Ministry of Higher Education and Scientific Research University of Diyala College of Engineering



# LATERAL DYNAMIC RESPONSE OF GROUP PILES FOUNDATION SUBJECTED TO AXIAL AND LATERAL LOAD IN SANDY SOIL

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

> by Aseel Kahlan Mahmood (B.Sc. Civil Engineering, 1999)

Supervisor Assist. Prof. Dr. Jasim M. Abbas

September 2019

IRAQ

بْسَمُ إِنَّ الرَّحْزَ الرَّحْمَ الرَّحْمَ الرَّحْمَ أَنْ

(قَالُوا سُبُحَانِكَ لَاعِلْمَرَلَنَا إِلَّا مَا عَلَمُنَنا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ ﴾



(البقرة: ٣٢)

# **CERTIFICATION OF THE SUPERVISOR**

I certify that this thesis entitled "Lateral Dynamic Response of Group Piles Foundation Subjected to Axial and Lateral Load in Sandy Soil" was prepared by "Aseel Kahlan Mahmood" was made my supervision in the University of Diyala in partial fulfillment of the requirements for the degree of master of science in civil engineering.

Signature:

Name: Assist. Prof. Dr. Jasim M. Abbas

(Supervisor)

Date: / /2020

# **COMMITTEE DECISION**

We certify that we have read the thesis entitled (Lateral Dynamic Response of Group Piles Foundation Subjected to Axial and Lateral Load in Sandy Soil). We have examined the student (Aseel Kahlan Mahmood) in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

| <b>Examination Committee</b>                 | S               | bignature                               |
|----------------------------------------------|-----------------|-----------------------------------------|
| 1- Assist. Prof. Dr. Jasim M. Abbas (        | (Supervisor)    | • • • • • • • • • • • • • • • • • • • • |
| 2- Assist. Prof. Dr. Waad A. Zakaria         | (Member)        |                                         |
| <b>3-Assist. Prof. Dr. Qasim A. Al-janab</b> | i (Member)      |                                         |
| 4-Prof. Dr. Mohammed A. Al-Neami             | (Chairman)      | ••••••                                  |
| Prof. Dr. Khattab Saleem Abdul-Razz          | aq (Hea         | d of Department)                        |
| The thesis was ratified at the Cou           | ncil of College | of Engineering                          |
| / University of Diyala.                      |                 |                                         |

| Signature                 | • • • • • • • • |
|---------------------------|-----------------|
| Name: Prof. Dr. Anees A.K | hadom           |

Dean of College Engineering / University of Diyala Date:

# SCIENTIFIC AMENDMENT

I certify that this thesis entitled "Lateral Dynamic Response of Group Piles Foundation Subjected to Axial and Lateral Load in Sandy Soil" presented by "Aseel Kahlan Mahmood" has been evaluated scientifically; therefore, it is suitable for debate by examining committee.

Signature:-

Name: Assist. Prof. Dr. Mahmoud T.A. Al-Lamy

**Title: Assistant Professor** 

Address: College of Engineering/ University of Baghdad Date:

# LINGUISTIC AMENDMENT

I certify that this thesis entitled "Lateral Dynamic Response of Group Piles Foundation Subjected to Axial and Lateral Load in Sandy Soil" presented by "Aseel Kahlan Mahmood" has been corrected linguistically; therefore, it is suitable for debate by examining committee.

Signature:-

Name: Assist.Prof.Shaqi K.Ismail (M.A.)

Title: Assistant Professor Address: College of Education for Humanities / University of Diyala Date:

# DEDICATION

To ... My father, who was the cause of my success My mother, the sight of my eyes. My husband, who supported me. My sons whose love flow in my veins. Our honorable teachers who taught and rewarded us their knowledge. Everyone, who wishes me success in my life, I dedicate this humble work.

ASEEL KAHLAN

## **ACKNOWLEDGEMENTS**

Thanks are to Allah for all things which led me into the light during the critical time.

I would especially like to express my deep appreciation and sincere gratitude to my supervisor, Assist. Prof.Dr. Jasim M. Abbas for his supervision and his valuable guidance and assistance throughout the preparation of this work.

Appreciation and thanks to the Dean and the staff the College of Engineering, University of Diyala and also the staff of Soil Laboratory and Road laboratory.

Very special thanks for Lec. Yassir Nashaat for his kindest help and thanks to all my colleagues, for their help.

Finally, I would like to express my love and respect to my family, no word can express my gratitude to them.

ASEEL KAHLAN

#### ABSTRACT

### LATERAL DYNAMIC RESPONSE OF GROUP PILES FOUNDATION SUBJECTED TO AXIAL AND LATERAL LOAD IN SANDY SOIL

#### By

Aseel Kahlan Mahmood

Supervisor by: Assist. Prof.Dr. Jasim M. Abbas ABSTRACT

In the current era, the most regions of the world are subjected to seismic loads that result periodic (cyclic) lateral forces. There are also regular loads resulting from wind and marine waves, which act on offshore structures. Therefore, it is important to take influence of these forces and add to the loading effect, which mainly includes of the vertical load that generally results from the self-weight of the structures.

The main aim of this study is to investigate the influence of the vertical load and pile shape on the behavior of piles group embedded in sandy soil under lateral cyclic loads by applying lateral cyclic regular loading system on the top of group piles  $(1 \times 2, 2 \times 1 \text{ and } 2 \times 2)$  which simulates the wave movements in the nature.

The effect of a number of variables is studied, and their influence on the behavior of group piles (piles spacing S/D = 3, 5, 7 and 9, cyclic load ratio, number of load cycles, shape of pile and configuration of piles). This study is conducting a series of tests with 48 samples instill in dry sandy soil which have relative density (Dr=70%) by using (Raining Technique) under frequency of (0.2 Hz.).

According to the results, the presence of the allowable vertical load has a positive effect on the behavior of cyclically loaded groups. By other mean, this is caused reduction in lateral displacement and bending moment along the pile in a group by approximately (60%) and (50%) respectively. On the lateral pile group response under cyclic loads, the spacing piles in-group  $(1 \times 2)$  has no significant effect on the lateral displacement. Nevertheless, it is observed with the group model  $(2 \times 1)$  and  $(2 \times 2)$  where the lateral displacement increased with decrease pile spacing.

In addition, the shape of the pile in group has clear effect on the group response to cyclical loads a rounded of (25-30%).

Finally, the maximum bending occurs at the first upper of the embedded length of the pile (1/4) L. It is also noted that the piles in the leading row take a larger share of the load than rear row a rounded by (18%).

## TABLE OF CONTENT

| Article         | Торіс                                                | Page  |
|-----------------|------------------------------------------------------|-------|
| ABSTRACT        |                                                      | VII   |
| CONTENTS        |                                                      | IX    |
| LIST OF FIGURES |                                                      | XII   |
| LIST OF PLATES  |                                                      | XVII  |
| LIST OF TABLES  |                                                      | XVIII |
| LIST OF         |                                                      | XIX   |
| SYMBOLS         |                                                      |       |
| LIST OF         |                                                      |       |
| ABBREVIATIONS   |                                                      | XXI   |
| CHAPTER ONE     | INTRODUCTION                                         |       |
| 1.1             | General Remark                                       | 1     |
| 1.2             | Statement of the Problem                             | 3     |
| 1.3             | The Importance of Study                              | 3     |
| 1.4             | Aims of the Study                                    | 4     |
| 1.5             | The Thesis Layout                                    | 4     |
| CHAPTER TWO     | LITERATURE REVIEW                                    |       |
| 2.1             | Introduction                                         | 6     |
| 2.2             | Type of Loads                                        | 6     |
| 2.3             | Types of Lateral Cyclic Loading                      | 7     |
| 2.4             | Failure Pattern of Pile and Transfer horizontal load | 7     |
|                 | Mechanism                                            |       |
| 2.5             | Shape Factor                                         | 13    |
| 2.6             | Behavior of Laterally Loaded Piles                   | 15    |
| 2.7             | Analytic Method for Laterally Loaded                 | 16    |
| 2.7.1           | Theoretical approach                                 | 16    |
| 2.8             | Previous Studies of Lateral Cyclic Loading           | 17    |
| 2.9             | Previous Studies of Piles Subjected to Combined      | 18    |
|                 | Loads                                                |       |
| 2.10            | Summary of This Chapter                              | 21    |
|                 |                                                      |       |
|                 |                                                      |       |

| CHAPTER THREE | EXPERIMENTAL WORK                              |    |
|---------------|------------------------------------------------|----|
| 3.1           | Introduction                                   | 22 |
| 3.2           | Model of Pile and Pile Cap                     | 22 |
| 3.2.1         | Model of pile                                  | 22 |
| 3.2.2         | Pile Cap                                       | 24 |
| 3.2.3         | Configuration of Pile Group                    | 27 |
| 3.3           | Soil Material Used                             | 28 |
| 3.4           | Geotechnical Model Setup                       | 30 |
| 3.4.1         | Steel Container                                | 30 |
| 3.4.2         | Loading Frame                                  | 31 |
| 3.4.3         | Device of Lateral Static Loading               | 32 |
| 3.4.4         | Device of Lateral Cyclic Loading               | 33 |
| 3.4.4.1       | Motor-Gear System                              | 34 |
| 3.4.4.2       | Controlling Electrical Circuit Part            | 35 |
| 3.4.5         | Lined Variable Differential Transformer (LVDT) | 36 |
| 3.4.6         | Load Cell                                      | 38 |
| 3.5           | Sand Deposit Preparation                       | 38 |
| 3.6           | Strain Gage Technique                          | 41 |
| 3.6.1         | General Description                            | 41 |
| 3.6.2         | Gage Length Selection                          | 43 |
| 3.6.3         | Install of Strain Gages                        | 43 |
| 3.6.4         | Strain Indicator (Data Achievement System)     | 44 |
| 3.6.5         | Correction of Data Achievement System (Strain  | 45 |
|               | Indicator)                                     |    |
| 3.7           | Carried out Two-Way Lateral Cyclical Loads     | 47 |
| 3.8           | The Test Program                               | 48 |
| CHAPTER FOUR  | RESULTS AND DISCUSSION                         |    |
| 4.1           | General                                        | 50 |
| 4.2           | Limitation of This Study                       | 50 |
| 4.3           | Pile Group Load Test under Static Loading      | 51 |
| 4.3.1         | Prediction of Ultimate Axial Load Capacity     | 51 |
| 4.3.2         | Prediction of Ultimate Lateral Load Capacity   | 54 |
| 4.4           | Pile Group Load Test under Combined Axial and  | 57 |
|               | Cyclic Lateral Loading                         |    |

|              | · · · · · · · · · · · · · · · · · · ·             |     |
|--------------|---------------------------------------------------|-----|
| 4.4.1        | Lateral Load-Displacement Response of Pile        | 58  |
|              | Group                                             |     |
| 4.4.1.1      | Effect of Pile Spacing and configuration on Load- | 58  |
|              | Displacement Behavior                             |     |
| 4.4.1.2      | Effect of Cyclic Load Ratio (CLR) on the Lateral  | 63  |
|              | Displacement of Pile Group Head                   |     |
| 4.4.1.3      | Effect of Number of Cycles of Loading on the      | 70  |
|              | Lateral Displacement of Pile Group Head           |     |
| 4.4.1.4      | Influence of Cross Section pile on the Group Pile | 75  |
|              | Lateral Response of pile group                    |     |
| 4.4.2        | Vertical Load - Displacement Response of Pile     | 81  |
|              | Group Cap                                         |     |
| 4.4.3        | Bending Moment a Long Pile                        | 89  |
| CHAPTER FIVE | CONCLUSIONS AND RECOMMENDATIONS                   |     |
| 5.1          | Conclusions                                       | 103 |
| 5.2          | Recommendations for Future Works                  | 104 |
|              | REFERENCES                                        | 105 |
|              | Appendix A                                        | A-1 |
|              | Appendix B                                        | B-1 |

## LIST OF FIGURES

| No.  | Title                                                                                                        | Page |
|------|--------------------------------------------------------------------------------------------------------------|------|
| 2.1  | Type of cyclic loading (After Peng et al., 2011)                                                             | 7    |
|      | Modes of failures for plies under lateral loads embedded in                                                  |      |
| 2.2  | cohesionless soil: (a) free head piles (b) fixed head for (Broms, 1964                                       | 8    |
|      | modified after Poulos and Davis, 1980)                                                                       |      |
| 2.3  | Ultimate behavior for cohesionless soil (Broms, 1964)                                                        | 9    |
| 2.4  | Diagram showing the gap formation around the pile group (Basack, 2009).                                      | 11   |
| 2.5  | A diagram showing the basin-like depression formed around the pile group in sandy soil (Basack, 2009a).      | 12   |
| 2.6  | Diagram showing the gap formation around the pile group in cohesive soil (Basack, 2009a).                    | 12   |
| 2.7  | Reduction in lateral pile resistance due to pile-pile interface (Rolline et al. 1998 and Ashour et al. 2004) | 13   |
| 2.8  | The difference in lateral resistance due to pile shape (After Reese and Van Impe, 2001)                      | 14   |
| 2.9  | The Complete form of the solution, cited by (Reese & Van Impe, 2001)                                         | 15   |
| 3.1  | Stress-Strain curve for aluminum pipe                                                                        | 23   |
| 3.2  | Schematic diagram illustrates piled cap details                                                              | 25   |
| 3.3  | Configuration of pile group .a)2x1,b)1x2,c)2x2                                                               | 27   |
| 3.4  | Sand grain size distribution curve                                                                           | 28   |
| 3.5  | Soil strength parameters based on the direct shear test                                                      | 29   |
| 3.6  | Sketch showing the lateral loading device                                                                    | 33   |
| 3.7  | Sketch showing the place of (LVDT) of the pile                                                               | 37   |
| 3.8  | Calibration of sand density                                                                                  | 40   |
| 3.9  | Strain gages                                                                                                 | 42   |
| 3.10 | Sketch showing the location of strain gages along pile                                                       | 43   |
| 3.11 | Calibration of strain inductor                                                                               | 46   |
| 3.12 | Two-Way lateral cyclic loading pattern that used in this tests.                                              | 47   |

| 3.13 | Flow chart for testing program                                       | 49 |
|------|----------------------------------------------------------------------|----|
| 4.1  | Axial load versus settlement/diameter of pile for model group (1x2). |    |
|      | a) Circular pile - b) Square pile                                    | 53 |
| 4.2  | Axial load versus settlement/diameter of pile for model group (2x1). | 52 |
|      | a) Circular pile - b) Square pile                                    | 53 |
| 4.3  | Axial load versus settlement/diameter of pile for model group (2x2). | 54 |
|      | a) Circular pile - b) Square pile                                    | 54 |
| 4.4  | Load-Deflection curve for group pile model (1x2)a) Circular pile, b) | 55 |
|      | Square pile                                                          | 55 |
| 4.5  | Load-Deflection curve for group pile model (2x1)a)Circular pile, b)  | 56 |
|      | Square pile                                                          | 50 |
| 4.6  | Load-Deflection curve for group pile model (2x2)a) Circular pile, b) | 56 |
|      | Square pile                                                          | 50 |
| 4.7  | Load-Deflection curve at 100 cycle for group pile model (1x2) a)     | 60 |
|      | Circular pile, b) Square pile under pure and combined loads          | 60 |
| 4.8  | Load-Deflection curve at 100 cycle for group pile model (2x1) a)     | (1 |
|      | Circular pile, b) Square pile under pure and combined loads          | 61 |
| 4.9  | Load-Deflection curve at 100 cycle for group pile model (2x2) under  | 62 |
|      | pure and combined loads,a) Circular pile, b)Square pile              | 02 |
| 4.10 | Effect of cyclic load ratio (CLR) on the pile group head lateral     |    |
|      | displacement of $(1x2)$ model under pure cyclic load (Vertical       | 64 |
|      | load=0% Qall) a) Circular pile, b) Square pile                       |    |
| 4.11 | Effect of cyclic load ratio (CLR) on the pile group head lateral     |    |
|      | displacement of (1x2) model under combined cyclic load (vertical     | 65 |
|      | load=100%Qall) a) Circular pile, b) Square pile                      |    |
| 4.12 | Effect of cyclic load ratio (CLR) on the pile group head lateral     |    |
|      | displacement of (2x1) model under pure cyclic load (Vertical         | 66 |
|      | load=0%Qall) a) Circular pile, b) Square pile                        |    |
| 4.13 | Effect of cyclic load ratio (CLR) on the pile group head lateral     |    |
|      | displacement of (2x1) model under combined cyclic load (Vertical     | 67 |
|      | load=100%Qall) a) Circular pile, b) Square pile                      |    |
| 4.14 | Effect of cyclic load ratio (CLR) on the pile group head lateral     |    |
|      | displacement of (2x2) model under pure cyclic load (Vertical         | 68 |
|      | load=0%Qall) a) Circular pile, b) Square pile                        |    |

| 4.15 | Effect of cyclic load ratio (CLR) on the pile group head lateral                    |    |
|------|-------------------------------------------------------------------------------------|----|
|      | displacement of (2x2) model under combined cyclic load (Vertical                    | 69 |
|      | load=100%Q <sub>all</sub> ) a) Circular pile, b) Square pile                        |    |
| 4.16 | Effect of number of cycles on load- lateral displacement curve of                   |    |
|      | (1x2) group piles model (S/D=3) under pure and combined load a)                     | 72 |
|      | circular pile - b) square pile                                                      |    |
| 4.17 | Effect of number of cycles on load- lateral displacement curve of                   |    |
|      | (2x1) group piles model (S/D=3) under pure and combined load a)                     | 73 |
|      | circular pile - b) square pile                                                      |    |
| 4.18 | Effect of number of cycles on load- lateral displacement curve of                   |    |
|      | (2x2) group piles model (S/D=3) under pure and combined load a)                     | 74 |
|      | circular pile - b) square pile                                                      |    |
| 4.19 | Comparison of lateral displacement to diameter of (i.e. Square and                  |    |
|      | Circular) pile in-group model (1x2) under combined cyclic load a)                   | 76 |
|      | Axial load =0% $Q_{all}$ . b) Axial load =100% $Q_{all}$ .                          |    |
| 4.20 | Comparison of lateral displacement to diameter of (i.e. Square and                  |    |
|      | Circular) pile in-group model (2x1) under combined cyclic load a)                   | 77 |
|      | Axial load =0% $Q_{all}$ . b) Axial load =100% $Q_{all}$ .                          |    |
| 4.21 | Comparison of lateral displacement to diameter of (i.e.Square and                   |    |
|      | Circular) pile in-group model (2x2) under combined cyclic load                      | 78 |
|      | a) axial load =0% $Q_{all}$ , b) axial load =100% $Q_{all}$ .                       |    |
| 4.22 | Variation of vertical displacement (upward) with number of cycles of                |    |
|      | (1x2) group model(S/D=3) under vertical load = 0% Qall. a) Circular                 | 82 |
|      | pile, b) Square pile                                                                |    |
| 4.23 | Variation of vertical displacement (upward) with number of cycles of                |    |
|      | (2x1) group model(S/D=3) under vertical load = 0% Qall. a) Circular                 | 82 |
|      | pile, b) Square pile                                                                |    |
| 4.24 | Variation of vertical displacement (upward) with number of cycles of                |    |
|      | (2x2) group model(S/D=3) under vertical load = $0\%$ Q <sub>all</sub> . a) Circular | 83 |
|      | pile, b) Square pile                                                                |    |
| 4.25 | Variation of vertical displacement (settlement) with number of cycles               |    |
|      | of (1x2) group model(S/D=3) under vertical load = $100\%$ Q <sub>all</sub> .        | 83 |
|      | a) Circular pile, b) Square pile                                                    |    |

| 4.26 | Variation of vertical displacement (settlement) with number of cycles                |    |
|------|--------------------------------------------------------------------------------------|----|
|      | of (2x1) group model(S/D=3) under vertical load = 100% Qall.                         | 84 |
|      | a) Circular pile, b) Square pile                                                     |    |
| 4.27 | Variation of vertical displacement (settlement) with number of cycles                |    |
|      | of (2x2) group model(S/D=3) under vertical load = 100% Qall.                         | 84 |
|      | a) Circular pile, b) Square pile                                                     |    |
| 4.28 | Variation of vertical displacement (upward) with S/D under pure                      | 85 |
|      | cyclic load (V = 0% $Q_{all}$ .) for group model a) 1x2 b) 2x1 c) (2x2)              | 85 |
| 4.29 | Variation of vertical displacement (settlement) with S/D under                       |    |
|      | combined cyclic load (V = 100% Q <sub>all</sub> .) for group model a) $1x2$ b) $2x1$ | 86 |
|      | c) (2x2)                                                                             |    |
| 4.30 | Comparison of vertical displacement (upward) with                                    |    |
|      | configuration of piles, (1x2) and (2x1) model. a)Circular pile,                      | 87 |
|      | b) Square pile                                                                       |    |
| 4.31 | Comparison of vertical displacement (settlement) with configuration                  | 88 |
|      | of piles, (1x2) and (2x1) model a) Circular pile, b) Square pile.                    | 00 |
| 4.32 | The variation of moment with depth for leading row (2x2) group                       |    |
|      | circular pile model under combined vertical load =0% $Q_{all}$ .                     | 93 |
|      | a)CLR 40% =152 N,b) CLR 60% = 228 N, c) CLR 80% = 304N                               |    |
| 4.33 | The variation of moment with depth for rear row $(2x2)$ group circular               |    |
|      | pile model under combined vertical load =0% $Q_{all.}$ a)CLR 40% =152                | 94 |
|      | N ,b) CLR 60% = 228 N, c) CLR 80% = 304N                                             |    |
| 4.34 | The variation of moment with depth for leading row (2x2) group                       |    |
|      | circular pile model under combined vertical load =100% $Q_{all}$ . a)CLR             | 95 |
|      | 40% =152 N,b) CLR 60% = 228 N, c) CLR 80% = 304N                                     |    |
| 4.35 | The variation of moment with depth for rear row $(2x2)$ group circular               |    |
|      | pile model under combined vertical load =100% $Q_{all}$ . a)CLR 40%                  | 96 |
|      | =152 N,b) CLR 60% = 228 N, c) CLR 80% = 304N                                         |    |
| 4.36 | Bending moment comparison for leading and rear row (2x1) group                       |    |
|      | circular pile model under pure and combined load at 100 cycle.                       | 97 |
|      | a)CLR 40% =67 N,b) CLR 60% = 114 N, c) CLR 80% = 152 N.                              |    |
| 4.37 | Bending moment comparison for leading and rear row (2x1) group                       |    |
|      | square pile model under pure and combined load at 100 cycle. a)CLR                   | 98 |
|      | 40% =67 N,b) CLR                                                                     |    |

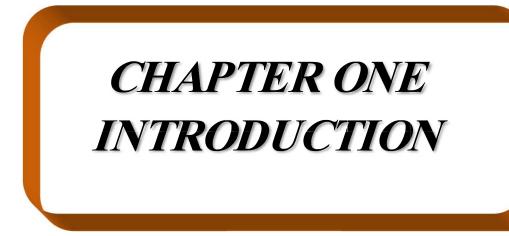
| 4.38 | Influence S/D ratio on bending moment profile for (2x1) group        |     |
|------|----------------------------------------------------------------------|-----|
|      | circular pile model,CLR=80% a) leading row, b) rear row(under pure   | 99  |
|      | cyclic load),c) leading row, d) rear row(under combined cyclic load) |     |
| 4.39 | Influence S/D ratio on bending moment profile for (2x1) group        |     |
|      | square pile model, CLR=80% a) leading row, b) rear row(under pure    | 100 |
|      | cyclic load),c) leading row, d) rear row(under combined cyclic load) |     |
| 4.40 | Influence cross sectional shape on bending moment profile for (2x1)  | 101 |
|      | group pile model, CLR=80%, a) V=0% Q all. b) V=100% Q all.           | 101 |
| 4.41 | Influence configuration of piles on bending moment profile under     |     |
|      | pure and combined load at CLR=80% a) circular pile in-group, b)      | 102 |
|      | square pile in-group                                                 |     |

## LIST OF PLATES

| No.  | Title                                                        | Page |
|------|--------------------------------------------------------------|------|
| 3.1  | Model piles used in the present study.(a) Shape of pile (b)  | 23   |
| 5.1  | Tensile test                                                 |      |
| 3.2  | Models piles cap.                                            | 26   |
| 3.3  | Loading frame                                                | 31   |
| 3.4  | Static loading device                                        | 32   |
| 3.5  | Cyclic loading device                                        | 34   |
| 3.6  | Motor-Gear system                                            | 35   |
| 3.7  | Parts of controller circuit                                  | 36   |
| 3.8  | The linear variable differential transformer (LVDT) and data | 37   |
|      | logger                                                       | 57   |
| 3.9  | Load cell                                                    | 38   |
| 3.10 | Cans location individual density                             | 40   |
| 3.11 | Raining technique                                            | 41   |
| 3.12 | Strain gauges, SB tape and compatible adhesive type (CN).    | 42   |
| 3.13 | Bonding and Coating: a)-Applying CN-E Adhesive.b) Applying   | 44   |
|      | strain and constant pressure (c) Covering with SB tape.      | 44   |
| 3.14 | Strain indicator                                             | 45   |
| 3.15 | Device to calibrate the strain gage                          | 46   |
| 4.1  | Generate a deformation (a) CLR =40% (b) CLR=60%              | 70   |

### LIST OF TABLES

| No. | Title                                                      | Page |
|-----|------------------------------------------------------------|------|
| 3.1 | Mechanical properties of aluminum piles used in this study | 24   |
| 3.2 | Summary of test results for sand                           | 29   |
| 3.3 | Strain gauge specifications                                | 42   |


## LIST OF SYMBOLS

| Total Name         | Term                                          |
|--------------------|-----------------------------------------------|
| Symbol             |                                               |
| С                  | Cohesion                                      |
| Си                 | Coefficient of uniformity                     |
| Сс                 | Coefficient of Curvature                      |
| D                  | Pile diameter                                 |
| D50                | Mean size of soil particles                   |
| D10                | Effective size at 10% passing                 |
| D30                | Grain size at 30% passing                     |
| D60                | Grain size at 60% passing                     |
| Dr                 | Relative density of soil                      |
| Es                 | Soil Modulus                                  |
| EI                 | Stiffness of pile section                     |
| E                  | Modulus of elasticity                         |
| e                  | Eccentricity of load                          |
| e max.             | Maximum void ratio of soil                    |
| e <sub>min</sub> . | Minimum void ratio of soil                    |
| f                  | Frequency                                     |
| Gs                 | Specific gravity                              |
| Н                  | Lateral load applied on the pile head         |
| HZ                 | Hertz                                         |
| Ι                  | Moment of inertia                             |
| L                  | Embedded length of pile                       |
| L/D                | Slenderness ratio of pile                     |
| М                  | Bending moment                                |
| р                  | The soil pressure per unit length of the pile |
| pt                 | Lateral load applied at or above ground level |
| V                  | Vertical load                                 |
| Qall.              | Allowable vertical load                       |
| Qult.              | Ultimate vertical load                        |
| r                  | Outside radius of the pipe                    |

| x             | Segment length of the pile                         |
|---------------|----------------------------------------------------|
| yg            | Deflection at ground level                         |
| У             | Pile deflection                                    |
| Ŷ             | Unit weight of soil                                |
| yd            | Initial dry unit weight of soil                    |
| ε             | Measured strain                                    |
| Ø             | Angle of internal friction                         |
| Qb            | End bearing (base) resistance of pile              |
| Qs            | Skin friction (shaft) resistance of pile           |
| qb            | Ultimate bearing capacity at pile base             |
| qs            | Ultimate skin friction of pile shaft               |
| Ab            | Area of pile base                                  |
| As            | Perimeter area of the pile shaft                   |
| <i>q'</i>     | Effective vertical stress at pile base             |
| Nq            | Bearing capacity factor for pile foundation        |
| $\sigma_{av}$ | Average vertical effective stress in a given layer |
| K             | Lateral earth pressure coefficient                 |
| δ             | Angle of soil-pile friction (in degree)            |

## LIST OF ABBREVIATION

| Abbreviation | Term                                                |
|--------------|-----------------------------------------------------|
| API          | American Petroleum Institute                        |
| ASTM         | American Society For Testing and Materials          |
| CLR          | Ratio of magnitude of cyclic lateral load to static |
|              | ultimate lateral capacity of the pile               |
| LVDT         | Linear Variable Differential Transformer            |
| SSI          | Soil-structure interaction                          |
| PLC          | Programmable Logic Controller                       |



## CHAPTER ONE INTRODUCTION

### **1.1 General Remarks**

Deep foundations involving driven or drilled-in piers and piles usually undergo the transmission perpendicular structural load from soft soils to stiff and deep bearing layers. Furthermore, these foundations can also be subjected to transitory or cyclical horizontal loads rising from earthquake, waves, impacts, wind, blasts, or instrument loading.

For several years, groups of piles have been commonly used for supporting constructions such as highway bridges, waterfront structures and dams. For the past two decades, group-pile foundations have also been applied to offshore platforms. These structures frequently are an endangered to major horizontal forces and actions that need perfect identification of the issues which affecting on the behavior of pile foundations. Unconservative study can product in extreme pile-head deflection and rotation, stressful the superstructure and lead to uneconomical foundations (Sabry 2002).

The geometric constraints in foundations place in danger to high lateral loads often need the piles to be driven narrowly spaced in a group. Lateral loads are in the rate of 10–20% of the axial load in location of onshore structures. Whereas this rate may be above of 30% in case of offshore constructions (Rao et al.1998). Therefore the amount of horizontal displacement due to lateral force overhead the allowable can be caused wide loss to engineering structure (Bartlett and Youd, 1995).

The rigidity of individually pile in the group is affected by stresses of adjacent piles (shadow effect). This phenomenon happens due to reaction in the soil; this leads to fail the soil surrounding the piles and decreases ultimate lateral capacity of group pile (Ashour et al. 2004).

In spite of the importance of static loads in design of deep foundation, the dynamic loads indicate a chief challenge in the design because of extra forces, which apply on the foundation due to dynamic loading that includes axial and lateral loads (Moss et al.1998).

The cyclic load (periodic load) is one of the simple forms of dynamic loads, which in turn have a degree of uniformity in frequency and magnitude (Das 2010). Therefore, the investigation of pile group response to such cyclic stresses of pile foundations is very important in geotechnical engineers and design of the structures. This is, in a particular, the real for the pile foundations of offshore structure.

#### **1.2 Statement of the Problem**

Many previous studies have mainly investigated only the effect of cyclical loading on the behavior of piles in sandy soils without axial load. Only a small number of load tests outcomes are obtainable to illustrate the distribution of loads in pile group (e.g. Meimon et al. 1986; Brown et al. 1987; Brown et al. 1988; Ruesta and Townsend 1997; Rollins et al. 1998; and Rollins et al. 2006). Therefore, a few data is obtainable of dynamic reaction on pile foundations. This is mainly because of the large number of changeable in soil and piles, these lead to important difficulties in guiding the test.

#### **Chapter** One

As a result, the effect of cyclical vertical loads on the behavior of piles group is very slight facts and not fully thoughtful at nowadays to guide the engineer in the design of closely spacing piles group. Therefore, the work informed in this study is an extension of this on- going studies but will be different about the previous works by using axial and two way lateral cyclic loading in the tests. This is applied on the modeling of group piles, with different spacing piles, different cyclical load ratio and two shape of piles. These variables give details which of these reduced the effect of cyclic loads.

### 1.3 The Importance of Study

The design and analysis of pile foundations of highway structures are very critical and depend on the lateral load capacity of piles. In spite of reliable performances have been developed for surmise the lateral capability under static loads of piles, there are minor facts to guide engineers in the design of group pile foundation under dynamic load. Therefore, the study of the effect of vertical load on the behavior of pile group under cyclical load is very important to increase the database of the performance of pile foundations in geotechnical engineering requirements, increase the safety of buildings and reduce the cost and human losses.

### 1.4 Aims of the Study

The current study aims as follows:

- 1. To studying the effect of axial load and piles shape on the performance of piles group foundation under cyclic loads.
- 2. To study the effect of number of cycles under combined loads with different cyclic load ratio on the horizontal and vertical movements for pile group models.
- 3. Evaluating the difference of bending moment along pile shaft under combined loading.
- 4. Identifying the best configuration of piles in-group under pure and combined loading.
- 5. To study the effect of pile spacing on lateral displacement of pile groups under pure and combined loading.

### 1.5 The Thesis Layout

The study scope has been distributed into five chapters and two appendices. A brief summary of each chapter is illustrated in the consequent passages:

**Chapter one:** This chapter displays a general idea about group of piles foundation subjected to cyclic and combined loading, aims, and the scope of this study.

**Chapter two:** This chapter reviews present literature, including of both practical and theoretical workings along with field investigations and some of the analytical procedures to study the horizontal loading of piles foundations.

**Chapter three:** presents the practical setup and approach, including of a demonstration of the soil classification and group piles. It is also presenting detailed explanation of the typical models of pile-soil erection with the technique that used to analysis the dynamic reaction of group pile when embedded in dry sand.

**Chapter four:** Introduces the outcomes of the practical system model and their discussions. Studies the responses of group pile pattern under pure and combined cyclic loading. The practical system on the group pile model is also showed the effects of cross sectional shape and configuration on the dynamic reaction of group piles.

**Chapter five:** presents the conclusions gained after test results of the research; furthermore the recommendations for outlook.

Finally, extra results for the different parameters discussed and explanation of experimental effort by pictures are illustrated in Appendixes A and B.