

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain*1 and Darya Jabar Abdul Kareem2

¹College of Education for pure science – Diyala University ²Ministry of Education

Mukdadqaess2016@yahoo.com

Received: 21 April 2021 Accepted: 13 June 2021

DOI: https://dx.doi.org/10.24237/djps.17.03.137-564-ICPS

Abstract

Let R be a ring with identity and Q be a unitary left Module over R. In this paper, we introduced the concept of p-semi hollow-lifting Module as generalization of semi hollow-lifting Module. Also, give a comprehensive study of basic properties of p-semi hollow-lifting Modules and some related concepts.

Keywords: Hollow module, lifting module, semi hollow module, semi hollow-lifting module.

المقاسات الرفع شبه المجوفة من النوع P

مقداد قیس حسین 1 و دریا جبار عبد الکریم 2

كلية التربية للعلوم الصرفة – جامعة ديالي 2 وز ارة التربية

الخلاصة

لتكن R حلقة ذات عنصر محايد ولتكن Q مقاس ايسر معرف على R. قدمت في هذا البحث مقاسات الرفع شبه المجوفة من النوع P النوع P كتعميم لمقاسات الرفع شبه المجوفة من النوع P مع بعض المفاهيم المرتبطة.

الكلمات المفتاحية: المقاسات المجوفة، مقاسات الرفع، المقاسات شبه المجوفة، المقاسات الرفع شبه المجوفة.

Volume: 17, Issue: 3, July 2021 37 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Introduction

A submodule E of an R-Module Q is small submodule of Q (E \ll Q) if for any submodule U of Q s.t Q = E + U, then U = Q[5]. A submodule E of Q is semismall in Q (E \ll_s Q) if E = 0 or for each nonzero submodule U of E, E/U is small in Q/U [1]. Let E, U be submodules of an R-Module Q s.t $E \subset U \subset Q$. E is semicoessential submodule of U in Q ($E \subseteq_{sce} U$ in Q) if $\frac{U}{F} \ll_s \frac{Q}{F}[6]$. A nontrivial R-Module Q is semihollow if each proper submodule of Q is semismall in Q [1]. An R-Module Q is semihollow-lifting if for each submodule N of Q s.t $\frac{Q}{N}$ semihollow, \exists a submodule W of Q s.t $Q = W \oplus W^*$ and $W \subseteq_{sce} N$ in Q [10]. An R-Module Q is semilifting Module if for each submodule W of Q, \exists a direct summand E of Q s.t $E \subseteq_{sce} W$ in Q [1].

P-Semi hollow-Lifting Modules

We introduced the concept of p-semihollow-lifting Module and some properties of psemihollow-lifting Modules.

An R-Module Q is p-semihollow, if for each proper cyclic submodule is semismall in Q. Every Semihollow Module is P-Semihollow Module.

An R-Module Q is p-semihollow-lifting if for each cyclic submodule N of Q s.t $\frac{Q}{N}$ p-semihollow, Clearly, Z₄ as Z-Module is p-semihollow-lifting.

Every semihollow-lifting Module is p-semihollow-lifting Module

An R-Module Q have p-semihollow factor Module if \exists a cyclic submodule E of Q s.t $\frac{Q}{F}$ is psemihollow Module.

Every Module which has not any p-semihollow factor Module is p-semihollow-lifting.

Volume: 17, Issue: 3, July 2021 P-ISSN: 2222-8373 38 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Z as Z-Module is not p-semihollow-lifting, assume Z is p-semihollow-lifting. Let 4Z be cyclic submodule. Since $\frac{Z}{47}$ is p-semihollow, thus \exists a direct summand W of Z s.t W $\subseteq_{sce} 4Z$ in Z. But Z is indecomposable, then W = 0 implies $4Z \ll_s Z$, a contradiction.

An R-Module Q is p-semining summand E of Q s.t E⊆_{sce}W in Q. for Public is n-semilifting Module An R-Module Q is p-semilifting Module if for each cyclic submodule W of Q, ∃ a direct

Every p-semilifting Module is p-semihollow-lifting, in particular every semisimple or psemihollow Module is p-semihollow-lifting. For example, $Z_{p^{\infty}}$ as Z-Module, where p is a prime number. The converse is not true. For example, let Q be an indecomposable R-Module which has not any p-semihollow factor Module. Clearly Q is p-semihollow-lifting. Claim Q is not psemilifting, suppose Q is p-semilifting and W be a proper cyclic submodule of Q. a submodule E of Q s.t E \subseteq _{sce} W in Q and Q = E \oplus Since Q is p-semilifting, thus ∃ E_1 for some $E_1 \subseteq Q$. But Q is indecomposable Module, thus E = 0 implies $W \ll_s Q$. Therefore, Q is p-semihollow, which is a contradiction.

Proposition1 Let $Q = Q_1 \oplus Q_2$ be a Module where Q_1 and Q_2 be p-semihollow Modules. Then Q is p-semihollow lifting Module iff Q is p-semilifting Module.

Proof: \Rightarrow) Let U be a cyclic submodule of Q and $\pi_1:Q\to Q_1$ and $\pi_2:Q\to Q_2$ be two natural projections maps. First case, if $\pi_1(U) \neq Q_1$ and $\pi_2(U) \neq Q_2$. Thus $\pi_1(U) \ll_s Q_1$ and $\pi_2(U) \ll_s Q_2$. So, by [1], $\pi_1(U) \oplus \pi_2(U) \ll_s Q_1 \oplus Q_2$. Claim $U \subseteq \pi_1(U) \oplus \pi_2(U)$, let $u \in U$ then $u \in Q = Q_1 \oplus Q_2$ and hence $u = (q_1, q_2)$, where $q_1 \in Q_1$, $q_2 \in Q_2$. Second case, assume $\pi_1(u) = \pi_1((q_1, q_2)) = q_1$ and $\pi_2(u) = \pi_2((q_1, q_2)) = q_2$. Thus $u = (\pi_1(u), \pi_2(u))$ and get $U \subseteq \pi_1(U) \oplus \pi_2(U)$ and hence $U \ll_s Q$. Then Q is p-semilifting Module. Now, assume that $\pi_1(U) = Q_1$, then $\pi_1(U) = \pi_1(Q)$. Thus $Q = U + H_2$. By second isomorphism theorem, $\frac{U+Q_2}{U} \cong \frac{Q_2}{U\cap Q_2}$. Since H_2 is p-semihollow Module, then $\frac{Q_2}{U\cap Q_2}$ is p-semihollow and hence

Volume: 17, Issue: 3, July 2021 P-ISSN: 2222-8373 39 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

 $\frac{Q}{U}$ is p-semihollow. But Q is p-semihollow-lifting, therefore \exists a semicoessential submodule of U in Q which is a direct summand of Q. Then Q is p-semilifting.

←) Clear.

One can use the previous proposition to give the following examples:

1. Consider the Module $Q = Z_2 \oplus Z_4$, clearly, Z_2 and Z_4 as Z-Module are p-semihollow Modules. Since for each cyclic submodule W of Q, \exists a direct summand E of Q s.t $E \subseteq_{sce} W$ in Q, thus $Q = Z_2 \oplus Z_4$ is p-semilifting and hence p-semihollow-lifting.

2. Consider the Module $Q = Z_2 \oplus Z_8$, clearly, Z_2 and Z_8 as Z-Module are p-semihollow Modules. One can easily to see that $Q = Z_2 \oplus Z_8$ is not p-semilifting. Thus, Q is not p-semihollow-lifting. 3. Let p be any prime integer. Since the Module $Z/p^2Z \oplus Z/p^3Z$ is p-semilifting [11, prop.A.7], then it is p-semihollow-lifting. But $Z/pZ \oplus Z/p^3Z$ is not p-semihollow-lifting because it is not

p-semilifting [11, prop. A.7].

Proposition2 Every p-semihollow Module is indecomposable.

Proof: Clear.

Proposition3 Let Q be a Module, if Q is a p-semihollow Module, thus $\frac{Q}{W}$ is a p-semihollow Module, for every proper cyclic submodule W of Q.

Proof: Let H/W cyclic submodule of Q/W. Since Q is p-semihollow, then $H \ll_s Q$ and hence H/W $\ll_s Q/W$. Thus $\frac{Q}{W}$ is p-semihollow.

Proposition4 An R-Module Q is a p-semihollow Module iff for some proper cyclic submodule D of Q, $\frac{Q}{D}$ is p-semihollow and D $\ll_s Q$.

Volume: 17, Issue: 3, July 2021 40 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Proof: \Rightarrow) Suppose that Q is a p-semihollow Module and D is any proper cyclic submodule of Q, then D \ll_s Q and by prop.3, $\frac{Q}{D}$ is p-semihollow.

 \Leftarrow) Suppose that $D \ll_s Q$ and $\frac{Q}{D}$ is p-semihollow. Let Y be a proper cyclic submodule of Q. Then Y+D \neq Q, so $\frac{Y+D}{D} \ll_s \frac{Q}{D}$. Let Q = Y + V, where $V \subseteq Q$, then $\frac{Q}{D} = \frac{Y+V}{D} = \frac{Y+D}{D} + \frac{V+D}{D}$. But $\frac{Y+D}{D} \ll_s \frac{Q}{D}$ therefore, Q = V+D. Since $D \ll_s Q$, then Q = V. Thus, Q is a p-semihollow Module.

Proposition5 Let Q be an *R*-Module. If Q is a p-semihollow Module then each non-zero factor Module of Q is indecomposable.

Proof: Assume Q is p-semihollow Module and $\frac{Q}{D}$ non-zero factor Module of Q. Then by prop.3, $\frac{Q}{D}$ is p-semihollow. Hence, by prop.2, $\frac{Q}{D}$ is indecomposable.

Proposition6 An indecomposable Module Q is a p-semihollow-lifting Module iff Q is p-semihollow or Q has not any p-semihollow factor Modules.

Proof: \Rightarrow) Assume Q has p-semihollow factor Module. Thus \exists a proper cyclic submodule W of Q s.t $\frac{Q}{W}$ p-semihollow. Since Q is p-semihollow-lifting, \exists a direct summand U of Q s.t $U \subseteq_{sce} W$ in Q. But Q is indecomposable Module, therefore U = 0 hence $W \ll_s Q$. Thus by prop.4, Q is p-semihollow.

←) Clear.

Proposition7 Let Q_1 ,, Q_n be Modules having not any p-semihollow factor Modules. Thus $Q = Q_1 \oplus \cdots \oplus Q_n$ is p-semihollow-lifting.

Volume: 17, Issue: 3, July 2021 41 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Proof: Assume Q has a cyclic submodule D s.t Q/D is p-semihollow. Since $Q_1+D/D+\cdots+Q_n+D/D=Q/D$, $\exists i \in \{1,\dots,n\}$ s.t $Q_i+D/D=Q/D$ is p-semihollow. So Q_i has a p-semihollow factor Module, a contradiction. Thus Q is p-semihollow-lifting.

proposition6 gives an idea to find an example of a p semihollow lifting Module that is not p-semilifting Module. In fact, every indecomposable Module Q which has not any p-semihollow factor Module is p-semihollow-lifting, but it is not a p-semilifting Module, let E be any indecomposable Module having not any p-semihollow factor Module and X be a semisimple Module. If Y cyclic submodule of $Q = E \oplus X$ s.t Q/Y is p-semihollow, then E + Y = Q or X + Y = Q. Since E has not any p-semihollow factor Modules and $E + Y/Y \cong E/E \cap Y$, X + Y = Q. Since X is semisimple. \exists a submodule D of X s.t $X = D \oplus (X \cap Y)$. Therefore $D \oplus Y = Q$. Thus, Y is a direct summand of Q. Consequently, Q is p-semihollow-lifting. Clearly Q is not p-semilifting (E is not semihollow).

Proposition8 Let Q be an indecomposable p-semihollow-lifting Module, If Q has a maximal cyclic submodule, then it is unique.

Proof: Assume W be a maximal cyclic submodule of Q. Suppose Q has another maximal cyclic submodule k which is different from W, thus Q = W + K. By [9], $\frac{Q}{W}$ is a simple Module and hence p-semihollow. But Q is p-semihollow-lifting Module, thus \exists a direct summand A of Q s.t $A \subseteq_{sce} W$ in Q. But Q is indecomposable Module thus A = 0, hence $W \ll_s Q$ implies Q = K, a contradiction, then Q has a unique maximal cyclic submodule.

Proposition9 Let W be a submodule of p-semihollow-lifting Module Q and Y be a cyclic submodule of Q such that $\frac{Q}{Y}$ p-semihollow and Q = W+Y, then there exists a direct summand D of Q and $D \subseteq_{sce} Y$ in Q.

Volume: 17, Issue: 3, July 2021 42 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Proof: Let E be a submodule of Q and Y cyclic submodule of Q s.t $\frac{Q}{Y}$ p-semihollow. Since Q is p-semihollow-lifting Module, \exists a direct summand D of Q s.t $D \subseteq_{sce} Y$ in Q. Now, since Q = E + Y, then $\frac{Q}{D} = \frac{E+Y}{D} = \frac{E+D}{D} + \frac{Y}{D}$. But $D \subseteq_{sce} Y$ in Q, therefore $\frac{Q}{D} = \frac{E+D}{D}$. Thus Q = E + D.

Let W be a submodule of an R-Module Q. A submodule U of Q is supplement of W in Q. If U is a minimal element in the set of submodule $V \subseteq Q$ with W + V = Q. Equivalently, Q = W + U and $W \cap U << U[9]$.

An R-Module Q is an amply supplemented Module, if for any two submodules W and D of Q with +D = Q, D contains a supplement of W in Q [2].

Let Q be an R-Module, and W be a submodule of Q. A submodule V of W is coclosure submodule of W in Q, if D is a coessential submodule of W in Q and coclosed of Q. That is, $\frac{W}{D} << \frac{Q}{D}$ and whenever $Y \subseteq V$ with $\frac{D}{Y} << \frac{Q}{Y}$ implies Y = V[3].

Proposition10[3] Let Q be an amply supplemented Module. Then each submodule of Q has a coclosure submodule.

Proposition11 Let Q be an R-Module and let W and V be submodules of Q such that W \subset V \subset Q, if $W \subseteq_{sce} V$ in Q and $\frac{Q}{V}$ p-semihollow Module then $\frac{Q}{W}$ p-semihollow Module.

Proof: By third isomorphism theorem, $\frac{Q}{V} \cong \frac{\frac{Q}{W}}{\frac{V}{W}}$. Since $\frac{Q}{V}$ is p-semihollow and $W \subseteq_{sce} V$ in Q, then by prop.4, $\frac{Q}{W}$ is p-semihollow.

A submodule W of an R-Module Q is coclosed of Q ($W \subseteq_{cc} Q$), if $\frac{W}{U} << \frac{Q}{U}$ implies that W = U for all $U \subseteq Q$ contained in W [7].

Volume: 17, Issue: 3, July 2021 43 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Proposition12 Let Q be a p-semihollow-lifting Module, then each coclosed cyclic submodule U of Q with $\frac{Q}{U}$ p-semihollow is a direct summand of Q. The converse is true if Q is amply supplemented.

Proof: Assume Q is a p-semihollow-lifting Module and U coclosed cyclic submodule in Q s.t $\frac{Q}{U}$ p-semihollow. Since Q is p-semihollow-lifting, then \exists a direct summand N of Q s.t $N \subseteq_{sce} U$ in Q. But K is coclosed in Q, so U = N. Thus, K is a direct summand of Q.

Conversely, suppose Q is amply supplemented Module and each coclosed proper cyclic Submodule U of Q with $\frac{Q}{U}$ p-semihollow is a direct summand. To prove Q is p-semihollow-lifting, let W be a cyclic submodule of Q with $\frac{Q}{W}$ p-semihollow. So, by prop.10, W has a coclosure submodule U in Q. Thus $U \subseteq_{sce} W$ in Q and $U \subseteq_{cc} Q$. Since $\frac{Q}{W}$ is p-semihollow, then by prop.11, $\frac{Q}{U}$ is p-semihollow. Thus, by assumption, U is a direct summand, hence Q is p-semihollow-lifting.

An *R*-Module Q have (D3) if for each direct summands Y and V of Q with Q = Y + V, $Y \cap V$ is a direct summand of Q [4].

The submodules K and W are called mutual supplements in R-Module Q, if they are supplements of each other [9].

Proposition13 Let Q = W + U be a p-semihollow-lifting Module, where W and U are cyclic mutual supplements in Q with $\frac{Q}{W}$ and $\frac{Q}{U}$ are p-semihollow Modules. If Q has (D3), then $Q = W \oplus U$

Proof: Let Y and D be two cyclic submodules of Q which are mutual supplements in Q, with $\frac{Q}{Y}$ and $\frac{Q}{D}$ are p-semihollow Modules. Then by [3,lemma1.1], Y and D are coclosed submodules of Q. But Q is p-semihollow-lifting, therefore by prop.12, Y and D are direct summands of Q. Since Q = Y + D and Q has (D3), thus $Y \cap D$ is a direct summand of Q so $Q = (Y \cap D) \oplus X$, for

Volume: 17, Issue: 3, July 2021 44 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

some $X\subseteq Q$. But D is a supplement of Y then $Y\cap D\ll D$ and hence $Y\cap D\ll Q$. So Q=X and $Y\cap D=0$. Thus, $Q=Y\oplus D$.

The following proposition gives a condition under which a direct summand of a p-semihollow-lifting Module is p-semihollow-lifting.

Proposition14 Let Q be a p-semihollow-lifting Module having (D3). Then each direct summand of Q is p-semihollow-lifting.

Proof: Let W be a direct summand of Q. Thus $Q = W \oplus W^*$ for some submodule W^* of Q. Let Y be cyclic submodule in W s.t W/Y is p-semihollow. Now, $Q/Y = (W \oplus W^*)/Y = W/Y \oplus (W^* \oplus Y)/Y$, By [5, corr.3,44], $Q/Y/(W^* \oplus Y)/Y \cong W/Y$, thus by third isomorphism theorem, $Q/Y/(W^* \oplus Y)/Y \cong Q/(W^* \oplus Y)$. But W/Y p-semihollow, so $Q/(W^* \oplus Y)$ is p-semihollow. Since Q is p-semihollow-lifting, \exists a direct summand V of Q s.t $X \subseteq_{sce} (W^* \oplus Y)$ in Q. Now, $Q/X = (W \oplus W^*)/X = (W+X)/X + (W^*+X)/X$. Claim that $Q \ne W^* + X$ (if $Q = W^* + X$) this implies $Q = W^* + Y$ which is contradiction). But by prop.11, Q/X is p-semihollow, so Q/X = (W+X)/X. Thus Q = W + X. Thus, by prop.4, $W \cap (W^* \oplus Y)/(X \cap W) \ll_s Q/(X \cap W)$. Then $X \cap W \subseteq_{sce} Y$ in Q. But Q has (D3), thus $X \cap W$ is a direct summand of Q and $X \cap W$ is a direct summand of W. Since $Y/(X \cap W) \le W/(X \cap W)$ and $W/(X \cap W)$ is a direct summand of $Q/(X \cap W)$, then by $[1], X \cap W \subseteq_{sce} Y$ in W. Thus, W is p-semihollow-lifting.

A submodule Y of an R-Module Q is called a fully invariant submodule if $u(Y) \subseteq Y$, for each $u \in Hom(Q,Q)[5]$.

An R-Module Q is duo-Module if each submodule of Q is fully invariant [8].

Lemma 15 [8] Let Q be an R-Module.If $Q = Q_1 \oplus Q_2$, then $\frac{Q}{Y} = \frac{Y + Q_1}{Y} \oplus \frac{Y + Q_2}{Y}$, for each fully invariant submodule Y of Q.

The following proposition gives a condition under which a factor of a p-semihollow-lifting Module is p-semihollow-lifting.

Volume: 17, Issue: 3, July 2021 45 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

Proposition16 Let Q be an R-Module. If Q is a p-semihollow-lifting Module, then $\frac{Q}{U}$ is p-semihollow-lifting for each cyclic fully invariant submodule U of Q.

Proof: Let $\frac{W}{D}$ be a cyclic submodule of $\frac{Q}{D}$ such that $\frac{Q}{W}$ is p-semihollow. Then by third isomorphism theorem, $\frac{Q}{D} \cong \frac{Q}{W}$ is p-semihollow. Since Q is a p-semihollow-lifting Module, thus \exists a submodule K of Q s.t $K \subseteq_{sce} W$ in Q and $Q = V \oplus V^*$, for some $V^* \subseteq Q$. Now, clearly $V + D \subseteq W$ and hence $\frac{V+D}{D} \subseteq \frac{W}{U}$. Let $f: \frac{Q}{V} \to \frac{Q}{V+D}$ be a map defined by f(q+V) = q + (V+D), for all $q \in Q$. Clearly, f is an epimorphism. But $V \subseteq_{sce} W$ in Q, thus by [1], $f\left(\frac{W}{V}\right) \ll_s \frac{Q}{V+D}$ and hence $V+D \subseteq_{sce} W$ in Q. Then by third isomorphism theorem, $\frac{V+D}{D} \subseteq_{sce} \frac{W}{D}$ in $\frac{Q}{D}$. Now, by lemma $[15, \frac{Q}{D}] = \frac{V \oplus V^*}{D} = \frac{V+D}{D} \oplus \frac{V^*+D}{D}$. Therefore $\frac{V+D}{D}$ is a direct summand of $\frac{Q}{D}$. Then $\frac{Q}{D}$ is p-semihollow-lifting.

If Q is a p-semihollow-lifting Module and A is not cyclic fully invariant submodule of Q, then $\frac{Q}{A}$ need not be p-semihollow-lifting. For example, consider the Z-Module $Q = \frac{Z}{4Z} \oplus \frac{Z}{8Z}$, clearly, Q is p-semihollow-lifting [8, Example 2.2]. Let $A = \frac{2Z}{4Z} \oplus 0$ be a submodule of Q, then $\frac{Q}{A}$ is not p-semihollow-lifting. To see that: $\frac{Q}{A} = \frac{\frac{Z}{4Z} \oplus \frac{Z}{8Z}}{\frac{2Z}{4Z} \oplus 0} \cong \frac{\frac{Z}{4Z}}{\frac{2Z}{4Z}} \oplus \frac{Z}{8Z}$, then $\frac{Q}{A} = \frac{Z}{2Z} \oplus \frac{Z}{8Z}$ is not p-semihollow-lifting.

The following corollary gives another condition under which a direct summand of a p-semihollow-lifting Module is p-semihollow-lifting.

Corollary17 Let Q be a duo p-semihollow-lifting Module. Then each direct summand of Q is a p-semihollow-lifting.

Theorem18 Let Q be a non-zero indecomposable Module over a commutative ring R. Then the following are equivalent:

Volume: 17, Issue: 3, July 2021 46 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

- 1. Q is p-semihollow-lifting.
- 2. Q is p-semilifting.
- 3. Q is p-semihollow.

Proof: 2) \Leftrightarrow 3) By [1].

3) ⇒ 1) Clear.
1) ⇒ 3) Let W be a proper cyclic submodule of Q. Since Q is p-semihollow-lifting, ∃ a submodule U of Q s.t Q = $U \oplus U^*$ and $\frac{W}{U} \ll_s \frac{Q}{U}$. Since Q indecomposable Module, then U = 0 and hence $W \ll_s Q$. Thus, Q is p-semihollow.

Lemma 19 [9, p.63] Let $f: Q \rightarrow V$ be an epimorphism of R-Modules and Q = D + Y where D and Y are submodules of Q then:

- 1. V = f(D) + f(Y).
- 2. If $kerf = D \cap Y$, then $V = f(D) \oplus f(Y)$.

Proposition20 Epimorphic image of p-semihollow Module is p-semihollow.

Proof: Let Q, Q' be R-Modules, Q be p-semihollow and f: $Q \rightarrow Q'$ be an R-epimorphism, Let W be a proper cyclic submodule of Q'. Thus $f^{-1}(W)$ is a proper cyclic submodule of Q. Since Q p-semihollow, $f^{-1}(W)$ is semismall in Q, $f(f^{-1}(W))$ is semismall in Q'. Thus, W is semismall in Q' and hence Q' is p-semihollow.

Proposition21 Let $f: Q \to U$ be an epimorphism of R-Modules, let W be submodules of Q and Y be a cyclic submodule of Q such that Q = Y + W and $kerf = Y \cap W$. If U is a p-semihollowlifting Module and W is p-semihollow, then $U = Q_1 \oplus Q_2$, where $Q_1 \subseteq_{sce} f(Y)$ in U and Q_2 is p-semihollow.

Proof: By lemma 19, $U = f(Y) \oplus f(W)$. Since W is p-semihollow, then by prop. 20, f(W) is psemihollow. Thus, by second isomorphism theorem, $\frac{U}{f(Y)} \cong f(W)$. So $\frac{U}{f(Y)}$ is p-semihollow. But

Volume: 17, Issue: 3, July 2021 P-ISSN: 2222-8373 47 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255

International Conference for Pure Sciences (ICPS-2021)

P-Semi Hollow-Lifting Modules

Mukdad Qaess Hussain and Darya Jabar Abdul Kareem

U is a p-semihollow-lifting Module, thus \exists a direct summand Q_1 of U s.t $Q_1 \subseteq_{sce} f(Y)$ in U. Thus $U = Q_1 \oplus Q_2$, where $Q_2 \subseteq U$. Now, $\frac{U}{Q_1} = \frac{f(Y) \oplus f(W)}{Q_1} = \frac{f(Y)}{Q_1} + \frac{f(W) \oplus Q_1}{Q_1}$. This implies $U = f(W) \oplus Q_1$. By second isomorphism theorem, $\frac{U}{Q_1} \cong f(W)$ and $\frac{U}{Q_1} \cong Q_2$ therfore $Q_2 \cong f(W)$. Then Q_2 is p-semihollow.

References

- 1. I. M Ali, L. S Muhmood, semi small submodules and semi –lifting Modules, In: 3rd scientific conference of the college of science, university of Baghdad (2009), 385-393.
- 2. C. Lomp, On dual Goldie dimension, Diploma Thesis, University of Dusseldorf (1996).
- 3. D. Keskin, Communications in Algebra, 28(7), 3427-3440 (2000).
- **4.** D. Keskin, Communications in Algebra, 30(11), 5273-5282 (2002).
- 5. F. Kasch, Modules and rings, (Academic Press., London 1982).
- **6.** M. Q. Hussain, SemiHollow Factor Module, In: 23 scientific conference of the college on Education Al-mustansiriya university (2017), 350-355.
- 7. J. Golan, Communications in Algebra, 30(5), 2355-2377(2002).
- 8. N. Orhan, D. K. Tutuncu, R. Tribak, Taiwanese Journal of Mathematics, 11(2), 545-568 (2007).
- **9.** R. Wisbauer, Foundations of module and ring theory, (Gordon and Breach, Philadelphia,1991).
- 10. M. A. Salih, N. A. Hussen, M. Q. Hussain, SemiHollow-Lifting Module, Revista Aus 26(4), 222-227 (2019).
- **11.** S. H. Mohamed B. J. Muller, Continuous and discrete modules, (London Math. Soc. LNS.147 Cambridge Univ. Press, Cambridge,1990).

Volume: 17, Issue: 3, July 2021 48 P-ISSN: 2222-8373 Manuscript Code: 137 – 564 – ICPS E-ISSN: 2518-9255