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ABSTRACT  

The main goal of this study is to investigate the behavior of reinforced 

concrete ring deep beams based on the STM of ACI 318M-14. This research 

includes casting and testing program for eight reinforced concrete ring deep 

beam specimens divided into four groups. The sectional width of all 

specimens is 100mm with a diameter of 1000mm c/c. All specimens are 

subjected to single concentrated load at mid of each span and supported on 

three supports except one of them. The variables that have been considered 

are as follows: secondary reinforcement, main reinforcement, height of ring 

deep beam, and number of supports. The first group comprises removing 

horizontal secondary reinforcement, removing vertical secondary 

reinforcement, and removing both of them together. The second group 

comprises decreasing quantity of main reinforcement by about 61% and 

100%. The third group comprises reducing the height from 350 mm to 300 

mm, i.e., 14%. The fourth group had increased in the number of supports 

from 3 to 4.  

The experimental ultimate capacity, load-deflection response, deflection at 

first crack, crack type and propagation, in addition to crack characteristics 

were all investigated and discussed. Besides to failure conditions, strain 

values in steel bars and average strain values in concrete surfaces are also 

investigated. 
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The experimental results show that the load-midspan deflection responses 

obtained for the tested specimens are roughly linear for the majority of the 

loading process, then bend slightly, except when vertical shear reinforcement 

is omitted or no secondary reinforcement is provided, in addition to the case 

of no main reinforcement. This illustrates the most common shear 

deformation behavior, which leads to brittle failure. The experimental results 

also show the efficacy of the ACI 318 STM, although it is conservative by 

37-41%. The lateral displacement at the load application point is also measured. 

Until the appearance of the first crack, the dependence of the torsional moments 

and lateral displacement is nearly linear. After cracking, the lateral displacement 

significantly increased. Load capacity decreased by about 12.5%, 38.5%, and 

55%, when removing horizontal secondary reinforcement, removing vertical 

secondary reinforcement, and removing both of them together respectively. 

While the midspan deflection decreased by about 15% when removing 

horizontal secondary reinforcement, removing vertical secondary 

reinforcement and removing both of them together led to increase deflection 

by 0.5%, and 32.8% respectively. The load capacity and midspan deflection 

were not affected when the main reinforcement ratio decreased by about 

61%, because the failure was a strut shear failure. As for when the main 

reinforcement was completely removed, the failure shifted from the strut to 

the tie, and the load capacity and midspan deflection decreased by about 36% 

and 23.5%, respectively. Reducing the height from 350 mm to 300 mm, i.e., 

14%, led to decrease the load capacity by about 15%, while the midspan 

deflection increased by about 32.8%. The increase in the number of supports 

from 3 to 4 led to increase load capacity by about 63%, while midspan 

deflection decreased by about 48%. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General  
It has been found advantageous to use horizontally curved deep 

beams or bow deep girders in building and bridge design. Recently, many 

architects and designers have become more interested in using them.  

Meantime, dome, silo, circular tank, offshore structures, and other structures 

use ring deep beams with a complete circular plane. Because of their high 

load resistance, industries have relied on ring deep beams (Al Qaicy, et al., 

2014). 

According to ACI 318M-14 Code, deep beams can be defined as: 

''Structural Members supported on one face and loaded on the opposite face 

so that struts-similar compression elements can expand between the supports 

and the loads, that states (1) or (2): 

1) The clear span of the beam must not be more than four times the 

overall depth of the beam h. 

2) Concentrated loads are those that occur within 2h of the support face." 

In mathematical forms, shear span to the beam height (a/h 2) should be 

taken into consideration for simple span and continuous deep beams. 

1.2 Modeling with Struts and Ties 

Strut and Tie Modeling is a way of analysis for reinforced concrete 

structures and reinforced concrete prestressed structures that decline 

complex states of stress in a structure to a gathering of simple stress paths. 

The stress paths cause uniaxial stresses in suggested truss members. Truss 

members in compression are named struts, whereas the force paths in tension 

are called ties. The junctions of ties - struts are called nodes as shown in 
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Figure (1-1). The combination of ties, struts and nodes is named a truss 

mechanism (Brown and Bayrak, 2006).  

 

Figure (1-1): Strut and tie model, prismatic strut type 
  

Strut and tie model overlooking kinematic constraints. Within the 

analysis stage, node equilibrium and overall equilibrium are considered. 

Empirical observation of ties, struts, and nodes is used to determine the 

constitutive relevance of these elements in order to set the yield conditions 

for them. As a result, strut and tie models follow the lower bound of plasticity 

theory, which states that only yield conditions and equilibrium must be 

persuaded (Brown and Bayrak, 2006). According to the lower bound of 

plasticity theory, if the load is large enough to allow the discovery of a stress 

distribution that is identical to stresses at the yield surface while maintaining 

external and internal equilibrium, the load will not cause the body to collapse 

(Nielsen, et al., 1978). More specifically, the capacity of a structure, as 

determined by a lower bound approach, will be at most equal to or less than 

the actual collapse load. 

1.2.1 Regions of Discontinuities in Reinforced Concrete Members 

When there is a change in the geometry of element in a structure 

or in a reaction or concentrated load as shown in Figure (1-2), an abruption 

principle 

states that the stresses, because of bending and axial load, have linear 

distribution at a distance approximately equals to member height far from 
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the discontinuity. For this cause, discontinuities are considered to extend a 

distance h from the section where the change in geometry or load exists (ACI 

318M-14 Code). Therefore, a structural element can be divided into the 

following regions:    

 

Loading discontinuities          Geometric discontinuities 

Figure (1-2): Typical D regions, (ACI 318-14, Chapter 23) 

 

 B Regions: They function as parts of a member that can be used to 

solve the "plane section" assumptions of the conventional beam 

theory using a sectional design approach.  

 D Regions: They're all the areas outside of the B zones where cross 

sectional planes don't stay plain after loading. When there are 

discontinuities or disturbances in the distribution of stress at parts 

of a structure member, D regions are commonly assumed (ACI 

318M-14).  
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1.2.2 Elements of Strut and Tie Model  

1.2.2.1 Struts  

Struts are the elements that carry compressive stresses in strut tie 

models. The geometry of a strut is determined by the applied load type. 

According to Nielsen et al. (1978), there are three types of struts: 

 Prismatic Strut: the most basic type of struts. The cross-section of 

a prismatic strut is uniform throughout its length, as shown in 

Figure (1-1). When the compressive stresses are limited by the 

neutral axis, such a strut can exist in a beam. A prismatic strut is a 

representation of a beam's compressive stress block in a section of 

constant moment (Brown and Bayrak, 2006). 

 Bottle-Shaped Strut: A bottle-shaped strut can be developed 

because the flow of compressive stresses is not restricted to a part 

of a structural element, as shown in Figure (1-3a). The load is 

applied to a small area in this case, and the stresses disperse as they 

flow through the member. The compressive stress changes 

direction as it divides, forming an angle with the strut's axis. A 

tensile force is formed to counteract the lateral component of the 

angled compression forces in order to maintain equilibrium. 

 Compression Fan Strut: It is specialized due to the fact that it 

focuses care on such a small area. Stresses cause a radial flow from 

a large to a smaller area. When large uniform loads flow into a 

support, a compression fan is formed, as shown in Figure (1-3b). 

Because the forces are collinear and there are no tension 

components perpendicular to the fan zone, the developed tensile 

stresses have no value (Brown and Bayrak, 2006). 
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Figure (1-3a): Bottle Strut type 

 

Figure (1-3b): Fan Strut type 

Figure (1-3): Bottle and Fan types of struts 

 

1.2.2.2 Ties  

Ties are the elements that carry tension, mostly restricted to 

reinforcing bars. Therefore, the geometry of a tie is so simpler than the strut 

or the node. The tie is geometrically limited to elements that can carry high 

tensile forces, and the permitted force is primarily derived from the yield 

force.                  

Ties are made up of deformed rebar, prestressing rebar, or both, as 

well as a section of the enclosure concrete that is concentric with the tie axis. 

In the model, the enclosure concrete is almost never considered to be able to 

withstand axial force. While it reduces the elongation of the tie, also stiffens 

the tension in the tie, which is especially useful under service loads. It also 

specifies the area in which the ties and struts' forces are to be anchored.  
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1.2.2.3 Nodes  

Nodes are the points of intersection of the struts axes, concentrated 

loads and ties, representing the joints of a strut and tie model (ACI 318M-

14). The location at which forces are redirected within a strut and tie 

modeling is another way of defining a node. At least three forces on a given 

node of the model should work to preserve equilibrium. Based on the sign of 

the forces acting on them, nodes are listed as follows (Fu, 2001):  

 C-C-C: is the node that resists three compressive forces.  

 C-C-T: is the node that resists one tensile force and two compressive 
forces.  

 C-T-T: is the node that resists two tensile forces and one compressive 
force.  

 T-T-T: is the node that resists three tensile forces.   

 T-T-C-C-C: is the node that resists two tensile forces and three 
compressive forces. 

The amount of concrete presumed to transfer strut and tie forces 

through the node is referred to as the nodal region, Figure (1-4). The early 

strut and tie models used hydrostatic nodal zones, which were lately 

superseded by extended nodal zones. The hydrostatic term refers to the fact 

that the stresses in the plane are the same in all directions.  
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 Figure (1-4): Nodal and extended nodal zones 

 

1.3 Horizontally curved Beams  

It is worth to mention that unlike a straight beam, the centroidal 

axis and the neutral axis of a horizontally curved beam are not coincident. In 

addition to that, from the neutral axis, the stresses do not vary linearly 

(Anderson, G., 1950). In a horizontally curved beam, torsional moments 

occur because the applied loads and the reactions do not lie over the main 

axis along the horizontally curved beam. These torsional moments become 

zero at the midspan between any two successive columns in case of circular 

beam that supported by equally spaced columns. Maximum torsional 

moments grow at sections closer to the supports in addition to the zones 

where the bending moment is zero, the maximum torque takes place at the 

points of contraflexure as shown in Figure (1-5). Moreover, positive 

maximum bending moments develop at sections in between the supports. 

Whereas the maximum negative bending moments occur at the support 

sections. About the shear forces, they are maximum at the support sections. 
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Figure (1-5): Maximum moments and shear locations in a horizontally curved beam 

segment 

 

The difference in analysis and design between the straight beams 

and the beams horizontally curved in plane is fundamentally because of the 

presence of torsional moments caused by vertical load. Therefore, for such 

members, it is important to design both the twisting moment and the internal 

bending moment as well as the transverse shear. The capability of resisting 

torsional moments is expressed by torsional rigidity. That is defined as the 

torsional moment which, when applied to one free to rotate end, produces a 

unit angle of twist with respect to the other end assumed to be completely 

fixed (Andersen, P., 1953). The greater the torsional rigidity, the greater the 

resistance to the torque. The value of torsional rigidity depends on the shape 

of the section. It was found that the box sections have comparatively large 

values of torsional rigidity (Iyse, I., 1941) and, that is why are widely used 

in bridge design. However, the rectangular section is also commonly used. 

Horizontally curved beams, either made of steel or reinforced concrete, can 

be continuous or monolithic at both ends. 
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1.4 Analysis of Horizontally Curved Beams: 

1.4.1 Statically Hand Calculation Analysis 

Yee Chit Wong, 1970, Oregon State University, 1970, presented 

a hand calculation analysis of ring beam that is adopted in the current study

in addition to the finite element of ETABS software. Bending moments and 

torsional moments are expressed by moment vectors. Vertical force acting 

upward is represented by a solid circle O, Figure (1-6). An open circle O 

represents the vertical force acting downward. The bending moment is 

considered positive if it causes clockwise rotation around the radial axis 

when looking out from the center of the curvature. Torsional moments are 

considered positive, creating a clockwise rotation when looking in a 

counterclockwise direction along the tangent of the beam. Vertical force is 

considered positive when it acts upward. Figure 1-6  also shows the sign 

convention used in the current study analysis, while Figures (1-7) through 

(1-11) can be used to analyze horizontally circular ring beam manually. 

 
Figure (1-6): Singe convention (Yee Chit Wong, 1970) 

Based on the above, the forces and deflection are: 

Mb = F×r×Cm --- ---( 1  1 ) 
Tb = F×r×Ct --- ---( 1  2 ) 

Mmax = F×r×Cmm --- ---( 1  3 ) 
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   --- ---( 1  4 ) 

where: 

Mb is Negative moment 
Tb is Torque 

Mmax is Positive moment 
 is Deflection 

F is Concentrated load at mid span 

r is Radius 

Cm, Ct, Cmm, Cd are Coefficients   

E is Modulus of elasticity 

I is Moment of inertia 

 

 

Figure (1-7): Variation of fixed end bending moment coefficients with span 
angle for horizontally curved beams loaded with concentrated load. (Yee Chit 
Wong, 1970) 
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Figure (1-9): Variation of maximum span moment coefficients with span angle for 
horizontally curved beams loaded with concentrated load. (Yee Chit Wong, 1970) 

 

Figure (1-8): Variation of fixed end torsional moment coefficients with span 
angle for horizontally curved beams loaded with concentrated load. (Yee Chit 
Wong, 1970) 
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Figure (1-10): Variation of deflection coefficients with span angle for horizontally 
curved beams loaded with concentrated load. (Yee Chit Wong, 1970) 

Where m depends on the material and shape of the section. It can 

be calculated in the following manner: 

   --- --- (1-5) 

 

For rectangular section, Figure (1-11), 

I = bh3 /12                                                --- --- (1-6)                                                        

Where: b and h are the section dimensions of the parallel and perpendicular 

to the radial axis, respectively.  

J=0.33(h-0.53b)b3                                                          --- --- (1-7) 

where: h is the long dimension and b is another dimension of the rectangular 

section. 
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If the section is so placed that the short side is parallel and the long 

side is perpendicular to the radial axis, Figure (1-11): 

          --- --- (1-8) 

 

Figure (1-11): Rectangular section of a 

deep beam 

 

1.4.2 Finite Element Analysis using ETABS 2018 

ETABS software is an engineering product that has been used here 

to analyze the reinforced concrete ring deep beam. ETABS software contains 

modeling tools and templates, ACI 318 code-based load characterization, 

analysis method and solution techniques, all coordinate with the grid-like 

geometry unique to this class of structure, etc... ETABS computerizes the 

FEA (Finite element Analysis) for predicting how the ring beam reacts to 

actual final loads. ETABS utilizes the FEA to divide a real reinforced 

concrete ring deep beam into a large number of finite elements. 

Mathematical equations help predicting the behavior of each element. Once 

modeling is completed, ETABS automatically generates and assigns ACI 

318 code-based loading conditions for gravity in addition to the applied 

forces. ETABS software gives the current work a dose of confidence and 

sobriety to the aforementioned hand calculation analysis. 
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1.5 Reinforcement limitations 

1.5.1 Secondary reinforcement limitations  

The secondary reinforcement distribution along with the side faces 

of deep beams shall be at least as required in (a) and (b) (ACI 318-14, 

9.9.3.1): 

(a) The normal to the longitudinal beam axis, 

Av, shall be at least 0.0025bws, provided that the spacing of the distributed 

transverse reinforcement is s  

the beam, Avh, shall be at least 0.0025bws2, where s2 is the spacing of the 

distributed reinforcement shall not exceed 300mm and d/5 (ACI 318-14, 

9.9.4.3). 

1.5.2 Main reinforcement limitations  

The minimum flexural tension reinforcement area, As,min, is the 

larger of (a) and (b), for a statically determinate beam (ACI 318-19, 9.9.3.2): 

(a)                          --- --- (1-9) 

(b)                                   --- --- (1-10) 

1.5.  Concrete cover limitations 

Unless a higher concrete cover for fire protection is provided by 

the general construction code, the minimum defined concrete cover approach 

is 75 mm maximum and 10 mm minimum (ACI 318-19M, 20.5.1.1). 

1.6 Advantages of using the deep ring beams 

Ring deep beam are very important structure elements meanwhile, 

ring beams with full circular in plan are mostly encountered in dome, circular 

reservoir, silo, offshore structure and others as shown in figure (1-12). The 
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ring deep beams have been used by industries due to its high loading 

resistance. 

 

 

1.7 Objectives of the study  

The first objective of the current study is experimentally 

investigating the effect of some important parameters on the behavior of 

reinforced concrete ring deep beams. The second objective of the current 

study is to investigate the efficacy of strut and tie method (STM), depending 

on the fact that the ring beam under study is a deep member. The parameters 

that are taken into the considerations:  

1. Main steel reinforcement,  

2. Vertical and horizontal secondary shear steel reinforcements,  

 

Figure (1-12): Ring beams 
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3. Height of the reinforced concrete ring deep beam, and 

4. Number of supports on which the reinforced concrete ring deep beam 

rests. 

1.8 Thesis Layout  

The current thesis consists of five chapters which can be summarized as 

follows:  

 Chapter One represents a general introduction about RC deep 

ring beams, STM, horizontally curved beam, analysis of ring deep 

beam, reinforcement limitations, in addition to the study objectives.  

 Chapter Two represents a review of previous research works 

with experimental investigations that are achieved on reinforced concrete 

deep ring beams, horizontally curved beams, continuous deep beams and 

STM validation.   

 Chapter Three deals with the properties of the utilized construction 

materials in addition to the experimental work plan.  

 Chapter Four deals with presenting test results of the laboratory 

specimens, evaluating and discussing the experimental results of the 

current study.  

 Chapter Five provides the main conclusions drawn from the current 

study, recommendations, and suggestions for further studies. 

 

 

 

 

 

 


