|      | bar@16 a) FC3@16, b) FC4@16, c) FC5@16                              |    |
| 4-17 | Failures patterns of NWC for different bonded lengths on steel      | 88 |
|      | bar@12a) FC3@12, b) FC4@12, c) FC5@12                               |    |
| 4-18 | Effect of shear stresses generated between bar ribs and concrete at | 96 |
|      | bond interface                                                      |    |
| 4-19 | Peeled off and eroded of layer covering GFRP bar during pull out    | 96 |
|      | test                                                                |    |
| B-14 | Failure patterns for 10mm bar diameter of steel and GFRP bars       | 13 |
|      | (Group1 and Group2)                                                 |    |
| B-15 | Failure patterns for 12mm bar diameter of steel and GFRP bars       | 14 |
|      | (Group1 and Group2)                                                 |    |
| B-16 | Failure patterns for 10mm bar diameter of steel and GFRP bars       | 14 |
|      | (Group1 and Group2)                                                 |    |
| 4-17 | Failure patterns for 10mm bar diameter of steel bars (Group1 and    | 15 |
|      | Group3)                                                             |    |
| 4-18 | Failure patterns for 12mm bar diameter of steel bars (Group1 and    | 16 |
|      | Group3)                                                             |    |
| 4-19 | Failure patterns for 16mm bar diameter of steel bars (Group1 and    | 17 |
|      | Group3)                                                             |    |
|      | Group3)                                                             |    |

## List of Tables

| No. | Table Title                                                               | Page |
|-----|---------------------------------------------------------------------------|------|
| 1-1 | Applications of foamed concrete according to its density                  | 4    |
| 1-2 | Materials of Maysan project                                               | 5    |
| 3-1 | Groups of study                                                           | 29   |
| 3-2 | Lightweight Foamed Concrete Mix Proportion                                | 39   |
| 3-3 | Mix details of normal concrete                                            | 43   |
| 4-1 | Compressive strength results of trial mixes for LWFC                      | 57   |
| 4-2 | Results of Mechanical properties tests for optimum LWFC mix               | 60   |
| 4-3 | Properties of selected (LWFC) and (NWC) mixes at 28-days for pullout test | 67   |

| 4-4  | Comparison of pull test results for the two types of reinforcing bars | 95  |
|------|-----------------------------------------------------------------------|-----|
| 4-5  | Maximum crack for NWC and LWFC specimens                              | 101 |
| 4-6  | Comparison of average pullout test results for the two types of       | 101 |
|      | concrete (NWC and LWFC)                                               |     |
| 4-7  | Pullout Tests Results of LWFC                                         | 102 |
| 4-8  | Previously derived bond strength equations                            | 105 |
| 4-9  | A comparison between the experimental (lab.) results and the          | 107 |
|      | predicted results of average ultimate bond strength for LWFC+         |     |
|      | deformed steel bar                                                    |     |
| 4-10 | A comparison between the experimental (lab.) results and the          | 109 |
|      | predicted results of average ultimate bond strength for LWFC+         |     |
|      | GFRP                                                                  |     |
| A-1  | physical properties of cement                                         | 1   |
| A-2  | chemical properties of cement                                         | 1   |
| A-3  | Sieve analysis of silica sand                                         | 2   |
| A-5  | sieve analysis of natural fine sand                                   | 4   |
| A-6  | Sieve analysis of coarse aggregate                                    | 4   |
| A-9  | Properties of foam agent                                              | 8   |
| A-10 | Properties of fibers                                                  | 8   |
| A-12 | Properties of conventional deformed steel bars                        | 9   |

| Symbols | Terminology                              |
|---------|------------------------------------------|
| РО      | Pullout Test                             |
| W/C     | Water to Cement Ratio                    |
| W/B     | Water to Binder ratio                    |
| C/S     | Cement to Sand ratio                     |
| SP.     | Superplastisizer                         |
| Ро      | Polyolefin fibers                        |
| PP      | Polypropylene fibers                     |
| Cs      | Corrugated steel fiber                   |
| Hs      | Hooked-ends steel fibers                 |
| Ec      | Modulus of elasticity of concrete in MPa |
| Es      | Modulus of elasticity of steel in MPa    |
| fr      | Modulus of rupture in MPa                |
| fcu     | Cube compressive strength of concrete in |
|         | MPa.                                     |

## List of Abbreviations

| Abbreviations | Descriptions                       |  |  |  |
|---------------|------------------------------------|--|--|--|
| ACI-318-14    | American Concrete Institute:       |  |  |  |
|               | Building Code Requirements for     |  |  |  |
|               | Structural Concrete and            |  |  |  |
|               | Commentary                         |  |  |  |
| ACI 440.1R-06 | American Concrete Institute: Guide |  |  |  |
|               | for the Design and Construction of |  |  |  |
|               | Structural Concrete Reinforced     |  |  |  |
|               | with FRP Bars                      |  |  |  |
| BS            | British Standard                   |  |  |  |
| FRP           | Fiber Reinforced Polymer           |  |  |  |
| GFRP          | Glass Fiber Reinforced Polymer     |  |  |  |
| I.Q.S         | Iraqi Central Organization for     |  |  |  |
|               | Standardization and Quality        |  |  |  |
|               | Control                            |  |  |  |
| LWFC          | Lightweight Foamed Concrete        |  |  |  |
| NWC           | Normal Weight Concrete             |  |  |  |

#### Introduction

#### 1.1 General

Lightweight foamed concrete (LWFC) is opposed to masonry and normal weight concrete (NWC), since it is not well studied, known, and widely implemented in the construction sector so, it can be considered relatively as a new building material (De Villiers, 2015). According to DIN1045-1, concrete can be classified into three types according to its dry density; (800-2000 kg/m<sup>3</sup>) lightweight concrete, (2000-2600 kg/m<sup>3</sup>) traditional weight concrete, (>2600 kg/m<sup>3</sup>) heavyweight concrete. And according to ASTM C330, lightweight concrete is classified into structural with a compressive strength of  $\geq 17$ MPa and non-structural with a compressive strength <17MPa. Lightweight foamed concrete is a type of aerated lightweight concrete which can be described in term of binder materials (usually using cement and other chemical additives such as silica fume or fly ash or ground granular blast furnace slag (GGBS)), fine sand and water while the air is represented by a homogeneous foamed that is gradually added to reach the required fresh density. This stable air babbles in foamed concrete replace the coarse aggregate and this is the main difference between lightweight foamed concrete and ordinary weight concrete. The cellular structure of the mix is achieved by the presence of macroscopic voids occurring from a chemical reaction of gas or the mechanical introduction of air or other gasses (autoclave curing is usually employed)" (ACI Committee 523.2R, 1996). The foam used in the production of foamed concrete is a combination of liquid, chemical additives and compressed gases may be nitrogen, natural gas, carbon dioxide, and air which represent 20% by volume of the mix (Brady et al., 2001).

Sustainable concrete is today one of the construction industry's major problems, foamed concrete mix design requirements will help address this. new. challenge significantly, thus upholding the idea of "sustainable building." (Benghida, 2017) by including the foamed concrete mixture with materials that have pozzolanic properties such as silica fume, slag, and fly ash, which are harmful to the environment, thus ridding the environment of these wastes in addition to reducing the use of cement known for its high carbon emissions. Also, using foamed concrete leads to reduce the reinforcement needs for construction, size of structural members, and the ease of its handling and transportation due to its lightweight so, this will reduce the total cost of the construction.

It is a risk to apply the standard specifications for normal weight concrete structural design directly to design structures with lightweight foamed concrete because this will lead to the production of an unsafe structure. This risk is represented by the lack of available information and data on the structural properties of (LWFC). One of these characteristics is the bond behavior between this concrete and the deformed reinforcing bars.

#### **1.2 Characteristics of Foam Concrete**

Foamed concrete has many advantages and disadvantages, including that appears during the production process, and others appear later. One of the most important advantages is that it has a high strength to weight ratios in addition to not needing complications during the mixing and production process because it is known as self-leveling concrete because it is free to flow and not need vibratory during casting, a building constructed with this concrete is twice as safe as fire compared to traditional concrete structures. A wide range of densities can be obtained according to the intended purpose of use, as very low densities are used for non-structural purposes which are limited to ground level, thermal and acoustic insulation

and sewer, voids filling, swimming pool in filling and in bridges for approach, decks, strengthening... etc. While the high densities of lightweight concrete with 20 MPa compressive strength can be used for construction purposes due to the attractive core properties in terms of its contribution to reducing the dead weight of the structure and thus, making the structure of economic design (Amarnath, and Ramachandrudu, 2013).

While the major defects that foamed concrete suffers are the high porosity as these pores affect the strength of the concrete mainly, in addition to defects that appear during the mixing stage where the foamed concrete mix is very sensitive to the water content added during mixing, as too much water causes the separation of the input foam and thus produces an irregularity in the density of the mixture while adding less water than required makes the cement use the water of foam and consequently the deterioration of the foam, which also affects the density and regularity of mixing (De Villiers, 2015).

It must be noted that the mixing for a long period than usual (with the presence of superplasticizer) causes the components of the mixture to settle down and the foam layer is raised thus, the concrete surface is easily shattered as seen in the plate (1-1). Therefore, always resorting to improving the properties of the lightweight foamed concrete mixture by using different additives such as the use of materials of high fineness with a pozzolanic composition, for example, silica fume, fly ash, and slag, to improve strength, density, and the bond between the ingredient of a concrete mix by filling voids between cement and fine aggregate. In addition to that, some foamed concrete mixtures require enhancement with fibers to increase their engineering properties.



Plate (1-1): The separate and rise up of the foam layer from concrete due to the increased mixing time in the presence of the superplasticizer

#### **1.3 Applications of Lightweight Foamed Concrete**

After knew the attractive properties of foamed concrete such as thermal and sound insulation, low consumption of aggregates due to its low dead weight, self-leveling, control low strength... etc. It becomes clear that by incorporating foam into a regular concrete system, the final product can be used in more complex structures and conditions. The application of foamed concrete has become popular all over the world, particularly in bad weather areas, earthquakes, and storms and that depends on its density as seen in the table (1-1) (Mohd Sari and Mohammed Sani, 2017).

| Density (kg/m <sup>3</sup> ) | Application                                                                                                                                                       |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 300-600                      | Replacement of existing soil, soil stabilization, raft foundation.                                                                                                |
| 500-600                      | Currently being used to stabilize a redundant, geotechnical rehabilitation and soil settlement. Road construction.                                                |
| 600-800                      | Widely used in void filling, as an alternative to granular fill. Some<br>such applications include filling of old sewerage pipes, wells,<br>basement and subways. |
| 800 - 900                    | Primarily used in production of blocks and other non-load bearing<br>building element such as balcony railing, partitions, parapets, etc.                         |
| 1100-1400                    | Used in prefabrication and cast-in place wall, either load bearing or non-load bearing and floor screeds.                                                         |
| 1100-1500                    | Housing applications.                                                                                                                                             |
| 1600-1800                    | Recommended for slabs and other load bearing building element where higher strength required.                                                                     |

Table (1-1): Applications of foamed concrete according to its density

The examples of using foamed concrete as a construction material in Iraq is the city of residential architecture project in the Maysan region in southern

Iraq (Sallal, Ali Kadhim. 2018) the form of the project is presented in table (1-2) below

Table (1-2): Materials of Maysan project (Sallal, Ali Kadhim. 2018)

| Oven-Density in K                                                                                                                                                                               | (G/m <sup>3</sup>  |                 | 400                               | 600                         | 800                                     | 1.000                                                                                                                                                                         | 1,200                                        | 1.400                                           | 1.600                        | 2.316<br>Conv.concr. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|-----------------------------------|-----------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------|----------------------|
| Sand                                                                                                                                                                                            | (kg)               |                 | 1                                 | 210                         | 400                                     | 560                                                                                                                                                                           | 750                                          | 950                                             | 1.100                        | 1.815<br>travel+sand |
| Cement                                                                                                                                                                                          | (kg)               | +               | 300                               | 310                         | 320                                     | 350                                                                                                                                                                           | 360                                          | 380                                             | 400                          | 320                  |
| Water in mortar                                                                                                                                                                                 | (kg)               | +               | 110                               | 110                         | 120                                     | 120                                                                                                                                                                           | 140                                          | 150                                             | 160                          | 180                  |
| Quantity of Foam                                                                                                                                                                                | (Ltrs)             |                 | (800)                             | (715)                       | (630)                                   | (560)                                                                                                                                                                         | (460)                                        | (370)                                           | (290)                        | -                    |
| Water in Foam                                                                                                                                                                                   | (kg)               | +               | 64                                | 57                          | 50                                      | 45                                                                                                                                                                            | 37                                           | 30                                              | 23                           | -                    |
| Wet Density                                                                                                                                                                                     | (ka/m              | 3)              | 474                               | 687                         | 890                                     | 1.075                                                                                                                                                                         | 1.287                                        | 1.510                                           | 1.683                        | 2.315                |
| Foaming Agent us                                                                                                                                                                                | se (kg             | 3)              | 1,5                               | 1,4                         | 1,2                                     | 1,1                                                                                                                                                                           | 0,9                                          | 0,7                                             | 0,6                          | -                    |
| Water/Cement Rai                                                                                                                                                                                | tio                |                 | 0,58                              | 0,54                        | 0,53                                    | 0,47                                                                                                                                                                          | 0,49                                         | 0,47                                            | 0,46                         | 0,56                 |
| Maximum Strengt                                                                                                                                                                                 | h in N             | mm <sup>2</sup> | ~ 1                               | ~ 2                         | ~ 3                                     | ~ 4                                                                                                                                                                           | ~ 8                                          | ~ 12                                            | ~ 18                         | 40 +                 |
| Average Lambda                                                                                                                                                                                  | (W/m)              | (K)             | 0,096                             | 0,18                        | 0,21                                    | 0,32                                                                                                                                                                          | 0,405                                        | 0,450                                           | 0,550                        | 2,10                 |
| (Achieved strengt<br>aggregate in matr                                                                                                                                                          | h at th<br>ix of C | e lab           | with optin<br>concrete in         | num sand an<br>creases stre | ngth up to 50                           | alities) More<br>0% in overa                                                                                                                                                  | cement will i<br>Il densities b              | elow 1.000 kg                                   | mgth. Usir<br>m <sup>3</sup> | ig lightweigh        |
| GENERAL REMARKS<br>Recommended weight of<br>Crushed Sand might med                                                                                                                              | foam               | Minin           | num 80 g/ltr                      | am                          |                                         | 1<br>yi                                                                                                                                                                       | kg of Neopor foamin<br>alds approx. 510 litr | ng agent, diluted in 4<br>res of foarn at 80 gr | 10 parts of wa<br>ams/litre  | ler                  |
| Water to process foam Potable, if possible below 25 °C<br>Dilution of loaming agent 1 part of Neopor to 49 parts of water<br>Recommended Cement Portland CEM 132,5R or higher grade, or similar |                    |                 |                                   |                             | C:<br>Ap                                | Captive densities are oven-dry (2+A at 100°C)<br>Appr. 25% of the total volume of water (in mix and in foam)<br>in relation to the weight of cement used will crystallize and |                                              |                                                 |                              |                      |
| Recommended Sand                                                                                                                                                                                |                    | Minin           | num 15-18% fin<br>1 400/up to 5 m | es Up<br>nm Ur              | to 1.000/up to 2m<br>to 1.200/up to 4 m | m th<br>m an                                                                                                                                                                  | d sand used to rea                           | ch the "oven-dry" d                             | ensity.                      | e cement             |







Plate (1-2): (a) Details related to foundations, (b) Installation of molds and casting, (c) Remove the molds after 20 days

Also, it's used for nonstructural application ( $f_{c'} = <17$ MPa) as leveling materials in southern Iraq, where because of its lightweight used as leveling layer primarily rather than using waste, besides using it as leveling materials under tiles as it cast in single-level without of any variation in the surface and then adhesives porcelain.



Plate (1-3): The use of LWFC in Al Hussain Quran School in Karbala city, Iraq, 2017.

#### 1.4 Fiber Reinforced Polymer Bars (FRP)

The The Swiss Federal research center for Materials Analysis and Testing (EMPA) was the first laboratory to test and research composites of fiber-reinforced polymer (FRP) for strengthening reinforced concrete members. In 1984 EMPA implemented a test on beams reinforced with CFRP plate (Hussain, et. al., 2018). Later on, this type of bar became popular in the construction environment due to its high tensile strength against its weight, which is lighter than ordinary steel bars. Enabling them to design and fabricate structures of very high load carrying capacities. One of the important problems in the construction sector is the problem of rust and corrosion of steel reinforcement which affect concrete by its deterioration and lost its serviceability (Maranan, et. al., 2015). To avoid this problem, FRP bars can be used as an alternative to regular steel bars. It also keeps maintains the cost of buildings due to its resistance to corrosion.

Fiber-reinforced polymer bars are formed through the incorporation of fiber into a polymer (resin) mix that binds the fiber together. FRP bars have attractive properties such as lightweight, thermal and electrical insulation, noncorrosive, and nonmagnetic material, and high tensile strength, which makes it a good material in the reinforcement of structures (ACI Committee 440.1R, 2006).

#### **1.5 Research Significance**

Very limited studies related to the bond behavior of foamed concrete were found around the world. Although it is a very important property for this type of concrete as it can study the behavior of the reinforced concrete (RC) structures, since it assures the stress transfer between the two materials (reinforcement and concrete), also the bond is one of the main keys to assessing the performance of reinforced concrete (RC) structure against a seismic load.

The current study focuses on investigating the bond behavior of foamed concrete according to (RILEM, 2006) by using two types of bars which are steel and GFRP. It is important to know the bond behavior between foamed concrete and FRP, as this type of reinforcement not affected by weather factors as it does not rust or corrode by the action of moisture so it can be entered into many design fields. On the other hand, reinforcing foam concrete with some types of fibers such as steel and polypropylene fibers can contribute to enhancing its strength and various properties, especially concerning tensile strength, and thus solve the problem of brittleness.

7

#### **1.6 Research Objectives**

The main objectives of this research are:

1- Investigate the mechanical properties of the proposed foamed concrete mix.

2- Investigate the bond behavior of LWFC with GFRP bars and conventional steel bars.

3- Comparison of the results of bond strength for LWFC with the bond strength results of normal weight concrete.

#### 1.7 Outline

**Chapter One**: It gives an introduction to lightweight foamed concrete in terms of its identification, various applications, and its properties, in addition to addressing a brief to define the reinforcing bars made of polymer, as well as the significance and objectives of the research.

**Chapter Two:** Briefly summarizes the previous studies related to the field of studying the bonding behavior of lightweight concrete by addressing the studied variables, methods adopted in the test and the results previously reached.

**Chapter Three:** The first part of this chapter deals with the trail mixes using different construction materials to produce a mixture of lightweight foamed concrete with good mechanical properties in terms of compressive strength, flexural, tensile strength, and elastic modulus. While the second part of this chapter includes a detailed explanation of preparing the proposed specimens for conducting the bond test according to the (RILEM, 2006).

**Chapter Four:** The results of the study are presented in this chapter and the discussion was conducted in detail on the results of the bond behavior, slip, and mode failure for the specimens of study. Besides representing the practical results for bond behavior of LWFC by linear equations with a high

correlation coefficient. Also, commented on the results related to the mechanical properties of foamed concrete.

**Chapter Five:** provides the conclusions drawn from this study, recommendations, and suggestions for further studies.