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Abstract 

In this paper, the effect of heat transfer and slip conditions on peristaltic transport of Magneto 

hydrodynamics (MHD) non-Newtonian fluid across tapered porous channel are studied. The 

mathematical equations for Bingham fluid model are developed and use the perturbation 

method to obtain the analytic solutions of the expressions for axial velocity and temperature 

distribution under the assumption of long wavelength and low Reynolds numbers. The effects 

of all parameters that appear in the problem are analyzed through graphs. The results showed 

that axial velocity increased by increasing 𝑄 and the opposite for rising 𝑚. Also, the 

temperature profile increases by increasing  𝑘, 𝜙1 and 𝜙2 with the opposite behavior for 𝜑 and 

𝑀. MATHEMATICA software is used for computational results and plotting all figures.  

Keywords: Peristaltic transport, Slip condition, Magnetic Field, Bingham Fluid. 

 

 

 

 

 

mailto:asiaamir8585@gmail.com
https://dx.doi.org/10.24237/ASJ.01.02.637B


  

 

83 

Academic Science Journal 

P-ISSN: 2958-4612 

E-ISSN: 2959-5568 
Volume: 1, Issue: 2 

Manuscript Code: 637B 

 

بر ع لانيوتيني مكنتوهييدرو داينمك مائعقل التمعجي لـتنالانزلاق على الا شرطتأثير انتقال الحرارة و

    قناة مسامية مدببة

 ومحمد علي مراداسيا عامر سعيد 

 جامعة ديالي -كلية العلوم–قسم الرياضيات 

 جامعة ديالي-كلية التربية الاساسية-قسم الرياضيات

 الخلاصة

و هيدرو مكنتني ينيوتلا  عائمقل التمعجي للتنالانزلاق على الا شرطدراسة تأثير انتقال الحرارة وفي هذا البحث تمت 

للحصول  رابير المعادلات الرياضية لنموذج مائع بينغهام واستخدام طريقة الاضطعبر قناة مسامية مدببة. تم تطو داينمكي

عدد ي الطويل وللتعبير عن السرعة المحورية وتوزيع درجة الحرارة على افتراض الطول الموجقريبية على الحلول الت

ائج أن رسوم البيانية. أظهرت النتمن خلال ال سالةيع المعلمات التي تظهر في المتم تحليل تأثيرات جمرينولدز المنخفض. 

مع السلوك  𝑘و  𝜙1 ,𝜙2ادةتعريف درجة الحرارة بزي بيان. أيضًا ، mوالعكس مع زيادة  Qالسرعة المحورية تزداد بزيادة 

 .شكالنتائج الحسابية ورسم جميع الألل MATHEMATICAو. يتم استخدام برنامج  φالمعاكس لـ 

الانزلاق، المجال المغناطيسي، سائل بينغهام: النقل التمعجي، حالة الكلمات المفتاحية  

Introduction 

Peristaltic flow is simply a form of fluid transport inside a channel or tube induced by the 

progressive wave of area contraction or expansion along the axial axis direction of a flexible 

walls. Peristaltic flow has recently attracted a lot of attention due to its implications in industry 

and physiology. The human body experiences peristalsis flow in the movement of chime 

through the digestive system, urine via the ureter, and swallowed food through the esophagus 

as well as numerous others the non-Newtonian fluids deviate from the classical Newtonian 

linear relationship between the shear stress and shear rate, for example honey, blood and 

processing of food are considered non-Newtonian fluid. Due to complex rheological properties, 

it is difficult to suggest a single model which exhibits all properties of non-Newtonian fluids. 

Machines have been designed on the principle of peristaltic. In recent years, the effects of heat 

transfer on peristaltic transport of non-Newtonian fluid in the present of magnetic field receive 

considerable attentions due to its application in biomedical sciences. It is now a well-accepted 
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fact that the peristaltic flows of magneto hydrodynamic (MHD) fluids are important in medical 

sciences and bioengineering. The MHD characteristics are useful in the development of 

magnetic devices, cancer tumor treatment, hyperthermia and blood reduction during surgery. 

Flows through porous medium occur in filtration of fluids and seepage of water in river beds 

[1,2]. 

This type of flow is highly useful in the design of a variety of biomedical devices, such as the 

heat-lung device that keeps blood flowing during risky surgeries [3]. This subject was first 

investigated by Shapiro et al. and Lew et al. [4,5]. The concept of peristaltic transport has been 

subjected to a number of hypotheses, the most well-known of which are the long wavelength 

and low Reynolds number. The viscosity of a non- Newtonian fluid varies depending on the 

applied tension or force. It's a fluid whose flow characteristics aren't characterized by a single 

constant viscosity value. When the peristaltic pump is activated, physiological fluid with 

constant viscosity fail to provide an accurate hold. The lymphatic vessels, tiny blood vessels, 

and the intestines are all involved in the transmission. The majority of peristalsis research was 

used on a viscosity that was consistent. Several recent research [6-9] looked in to the impact of 

changing viscosity when the viscosity is only based on distance. However, other studies looked 

at the effect of viscosity when it is temperature dependent [10-12]. It has also been discovered 

that heat and mass transfer play important roles in peristaltic flow, such as in blood flux 

processes, kidney dialysis, and cancer medication. Bifurcation analysis for a two-dimensional 

peristaltic driven flow of power–law fluid in asymmetric channel [13]. MHD effect on 

peristaltic transport for rabinowitsch fluid through a porous medium in cilia channel [14]. 

Impacts of heat and mass transfer on magneto hydrodynamic peristaltic flow having 

temperature dependent properties in an inclined channel [15]. The present study addresses the 

effect of heat transfer and slip conditions on peristaltic transport of MHD non-Newtonian fluid 

across tapered porous channel. The differential equations of the fluid flow were resolved subject 

to related boundary conditions (slip conditions). The non-Newtonian Bingham fluid was 

considered in this study. Open form solutions for this problem are obtained via perturbation 

method. The results are illustrated by plotted graphical results for axial velocity and temperature 

distraction.   
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Formulation in Mathematics  

Consider a peristaltic transport of an incompressible MHD non-Newtonian fluid with variable 

viscosity in a two-dimensional non-uniform tapered porous channel of width (𝑎1 + 𝑎2). 

Figure1 gives the schematic diagram of the non-uniform tapered channel. The flow is created 

by waves propagating down the channel walls at a constant speed of c, with varying wave 

amplitudes, phase angles, and channel widths. In the stationary frame of reference (�̅�, �̅�), let 

�̅�1 and �̅�2 represent the right and the left side wall respectively. To investigate the impact of a 

uniform magnetic field on fluid flow, it is applied in the Y-direction with absence of an electric 

field. Convective conditions were used to study heat transfer. The deformable walls are given 

by [16,17] 

�̅� = �̅�𝟏(�̅�, �̅�) = 𝒂𝟏 + �̅��̅� + �̅�𝟏 𝐜𝐨𝐬 (
𝟐𝝅

𝝀
(�̅� − 𝒄�̅�))  ......................................................................... (1) 

for the right-hand side wall,  

  �̅� = �̅�𝟐(�̅�, �̅�) = −𝒂𝟐 − �̅��̅� − �̅�𝟐 𝐜𝐨𝐬 (
𝟐𝝅

𝝀
(�̅� − 𝒄�̅�) + �̅�) ............................................................. (2) 

for the left hand side wall, where 𝜆 is the wavelength,  �̅�1 and �̅�2 are the amplitudes of the 

waves, 𝑡̅ is the time, �̅� is the phase difference which varies in the range
 
0 ≤ �̅� ≤ 𝜋. Further 

𝑎1, 𝑎2, �̅�1, �̅�2 and �̅� satisfy �̅�1
2 + �̅�2

2 + 2�̅�1�̅�1𝑐𝑜𝑠 �̅� ≤ (𝑎1 + 𝑎2)
2 so that the boundaries that 

do not cross each other.  

 
Figure 1: The figure represents an asymmetric channel.[18] 
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Basic and Constitutive equations 

The main governing equation that characterize the flow in the current problem are given by 

[19,20] 

𝝏�̅�

𝝏�̅�
+

𝝏�̅�

𝝏�̅�
= 𝟎,  ..................................................................................................................................... (3) 

𝝆(
𝝏�̅�

𝝏�̅�
+ �̅�

𝝏�̅�

𝝏�̅�
+ �̅�

𝝏�̅�

𝝏�̅�
) = −

𝝏�̅�

𝝏�̅�
+

𝝏�̅��̅��̅�

𝝏�̅�
+

𝝏�̅��̅��̅�

𝝏�̅�
+ 𝝆𝒈�̅�(�̅� − 𝑻𝟎) − 𝝈′𝑩𝟎

𝟐�̅� −
�̅�(𝒚)

�̅�
�̅�,  .......................... (4) 

𝝆(
𝝏�̅�

𝝏�̅�
+ �̅�

𝝏�̅�

𝝏�̅�
+ �̅�

𝝏�̅�

𝝏�̅�
) = −

𝝏�̅�

𝝏�̅�
+

𝝏�̅��̅��̅�

𝝏�̅�
+

𝝏�̅��̅��̅�

𝝏�̅�
−

�̅�(𝒚)

�̅�
�̅�,  ...................................................................... (5) 

𝝆𝑪𝒑 (
𝝏�̅�

𝝏�̅�
+ �̅�

𝝏�̅�

𝝏�̅�
+ �̅�

𝝏�̅�

𝝏�̅�
) = 𝜿(

𝝏𝟐�̅�

𝝏�̅�𝟐 +
𝝏𝟐�̅�

𝝏�̅�𝟐)  + �̅��̅��̅�
𝝏�̅�

𝝏�̅�
+ �̅��̅��̅�

𝝏�̅�

𝝏�̅�
+ �̅��̅��̅�

𝝏�̅�

𝝏�̅�
+ �̅��̅��̅�

𝝏�̅�

𝝏�̅�
 ,  .......................... (6) 

The associated dimensional form boundary condition [1,5] are 

 �̅� + �̅�
𝝏�̅�

𝝏�̅�
= 𝟎 , �̅� = 𝑻𝟏    𝒂𝒕 �̅� = �̅�𝟏

�̅� − �̅�
𝝏�̅�

𝝏�̅�
= 𝟎   ,   �̅� = 𝑻𝟎      𝒂𝒕 �̅� = �̅�𝟐

} ......................................................................................... (7) 

Where 𝑔, �̅�(𝑦), �̅�, 𝑇, 𝜅 , �̅� and 𝐶𝑝 are represent gravity acceleration, variable viscosity, 

permeability, temperature, thermal conductinty, velocity-slip parameter and specific heat 

respectively.  The magnetic part is added to the momentum equation by using Lorentz force in 

absent of electric field (for more detail [21]). 

The non-Newtonian Bingham plastic fluid is chosen and the extra stresses are defined by given 

tensor [16] as follows  

�̅� = 𝟐�̅�(𝒚)𝑫 + 𝟐𝝉𝟎�̃�, ....................................................................................................................... (8) 

where the deformation tensor 𝐷and the tensor �̃�  are given by 

  𝑫 =
𝟏

𝟐
(𝛁�⃑⃑� + (𝛁�⃑⃑� )

𝑻
),    �̃� =

𝑫

√𝟐𝒕𝒓𝒂𝑫𝟐
  ............................................................................................ (9) 
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The relate between fixed and move frames are introduced as  

𝒙 = �̅� − 𝒄�̅� ,     �̅� = �̅�   , �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, �̅�) − 𝒄 ,

�̅�(𝒙, �̅�) = �̅�(�̅�, �̅�, �̅�), �̅�(𝒙, �̅�) = �̅�(�̅�, �̅�, �̅�), 𝑻(𝒙, �̅�) = �̅�(�̅�, �̅�, �̅�).
}, ................................................. (10) 

and the dimensionless variables are  

𝒙 = 𝝀𝒙  , �̅� = 𝒂𝟏𝒚  , �̅� = 𝒄𝒖  , �̅� = 𝒄𝒗  , �̅� =
𝝀

𝒄
𝒕  ,  �̅� =

𝒄𝜼𝟎𝝀

𝒂𝟏
𝟐 𝒑,

𝑹𝒆 =
𝝆𝒂𝟏𝒄

𝜼𝟎
  , �̅�𝟏 = 𝒂𝟏𝝓𝟏 , 𝜹 =

𝒂𝟏

𝝀
  , �̅� = 𝒂𝟏𝑯,𝑸∗ = 𝒂𝟏𝒄𝚯 ,

�̅�𝟐 = 𝒂𝟏𝝓𝟐 , �̅� = 𝒂𝟏𝜷,  �̅� = 𝒂𝟏𝒄𝑭  , �̅� = 𝒂𝟏
𝟐𝒌 , �̅�𝒊𝒋 =

𝒄 𝜼𝟎

𝒂𝟏
𝝉𝒊𝒋,

�̅� = 𝒂𝟏𝒃, 𝜽 =
𝑻−𝑻𝟎

𝑻𝟏−𝑻𝟎
, 𝑷𝒓 =

𝑪𝒑𝜼𝟎

𝜿
, 𝑬𝒄 =

𝒄𝟐

𝑪𝒑(𝑻𝟏−𝑻𝟎)
,

�̅� = 𝒄𝒂𝟏𝝍  , 𝑨𝟐 = 𝑴𝟐 +
𝟏

𝒌
, 𝜼(𝒚) =

�̅�(𝒚)

𝜼𝟎
,

𝑩𝒏 =
𝒂𝟏𝝉𝟎

𝒄 𝜼𝟎
 , 𝑴𝟐 =

𝝈′𝑩𝟎
𝟐𝒂𝟏

𝟐

 𝜼𝟎
, 𝑮𝒓 =

𝝆𝐠�̅� 𝒂𝟏
𝟐(𝑻𝟏−𝑻𝟎)

𝒄 𝜼𝟎 
. }

 
 
 
 
 

 
 
 
 
 

.................................................. (11) 

Equations (10) and (11) are used in equations (1)-(9) and then applying 𝑅𝑒 ≪ 1 , 𝛿 ≪ 1 and 

the relations 𝑢 = 𝜓𝑦 and 𝑣 = −𝛿𝜓𝑥 to obtain the following dimensionless governing equations 

𝒚 = 𝑯𝟏(𝒙) = 𝟏 + 𝒃𝒙 + 𝝓𝟏𝐜𝐨𝐬 (𝟐𝝅𝒙) , .......................................................................................... (12) 

𝒚 = 𝑯𝟐(𝒙) = −𝒂 − 𝒃𝒙 − 𝝓𝟐 𝐜𝐨𝐬(𝟐𝝅𝒙 + �̅�) , 𝒂 =
𝒂𝟐

𝒂𝟏
 ,  .............................................................. (13) 

 
𝝏𝒑

𝝏𝒙
=

𝝏

𝝏𝒚
𝝉𝒙𝒚 + 𝑮𝒓𝜽 − 𝑴𝟐(𝝍𝒚 + 𝟏) − 

𝜼(𝒚)

𝒌
 (𝝍𝒚 + 𝟏),  ................................................................. (14) 

𝝏𝒑

𝝏𝒚
= 𝟎, ............................................................................................................................................ (15) 

𝝏𝟐𝜽

𝝏𝒚𝟐 = −𝑩𝒓𝝉𝒙𝒚𝝍𝒚𝒚 ,     𝑩𝒓 = 𝑷𝒓𝑬𝒄 ................................................................................................. (16) 

   
𝝍𝒚 + 𝜷𝝍𝒚𝒚 = −𝟏  , 𝜽 = 𝟏            𝒂𝒕 𝒚 = 𝑯𝟏

𝝍𝒚 − 𝜷𝝍𝒚𝒚 = −𝟏,   𝜽 = 𝟎           𝒂𝒕 𝒚 = 𝑯𝟐
} ............................................................................. (17) 

𝝉𝒙𝒙 = 𝝉𝒚𝒚 = 𝟎,  𝝉𝒙𝒚 = 𝜼(𝒚)𝝍𝒚𝒚 + 𝑩𝒏, ........................................................................................... (18) 
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Where, 𝐵𝑟 = 𝐸𝑐𝑃𝑟, is the Brinkman number. The Reynolds model of viscosity is used to 

describe the variable viscosity. let as consider 

𝜼(𝒚) = 𝒆−𝜶𝒚 ................................................................................................................................... (19) 

Where 𝛼 is the Reynolds model parameter which is constant. Using the maclaurian series 

expansion, neglecting squares and higher powers of 𝛼, equation (19) can be written as  

𝜼(𝜶 ) = 𝟏 − 𝜶𝒚,       𝜶 ≪ 𝟏     

Compensating equation (19) and (18) in to equation (14) in light of equation (15) and driving 

the result with respect 𝑦 provides                                                

The dimensionless volume flow rate 𝐹 in the wave frame defined by    

𝑭 = ∫
𝝏𝝍

𝝏𝒚
𝒅𝒚 = 𝝍(𝑯𝟏(𝒙)) − 𝝍(𝑯𝟐(𝒙)),

𝑯𝟏(𝒙)

𝑯𝟐(𝒙)
 ................................................................................ (20) 

or one can write 

𝜓 =
𝐹

2
 at the right wall and  𝜓 = −

𝐹

2
 at the left wall of the channel. and Θ = 𝐹 + 2 − 2𝑚 where 

Θ is the time mean flow rate. 

The equation (15) and equation (18) are used into equation (14) and deriving the conclusion 

with respect to 𝑦 produces, 

𝝍𝒚𝒚𝒚𝒚 − 𝜶𝒚𝝍𝒚𝒚𝒚𝒚 − 𝟐𝜶𝝍𝒚𝒚𝒚 + 𝑮𝒓𝜽𝒚 − 𝑨𝟐𝝍𝒚𝒚  +
𝜶𝒚

𝒌
𝝍𝒚𝒚 +

𝜶

𝒌
𝝍𝒚 +

𝜶

𝒌
 = 𝟎 ............................... (21) 

From equation (16) and (18) having 

𝜽𝒚𝒚 = −𝑩𝒓 [𝝍𝒚𝒚
𝟐 − 𝜶𝒚𝝍𝒚𝒚

𝟐 +    𝑩𝒏𝝍𝒚𝒚]  ..................................................................................... (22) 

Solution of the Problem 

The system of nonlinear partial differential equations, ((21) and (22)) in the aforementioned 

equations that are difficult to solve precisely. As a result, to solve it, using an approximated 
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approach through the perturbation method. For small values of viscosity (𝛼 ≪ 1 ) and Grashof 

number (𝐺𝑟 ≪ 1),  stream function and temperature expand as follows     

𝝍 = ∑ (𝜶)𝒊∞
𝒊=𝟎 𝝍

𝒊
+ 𝑶(𝜶𝟐) 

𝜽 = ∑ (𝑮𝒓)𝒊∞
𝒊=𝟎 𝜽𝒊 + 𝑶 (𝑮𝒓𝟐

)
}..................................................................................................... (23) 

The zeroth and first order systems are obtained by using equation (23) into equations (21) and 

(22) with the relevant boundary conditions (equations (17) and (20)) and then collection the 

coefficients of like power of  𝛼 and  𝐺𝑟. 

4.1 Zeroth Order System     

𝝍𝟎𝒚𝒚𝒚𝒚 − 𝑨𝟐𝝍𝟎𝒚𝒚 = 𝟎, ................................................................................................................... (24) 

 𝜽𝟎𝒚𝒚 + 𝑩𝒓𝝍𝟎𝒚𝒚
𝟐 + 𝑩𝒓𝑩𝒏𝝍𝟎𝒚𝒚 = 𝟎, .............................................................................................. (25) 

with the boundary constraints that go along with it 

  𝝍𝟎 =
𝑭

𝟐
,        𝝍𝟎𝒚 + 𝜷𝝍𝟎𝒚𝒚 = −𝟏,       𝜽𝟎 = 𝟏      𝒂𝒕 𝒚 = 𝑯𝟏

   𝝍𝟎 = −
𝑭

𝟐
,      𝝍𝟎𝒚 − 𝜷𝝍𝟎𝒚𝒚 = −𝟏,     𝜽𝟎 = 𝟎        𝒂𝒕 𝒚 = 𝑯𝟐

} ................................................... (26) 

4.2  First Order System 

𝝍𝟏𝒚𝒚𝒚𝒚 − 𝒚𝝍𝟎𝒚𝒚𝒚𝒚 − 𝟐 𝝍𝟎𝒚𝒚𝒚 + 𝜽𝒐𝒚 − 𝑨𝟐𝝍𝟏𝒚𝒚 +
𝒚

𝒌
 𝝍𝟎𝒚𝒚  +

𝟏

𝒌
( 𝝍𝟎𝒚 + 𝟏) = 𝟎 ......................... (27) 

𝜽𝟏𝒚𝒚 + 𝟐𝑩𝒓𝝍𝟎𝒚𝒚𝝍𝟏𝒚𝒚 − 𝒚𝑩𝒓𝝍𝟎𝒚𝒚
𝟐 + 𝑩𝒓𝑩𝒏𝝍𝟏𝒚𝒚 = 𝟎, ................................................................ (28) 

  with the corresponding boundary conditions 

 
𝝍𝟏 = 𝟎, 𝝍𝟏𝒚 + 𝜷𝝍𝟏𝒚𝒚 = 𝟎  , 𝜽𝟏 = 𝟎,        𝒂𝒕 𝒚 = 𝑯𝟏

𝝍𝟏 = 𝟎,   𝝍𝟏𝒚 − 𝜷𝝍𝟏𝒚𝒚 = 𝟎,   𝜽𝟏 = 𝟎,        𝒂𝒕 𝒚 = 𝑯𝟐
} ................................................................ (29) 

All calculations are performed using the MATHEMATICA software, and the zeroth system's 

solution with the required boundary conditions is carried out. 
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   𝜓0 =
ⅇ𝐴𝑦c1

𝐴
+

ⅇ−𝐴𝑦c2

𝐴

𝐴
+ c3 + 𝑦c4; 

𝜃0 = −
Br(c22𝑒−2𝐴𝑦 + 4Bnc2𝑒−𝐴𝑦 + 4Bnc1𝑒𝐴𝑦 + c12𝑒2𝐴𝑦 + 4𝐴2c1c2𝑦2)

4𝐴2 + c5 + 𝑦c6; 

where c𝑖 , 𝑖 = 1,2, … ,6 are constants discovered by the use of boundary conditions. The zeroth 

order solution is used to solve the first order system with the relevant boundary conditions 

which is. 

𝜓1 =
1

24𝐴5𝑘
ⅇ−2𝐴𝑦 (−Brc22𝑘 + Brc12ⅇ4𝐴𝑦𝑘

+ 3c1ⅇ3𝐴𝑦(−7 − 10BnBr𝑘 − 2𝐴3𝑘𝑦 + 2𝐴(3 + 2BnBr𝑘)𝑦 + 2𝐴4𝑘𝑦2

− 𝐴2(3𝑘 + 2𝑦2))

− c2ⅇ𝐴𝑦(−3(7 + 10BnBr𝑘) − 6𝐴(3 + 2BnBr𝑘)𝑦 + 6𝐴4𝑘𝑦2 − 3𝐴2(3𝑘 + 2𝑦2)

+ 2𝐴3𝑘𝑦(3 + 4Brc1ⅇ𝐴𝑦𝑦2))

+ 12𝐴3ⅇ𝐴𝑦(ⅇ𝐴𝑦(1 + c4 + c6𝑘)𝑦2 + 2ⅇ2𝐴𝑦c9 + 2𝑘 ∗ c10)) + c11 + 𝑦 ∗ c12; 

𝜃1 = Br(−
c22ⅇ−2𝐴𝑦(−

1

𝐴
−𝑦)

4𝐴2 +
1

3
c1c2𝑦3 +

c12ⅇ2𝐴𝑦(−
1

𝐴
+𝑦)

4𝐴2 ) + c13 + 𝑦c14;  

also  𝑖 = 9,10,… ,16 are constants discovered through the application of boundary conditions. 

Results and Discussion 

The approximate solution via perturbation method is calculated for velocity and temperature 

profile. Further, this section displays the computational results with help of graphs as shown in 

figs.2 -23. 

Velocity Distribution 𝒖  

The behavior of the parameters involved in the simulation is depicted graphically. 𝑢 represents 

velocity on the axis of flow. The effects of various values of  𝑀, 𝑘, 𝛼,   𝛽, 𝜙1,  𝜙2,  𝑚,   𝜑 , 𝐵𝑟,   

𝐵𝑛,   and 𝑄 on the axial velocity 𝑢 are depicted in Figs. 2 - 12. As seen in the figures, the 

velocity distribution has a parabolic behavior. Figs.2 and 3 demonstrates 𝑀 and 𝛽 influence on 

𝑢. It is observed that when 𝑀and 𝛽 is rise, the axis multiply at the duct's boundaries but  goes 
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down in the duct's center. In Figure4, we observed that the velocity distribution multiply with 

rise of 𝑄 whereas it go down by rise in 𝑚, as shown in Figure5. Fig 6 demonstrates the effect 

of 𝑘 on 𝑢. It is seen that 𝑢 goes down slowly at the duct's boundaries, however rise at the central 

part of the duct with rise 𝑘.   

Figure7. Shown the effect of viscosity parameter 𝛼 on  u, at the left part of the duct the velocity 

go down by rising  𝛼 and the opposite behavior noted for the right part of the duct. From figs. 

8 and 9 noted that 𝑢 do not change at rise in 𝐵𝑟 and 𝐵𝑛. Figure10 displayed the effect of  𝜙1 

on the 𝑢. 

When  𝜙1 is rises, the speed on the axis of the channel rise at the right wall and merges from 

the middle part to the remainder of the channel (no effect). Figure11 explained that the speed 

on the axis of flow rising near the left wall and center section of the duct, but the situation is 

reversed near the right side of the duct, by rising in 𝜙2.  

Fig 12 we noted that at rising in 𝜑, merges from the center part to the right wall of the duct and 

𝑢 go down at the left. There is a lot of agreement between our results for 𝑀, 𝛼, 𝜙1, 𝜙2 and 𝜑 

with those reported in Murad and Abdulhadi [18,19]. 

 

 

 

                                        

 

 

 

 

Fig.  2: The axial velocity 𝑢 affect by 𝑀 at𝜙1 = 2, 𝜙2 = 1,𝑚 = .1,   

𝑄      𝑄 = 1.3, 𝑘 = 1, 𝛼 = 0.03, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5,𝐵𝑛 = .001, 𝑥 = .1 

 

Fig.  3: The axial velocity 𝑢 affect by 𝛽 at𝜙1 = 2,𝜙2 = 1,𝑚 = .1,   

𝑄      𝑄 = 1.3, 𝑘 = 1, 𝛼 = 0.03,𝑀 = 0.9,𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 
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Fig. 4: The axial velocity 𝑢 affect by 𝑄 at𝜙1 = 2, 𝜙2 = 1,𝑚 = .1, 

𝑄 𝑘 = 1,𝛼 = 0.03,𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 

 

Fig. 5: The axial velocity 𝑢 affect by 𝑚 at𝜙1 = 2, 𝜙2 = 1, 𝑘 = 1, 

𝑄 = 1.3, 𝛼 = 0.03, ,𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 

 

Fig. 6: The axial velocity 𝑢 affect by 𝑘 at𝜙1 = 2, 𝜙2 = 1,𝑚 = .1, 

𝛼 = 0.03, 𝑄 = 1.3 ,𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 

Fig. 7: The axial velocity 𝑢 affect by 𝛼 at𝜙1 = 2, 𝜙2 = 1,𝑚 = .1, 

𝑘 = 1, 𝑄 = 1.3 , 𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
,𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 

Fig. 8: The axial velocity 𝑢 affect by 𝐵𝑟 at𝜙1 = 2, 𝜙2 = 1,𝑚 = .1 

𝑘 = 1, 𝛼 = 0.03, 𝑄 = 1.3 , 𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑛 = .001, 𝑥 = .1 

Fig. 9: The axial velocity 𝑢 affect by 𝐵𝑛 at𝜙1 = 2,𝜙2 = 1,𝑚 = .1 

𝑘 = 1, 𝛼 = 0.03, 𝑄 = 1.3 , 𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝑥 = .1 
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Fig. 10: The axial velocity 𝑢 affect by 𝜙1 at 𝜙2 = 1,𝑚 = .1, 𝑘 = 1 

𝑘 𝛼 = 0.03, 𝑄 = 1.3 ,𝑀 = 0.9, 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 

 

Fig. 11: The axial velocity 𝑢 affect by 𝜙2 at 𝜙1 = 2 ,𝑚 = .1, 𝑘 = 1 

𝑘 𝛼 = 0.03, 𝑄 = 1.3 , 𝑀 = 0.9, 𝛽 = 0.2,𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1

Fig. 12: The axial velocity 𝑢 affect by 𝜑 at 𝜙1 = 2 , 𝜙2 = 1,𝑚 = .1, 𝑘 = 1 

𝑘 𝛼 = 0.03, 𝑄 = 1.3 ,𝑀 = 0.9, 𝛽 = 0.2, , 𝐵𝑟 = 5, 𝐵𝑛 = .001, 𝑥 = .1 
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Temperature distribution 𝜽 

The temperature profile variation for various values of the related parameters is depicted in the 

Figs. 13-23. Figure13 shown that the effect of 𝑀 on the temperature profile, It is noticed that 

the temperature profile go down with rise 𝑀. Figs 14 and 15 explained the temperature 

distribution go down in the middle  part and multiply at the boundaries of the duct by rise 𝛽 

and 𝑚, However, the converse is true when rising in 𝑄 and 𝐵𝑟, as illustrate in shown in figs. 

16 and 17. Fig 18 illustrate the influence of 𝑘 on 𝜃.It is noticed that when rise in 𝑘, the 𝜃 rising 

in the central region and the right wall of the duct and gradually vanishes from the left wall of 

the duct. In fig 19 we noted that by rising  𝐺𝑟, the temperature goes down in the center region, 

but rises in the right wall of the duct and gradually vanishes from the left wall of the duct. With 

rising in 𝐵𝑛 ,the temperature distribution exhibits oscillatory behavior as in Figure20. The 

temperature distribution rises along the right wall, and then gradually disappear by  rising in 𝜙1 

as shown in Figure21. From fig 22 we noted that at rising in 𝜙2, the temperature rises at the 

duct 's left wall and blends with rest of the duct 's middle portion (no effected). From Figure23 

we noticed that when 𝜑 rises, 𝜃 go down at the left wall of the duct and merges from the middle 

area to the duct 's right wall. The impacts of 𝐵𝑟, 𝐺𝑟, 𝑘, 𝜙1, 𝜙2 and 𝜑. Consistent with results 

analyzed in previous studies (Murad  and Abdulhadi[18,19]. 

 

               

 
 

 

Fig. 13: The temperature profile 𝜃 affect by 𝑀at 𝜙1 = 4,𝜙2 = 3,𝑚 = .2 

𝑘 = 3, 𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .1, 𝑥 = .1 
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Fig. 15: The temperature profile 𝜃 affect by 𝑚 at 𝜙1 = 4,𝜙2 = 3,𝑘 = 3 

𝑀 = 2,𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .1, 𝑥 = .1 

 

Fig. 14: The temperature profile 𝜃 affect by 𝛽at 𝜙1 = 4, 𝜙2 = 3,𝑚 = .2 

𝑘 = 3, 𝐺𝑟 = .001, 𝑄 = 1.3 ,𝑀 = 2,𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .1, 𝑥 = .1 

 

Fig. 16: The temperature profile 𝜃 affect by 𝑄 at 𝜙1 = 4,𝜙2 = 3,𝑘 = 3 

𝑀 = 2,𝐺𝑟 = .001,𝑚 = .2 , 𝛽 = 0.2,𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .1, 𝑥 = .1 

Fig. 17: The temperature profile 𝜃 affect by 𝐵𝑟 at 𝜙1 = 4, 𝜙2 = 3, 𝑘 = 3 

            𝑀 = 2, 𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝑚 = .2, 𝐵𝑛 = .1, 𝑥 = .1                           

 

Fig. 18: The temperature profile 𝜃 affect by  𝑘 at 𝜙1 = 4, 𝜙2 = 3,𝑚 = .2 

                𝑀 = 2, 𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .1, 𝑥 = .1                           

 

Fig.  19 : The temperature profile 𝜃 affect by   𝐺𝑟 at 𝜙1 = 4, 𝜙2 = 3,𝑚 = .2 

              𝑀 = 2, 𝑘 = 3, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝐵𝑛 = .1, 𝑥 = .1                           
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Conclusions 

In this study, the effect of heat transfer and slip condition on peristaltic transport of MHD non-

Newtonian fluid across tapered porous channel at low Reynolds number and a long wavelength 

are utilized. The perturbation method was used to solve a system of nonlinear partial differential 

equations of this research. The following are some of the more intriguing analyses: 

 When 𝑀 and 𝛽 is rised, the velocity on the axis of flow go down in the central region 

and grows near the duct 's edges, but the opposite occur for rise 𝑘. By rising  𝑄,the 

velocity multiply across the entire cross-section, but go down with rising 𝑚. 

 Velocity on the axis of flow while it grows on the right side of the channel, go down 

near the left by rises  𝛼. Also, the velocity is unaffected by  𝐵𝑟 and𝐵𝑛. 

Fig.  20 : The temperature profile 𝜃 affect by 𝐵𝑛 at 𝜙1 = 4, 𝜙2 = 3,𝑚 = .2 

            𝑀 = 2, 𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑟 = 5, 𝑘 = 3, 𝑥 = .1                           

 

Fig.  21 : The temperature profile 𝜃 affect by 𝜙1 at 𝜙2 = 3,𝑚 = .2,𝑀 = 2, 

          𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑛 = .1, 𝐵𝑟 = 5, 𝑘 = 3, 𝑥 = .1                           

 

Fig.  22 : The temperature profile 𝜃 affect by 𝜙2 at 𝜙1 = 4,𝑚 = .2,𝑀 = 2, 

          𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜑 =
𝜋

4
, 𝐵𝑛 = .1, 𝐵𝑟 = 5, 𝑘 = 3, 𝑥 = .1                           

 

Fig.  23 : The temperature profile 𝜃 affect by 𝜑 at 𝜙1 = 4,𝑚 = .2,𝑀 = 2, 

          𝐺𝑟 = .001, 𝑄 = 1.3 , 𝛽 = 0.2, 𝜙2 =, 𝐵𝑛 = .1, 𝐵𝑟 = 5, 𝑘 = 3, 𝑥 = .1                           
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 The 𝜃 go down by rise 𝑀. It's go down in the central region and grows near the duct 's 

edges by rise 𝑚 and 𝛽, but the opposite occur for rise 𝑄 and 𝐵𝑟. 

 By rising  𝐺𝑟, the temperature go down in the center region, but growth in right wall of 

the duct and gradually vanishes from the left wall of the duct.  
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