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Abstract 

In this paper, we suggest a new method for solving fractional initial value problems of different 

fractional orders. We call it hybrid Series Solution (Fractional with power, Fractional with 

fractional, Fractional with power and fractional). The main difference between Caputo and 

Riemann – Liouville formulas for the fractional derivatives as mentioned. The paper focuses 

on finding the exact solution of Bagley-Torvik equation and other nonhomogeneous fractional 

differential equations, illustrated by some Theorems and examples.  

Key words: Hybrid Series, Bagley-Torvik equation, Fractional Calculus, Caputo and 

Riemann - Liouville derivatives.  
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 باستخدام متسلسلات هجينة  حل مسائل القيم الابتدائية الكسرية 

 3احمد مرشد كريمو  2روناك محمد سعيد باجلاني ،1سعد ناجي العزاوي

 جامعة بغداد - كلية العلوم للبنات - قسم الرياضيات 1
 رئاسة جامعة كركوك 2

 جامعة ديالى -كلية العلوم  - قسم الرياضيات 3

 الخلاصة 

في هذا البحث تم اقتراح طريقة جديدة لحل مسائل القيم الابتدائية  الكسرية ذات الرتب المختلفة. سميت هذه الطريقة بطريقة 

المتسلسلات الهجينة للحل )كسرية مع قوى, كسرية مع  كسرية , كسرية  مع  قوى مع  كسرية(. وكذلك قدمنا الاختلاف 

لوفيل وحسب تعريف كابوتو.  نركز في هذا البحث على  -حسب تعريف ريمانالرئيسي  بين خصائص المشتقات الكسرية 

وغيرها من المعادلات التفاضلية الكسرية غير المتجانسة وهذا يتضح من بعض  Bagley-Torvikايجاد الحل التام لمعادلة 

 النظريات والامثلة.

    Caputoمشتقات  ,تفاضل والتكامل الكسريال ,Bagley-Torvikمعادلة  ,المتسلسلات الهجينةالكلمات المفتاحية : 

 .   Riemann-Liouvilleو

Introduction 

The fractional calculus deals with integrals and derivatives of real or even complex order [1]. 

The history of fractional calculus started at the same time when classical calculus was 

established. It was first mention in Leibniz's letter to l' Hospital in 1695, where the idea of semi 

derivative was suggested [2, 3]. During time, fractional calculus built on formal foundations by 

many famous mathematicians e.g. Liouville, Riemann, Euler, Lagrange, Heaviside, Fourier, 

Abel etc. The fractional calculus finds an application in different fields of science, including 

theory of fractional, engineering, physics, numerical analysis, biology and economics [4]. 

Bagley-Torvik equation, which is ordinary fractional differential equation, firstly appeared in 

Bagley and Torvik seminal work. They proposed to model viscoelastic behavior of geological 

strata, metals and glasses by using fractional calculus and they have proved that this approach 

is effective in describing structures containing elastic and viscoelastic components, so, it plays 

important role in engineering and applied science [5,6] . In particular, the equation with 

derivative of 1/2 order or 3/2 order can describe the motion of real physical systems or the 
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motion of a rigid plate immersed in a Newtonian fluid and a gas in a fluid respectively [7, 8]. 

There are several works to solve Bagley-Torvik equation, such as, numerical procedures for a 

reformulated Bagley-Torvik equation as a system of fractional differential equation of order ½ 

and a numerical way for solving this equation, a generalization of Taylor’s and Bessel’s 

collocation method. The aim of this work is to find the exact solution of Bagley-Torvik equation 

and other nonhomogeneous fractional differential equations by using hybrid series. The paper 

is organized as follows: In section 1 we introduced some necessary definitions and 

mathematical preliminaries of fractional calculus, section 2 is devoted to present some theorems 

and lemmas related to the fractional power series [9 - 15].  

In section 3 our new method to solve nonhomogeneous fractional differential equation is used. 

In section 4 the Bagley-Torvik Equation is presented and also applied our new method to extract 

the exact solution by using three special cases of Bagley-Torvik Equation [16, 17]. Finally, a 

conclusion is given in section 5.  

1. Basic definitions 

Through this section we explain some mathematical definitions of the fractional calculus which 

are used in our work.  

Definition 1.1: The Gamma function, denoted by  Γ(𝑧) ,is a generalization of the factorial  

function  n! and defined as.     

Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡 𝑑𝑡,       𝑅𝑒 𝑧 > 0.
∞

0
                                                 (1) 

Below we show some basic properties of 𝛤 function, namely: 

𝛤(1)   =   𝛤(2)   =  1, 

𝛤(𝑧 + 1)    =  𝑧𝛤(𝑧) 

Γ(z) = 
𝛤(𝑧 +1)

𝑧
 ,       for negative value of 𝑧 . 

𝛤(𝑛) =  (𝑛 − 1)!  , 𝑛 ∈ 𝑁0, 

𝛤(𝑛 + 1) =   𝑛! ,             𝑛 ∈ 𝑁0. 

Whereas  𝑁0 is the set of the non-negative integers. From the above we can get: 
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a)  𝛤 (
1

2
) = √𝜋        

b)  𝛤 (
5

2
) =

3

2
 𝛤 (

3

2
) =

3

2
 .

1

2
 𝛤 (

1

2
) =  

3

4
√𝜋 

c)  𝛤 (
−3

2
) =  

𝛤(
−3

2
+1)

−3

2

=  
𝛤(

−1

2
)

−3

2

=  
𝛤(

1

2
)

−3

2
 .  

−1   

2

 =
4

3
√𝜋 

Definition 1.2: Suppose that 𝜎 > o, t > a, 𝜎, a, t ∈ R .Then we have 

 𝐷𝜎  𝑓(𝑡) =  {

1

𝛤(𝑛−𝜎)

𝑑𝑛

𝑑 𝑡𝑛 ∫
𝑓(𝜏)

(𝑡−𝜏)𝜎+1−𝑛  𝑑𝜏,    𝑛 − 1 < 𝜎 < 𝑛 ∈ 𝑁,                      
𝑡

𝑎

𝑑𝑛

𝑑 𝑡𝑛 𝑓(𝑡),        𝜎 = 𝑛 ∈ 𝑁.                                                                 
         (2)   

This definition is called the Riemann-Liouville fractional derivative of order 𝜎. 

Definition 1.3: Suppose that 𝜎 > 0, 𝑡 > 𝑎, 𝜎, 𝑐, 𝑡 ∈ 𝑅. The fractional Caputo operator has the 

form:    

     𝐷∗
𝜎  𝑓(𝑡) = {

1

𝛤(𝑛−𝜎)
∫

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝜎+1−𝑛  𝑑𝜏, 𝑛 − 1 < 𝜎 < 𝑛 ∈ 𝑁 ,
𝑡

𝑎

𝑑𝑛

𝑑 𝑡𝑛  𝑓(𝑡),                                                𝜎 = 𝑛 ∈ 𝑁.        
                       (3)                                        

 

Definition 1.4: The Caputo fractional derivative of the power function is denoted by  

𝐷∗
𝜎𝑡𝛽 =  {

Γ(𝛽+1)

Γ(𝛽−𝜎+1)
𝑡𝛽−𝜎 ,               𝑛 − 1 < 𝜎 < 𝑛, 𝛽 > 𝑛 − 1, 𝛽 ∈ 𝑅,

0 ,                                       𝑛 − 1 < 𝜎 < 𝑛, 𝛽 ≤ 𝑛 − 1, 𝛽 ∈ ℕ  
                  (4) 

 

Remark: The main difference between Caputo and Riemann – Liouville formulas for the 

fractional derivatives are: 

a) Caputo fractional derivative of a constant equals zero while (Riemann – Liouville) 

fractional derivative of a constant does not equal zero. 

b) The non-commutation, in Caputo fractional derivative we have: 
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  𝐷∗
𝛼𝐷𝑚𝑓(𝑡) = 𝐷∗

𝛼+𝑚 𝑓(𝑡) ≠ 𝐷𝑚𝐷∗
𝛼𝑓(𝑡)                                            (5)                                                  

Where  𝛼 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ 𝑁, 𝑚 = 1,2,3, ….  

In general, the Riemann - Liouville derivative is also non-commutation as:  

𝐷𝑚𝐷𝛼𝑓(𝑡) =  𝐷𝛼+𝑚𝑓(𝑡) ≠ 𝐷𝛼𝐷𝑚𝑓(𝑡)                                                                   (6) 

Whereas  𝛼 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ 𝑁, 𝑚 = 1,2,3, ….  

Note   that the formulas in (5) and (6) become equalities under the following additional 

conditions: 

𝑓(𝑠)(0) = 0,         𝑠 = 𝑛, 𝑛 + 1, … , 𝑚.   for  𝐷∗
𝛼  and 

𝑓(𝑠)(0) = 0,         𝑠 = 0,1,2, … , 𝑚 ,   for 𝐷𝛼 

Definition 1.5: The power series is denoted by 

∑ 𝑐𝑛(𝑡 − 𝑡0)𝑛𝜎 = 𝑐0 + 𝑐1(𝑡 − 𝑡0)𝜎 + 𝑐2(𝑡 − 𝑡0)2𝜎 + ⋯ ,∞
𝑛=0                                    (7) 

Where 0 ≤ 𝑛 − 1 < 𝜎 ≤ 𝑛  , 𝑡 ≥ 𝑡0 is called a fractional power series about 𝑡0 , where 𝑡 is a 

variable and 𝑐𝑛's are constants called the coefficients of the series, particularly, if 𝑡0 = 0, the 

expansion ∑ 𝑐𝑛𝑡𝑛𝜎∞
𝑛=𝑜  is called a Fractional Maclaurin Series.   

2. Fractional Power Series and Analytical Manipulations 

Through this section, we review some theorems and lemmas related to our work. 

Theorem 2.1[8]: Consider the fractional power series  ∑ 𝑐𝑛𝑡𝑛𝜎∞
𝑛=𝑜  , 𝑡 ≥ 0, there are two 

possible cases: 

1- If the FPS ∑ 𝑐𝑛𝑡𝑛𝜎∞
𝑛=𝑜  converges when 𝑡 = 𝑑 > 0, then it converges whenever 0 ≤ 𝑡 ≤ 𝑑.  

2- If the FPS ∑ 𝑐𝑛𝑡𝑛𝜎∞
𝑛=𝑜  diverges when 𝑡 = 𝑔 > 0, then it diverges whenever 𝑡 > 𝑔.   

Theorem 2.2[8]: Let the FPS ∑ 𝑐𝑛
∞
𝑛=0 𝑡𝑛𝜎 , and  𝑡 ≥ 0 , there are only three possibilities.  

1- The series converges only when t= 0,   

2 -The series converges for each t ≥ 0,  

3- There is a positive real number   R such that the series converges whenever 0 ≤ 𝑡 < 𝑅  and 

diverges whenever  𝑡 > 𝑅 
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Theorem 2.3[8]: Suppose that the FPS ∑ 𝑐𝑛
∞
𝑛=0 𝑡𝑛𝜎    has radius of convergence 𝑅 >  0. If  

𝑓(𝑡)    is a function defined by 𝑓(𝑡) = ∑ 𝑐𝑛
∞
𝑛=0 𝑡𝑛𝜎  on 0 ≤ 𝑡 < 𝑅,  then for   0 ≤ 𝑛 − 1 < 𝜎 ≤

𝑛 and 0 ≤ 𝑡 < 𝑅 ,we have   

 

     𝐷0
𝜎𝑓(𝑡) = ∑ 𝑐𝑛

𝛤(𝑛𝜎+1)

𝛤((𝑛−1)𝜎+1)
∞
𝑛=1 𝑡(𝑛−1)𝜎                                                                       (8)   

 

Lemma 2.1 [16]: Suppose 𝑦 ∈ 𝐶𝑠[0, 𝑎]whereas,𝑎 > 0 and 𝑠 ∈ ℕ, let 𝛼 ∉ ℕ such that 0< 𝛼 <

𝑠. Then  

𝐷∗
𝛼𝑦(0) = 0 .   

Lemma 2.2[16]: Suppose 𝑦 ∈ 𝐶2[0, 𝑎] where  𝑎 > 0 , then: 

1- 𝐷∗

1
2⁄

𝐷∗

1
2⁄

𝑦 = 𝑦′ ,                                                                            (9) 

2- 𝐷∗

1
2⁄

𝑦′ =𝐷∗

3
2⁄

𝑦 ,                                                                                (10) 

3-𝐷∗

1
2⁄

𝐷∗

3
2⁄

 𝑦 = 𝑦′′.                                                                              (11) 

3. Double Fractional Series Solution 

It known that one of the general methods of solution of differential equations is the series 

solution: 

𝑦(𝑡) = ∑ 𝑐𝑖𝑡
𝑖∞

𝑖=0 ,                                                                   (12)                                                                                                              

While in a neighborhood of a regular singular point 𝑥0 , the series solution has the form: 

 𝑦(𝑡) = ∑ 𝑐𝑖𝑡
𝑖+𝜎∞

𝑖=0  ,                                                            (13) 

 as mentioned in frobenius method, clearly the sum of convergent series is convergent. for 

homogeneous fractional differential equation of order 𝜎 , the fractional series solution has the 

form: 

 𝑦(𝑡) = ∑ 𝑐𝑖𝑡
𝑖𝜎 ,∞

𝑖=0                                                                           (14) 
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but this form may not applicable for nonhomogeneous equations. Our suggested method is to 

write the solution as a sum of power series and fractional series. The efficiency of this suggested 

method is clear through an illustrated example, this form is a generalization of Taylor series for 

the solution. In this section, we apply a double fractional series for two examples: 

Example 3.1: Consider the equation  

  𝑦
5

2(𝑡) + 𝑦
3

2(𝑡) + 𝑦(𝑡) = Γ (
7

2
) + Γ (

5

2
) + Γ (

7

2
) 𝑡 + 𝑡

5

2 + 𝑡
3

2 + 𝑡 + 1,                            (15) 

With the initial conditions,𝑦(0) = 𝑦′(0) =1 . 

Where the exact solution is  𝑦(𝑡) = 𝑡
5

2 + 𝑡
3

2 + 𝑡 + 1,   

Since  𝑡 is in the nonhomogeneous part, so, to solve (15) , suppose that ,  

  𝑦(𝑡) = ∑ 𝑎𝑛𝑡𝑛∞
𝑛=0 + ∑ 𝑏𝑛𝑡

5

2 
𝑛 +∞

𝑛=1 ∑ 𝑐𝑛𝑡
3

2 
𝑛∞

𝑛=1                                                        (16)                                                          

Getting the derivatives 𝑦
5

2(𝑡)and 𝑦
3

2(𝑡), respectively, and putting the outputs in (15), (by 

neglecting all the equations when 𝑡 < 0) : satisfying  

∑ 𝑎𝑛 
Γ(𝑛+1)

Γ((𝑛−
5

2
)+1)

𝑡𝑛− 
5

2∞
𝑛=3 + ∑ 𝑏𝑛

Γ(
5𝑛

2
+1)

Γ((
5𝑛

2
−

5

2
)+1)

𝑡
5𝑛

2
− 

5

2∞
𝑛=1 +  ∑ 𝑐𝑛

Γ(
3𝑛

2
+1)

Γ((
3𝑛

2
−

5

2
)+1)

𝑡
3𝑛

2
− 

5

2 +∞
𝑛=2

 ∑ 𝑎𝑛
Γ(𝑛+1)

Γ((𝑛−
3

2
)+1)

𝑡𝑛− 
3

2∞
𝑛=2  + ∑ 𝑏𝑛

Γ(
5𝑛

2
+1)

Γ((
5𝑛

2
−

3

2
)+1)

𝑡
5𝑛

2
− 

3

2∞
𝑛=1 + ∑ 𝑐𝑛

Γ(
3𝑛

2
+1)

Γ((
3𝑛

2
−

3

2
)+1)

𝑡
3𝑛

2
− 

3

2∞
𝑛=1 +

 ∑ 𝑎𝑛𝑡𝑛∞
𝑛=0 + ∑ 𝑏𝑛𝑡

5

2 
𝑛 +∞

𝑛=1 ∑ 𝑐𝑛𝑡
3

2 
𝑛∞

𝑛=1  =  Γ (
7

2
) + Γ (

5

2
) + Γ(

7

2
) t +𝑡

5

2 + 𝑡
3

2 + 𝑡 + 1,  

 

By equalizing the coefficients in equations (17-25) below: 

Γ (
7

2
) 𝑏1 +  Γ (

5

2
) 𝑐1 + 𝑎0 = Γ (

7

2
) + Γ (

5

2
) + 1,                                               (17)     

𝑎3
6

Γ(
3

2
)

𝑡
1

2 + 𝑐2
6

Γ(
3

2
)

𝑡
1

2 +  𝑎2
2

Γ(
3

2
)

𝑡
1

2 =0 ,                                                            (18)     

𝑏1Γ(
7

2
)𝑡 + 𝑎1𝑡 = Γ(

7

2
)𝑡+ t,                                                                                (19)     
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𝑎4
24

Γ(
5

2
)
 𝑡

3

2 + 𝑎3
6

Γ(
5

2
)
 𝑡

3

2 + 𝑐2
6

Γ(
5

2
)

𝑡
3

2  + 𝑐1𝑡
3

2  = 𝑡
3

2                                                 (20)     

 𝑐3

Γ(
11

2
)

2
𝑡2  + 𝑎2𝑡2  = 0 ,                                                                                   (21) 

𝑎5
120

Γ(
7

2
)
 𝑡

5

2+ 𝑏2
120

Γ(
7

2
)
 𝑡

5

2+ 𝑎4
24

Γ(
7

2
)

𝑡
5

2 + 𝑏1𝑡
5

2 = 𝑡
5

2,                                                    (22)     

 𝑐3

Γ(
11

2
)

6
𝑡3 + 𝑎3𝑡3 + 𝑐2𝑡3 = 0,                                                                          (23)    

𝑎6
6!

Γ(
9

2
)

𝑡
7

2 + 𝑐4
6!

Γ(
9

2
)

𝑡
7

2 + 𝑎5
5!

Γ(
9

2
)

𝑡
7

2 + 𝑏2
5!

Γ(
9

2
)

𝑡
7

2 =0 ,                                              (24)     

𝑎4𝑡4 = 0,                                                                                                           (25)     

And so on , by solving this system when 𝑦(0) =y'(0)=1, we get : 𝑎0 =  𝑎1 = 1 , 

From equation (19), we get 𝑏1 = 1, 

From equation (17), we get 𝑐1 = 1, 

From equation (25), we get 𝑎4 = 0, 

From equation (18) we get 𝑎2 = 0, 

From equation (21) we get 𝑐3 = 0, and so on, 

by putting these outputs in (16),we can obtain the exact solution : 

                               𝑦(𝑡) = 𝑡
5

2 + 𝑡
3

2 + 𝑡 + 1 . 

 

Example 3.2: Consider the equation  

𝑦
3

2(𝑡) −
3√𝜋

8
𝑡

1

2𝑦
1

2(𝑡) + 𝑦 = 
4

√𝜋
𝑡

1

2 + 1,                                                                         (26)  

with the exact solution  𝑦 = 𝑡2 + 1 , and our hypothesis is  

𝑦 = ∑ 𝑐𝑛𝑡
3𝑛

2 +  ∑ 𝑏𝑛𝑡𝑛∞
𝑛=0

∞
𝑛=0                                                                                      (27) 

To apply our method we must compute the derivatives 𝑦
3

2 , 𝑦
1

2 , so,  

𝐷∗

3

2 𝑦(𝑡) =  ∑ 𝑐𝑛

Γ(
3𝑛

2
+1)

Γ(
3𝑛

2
−

3

2
+1)

𝑡
3𝑛

2
−

3

2∞
𝑛=0 + ∑ 𝑏𝑛

Γ(𝑛+1)

Γ(𝑛−
3

2
+1)

𝑡𝑛−
3

2∞
𝑛=0 ,                                     (28) 

𝐷∗

1

2 𝑦(𝑡) =  ∑ 𝑐𝑛

Γ(
3𝑛

2
+1)

Γ(
3𝑛

2
−

1

2
+1)

𝑡
3𝑛

2
−

1

2∞
𝑛=0 +  ∑ 𝑏𝑛

Γ(𝑛+1)

Γ(𝑛−
1

2
+1)

𝑡𝑛−
1

2∞
𝑛=0 ,                                    (29) 
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By substituting (27), (28) and (29) in (26) , satisfying  

∑ 𝑐𝑛

Γ(
3𝑛

2
+1)

Γ(
3𝑛

2
−

3

2
+1)

𝑡
3𝑛

2
−

3

2∞
𝑛=0 + ∑ 𝑏𝑛

Γ(𝑛+1)

Γ(𝑛−
3

2
+1)

𝑡𝑛−
3

2∞
𝑛=0  – 

3√𝜋

8
𝑡

1

2 (∑ 𝑐𝑛

Γ(
3𝑛

2
+1)

Γ(
3𝑛

2
−

1

2
+1)

𝑡
3𝑛

2
−

1

2∞
𝑛=0 +  ∑ 𝑏𝑛

Γ(𝑛+1)

Γ(𝑛−
1

2
+1)

𝑡𝑛−
1

2∞
𝑛=0 ) + 

  ∑ 𝑐𝑛𝑡
3𝑛

2 + ∑ 𝑏𝑛𝑡𝑛∞
𝑛=0

∞
𝑛=0  =   

4

√𝜋
𝑡

1

2 + 1 ,  

For 𝑛 = 0,1,2,3, …,  with 𝑡 ≥ 0, we obtain : 

 𝑐1Γ (
5

2
) + 𝑐2

Γ(4)

Γ(
5

2
)

𝑡
3

2 + 𝑐3

Γ(
11

2
)

Γ(4)
𝑡3 + 0 + 𝑏2

2

Γ(
3

2
)

𝑡
1

2 + 𝑏3
Γ(4)

Γ(
5

2
)

𝑡
3

2 −
3√𝜋

8
𝑡

1

2 [(𝑐1Γ (
5

2
) 𝑡 +

𝑐2
Γ(4)

Γ(
7

2
)

𝑡
5

2 + 𝑐3

Γ(
11

2
)

Γ(5)
𝑡4) + (𝑏1

1

Γ(
3

2
)

𝑡
1

2 + 𝑏2
2

Γ(
5

2
)

𝑡
3

2 + 𝑏3
Γ(4)

Γ(
7

2
)

𝑡
5

2)] + 

𝑐0 + 𝑐1𝑡
3

2 + 𝑐2𝑡3 +  𝑐3𝑡
9

2 + 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + b3t3 =  
4

√𝜋
𝑡

1

2 + 1 , 

So, we can get the Coefficients: 

𝑏2
2

√π

2

 =
4

√π
 , 𝑏2 = 1,  and  

𝑐1Γ (
7

2
) + 𝑐1 = 0, 𝑐1 = 0 ,  led to 𝑐2 = 𝑐3 =  𝑏1 = 𝑏3 = 0 

𝑐1Γ (
5

2
) + c0 + b0 = 1 , led to  𝑐1 = 0 , 𝑐0 = 𝑏0 =

1

2
,  

Finally, putting these values into the equation (27), we reach to the exact solution: 𝑦 = 𝑡2 + 1. 

4. Bagley-Torvik Equation 

4.1. The Origin of Bagley-Torvik Equation 

Bagley and Torvik (1984), found that the fractional calculus can be identified in the solution to 

a classic problem in the motion of viscous fluids, and they showed that the resulting shear stress 

at any point in the fluid can be expressed by fractional order time derivative of the fluid velocity 

profile. Thus, the fractional derivative is found to apply in the differential equation that 

describes the motion of some physical systems defined by localized motion in a viscous fluid, 

when they applied their work they arrived at the surprising result. Starting with the diffusion 

equation, 
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𝛼
𝜕𝑣

𝜕𝑡
=  𝜇

𝜕2𝑣

𝜕𝑧2
 

Where 𝛼 is the fluid density, 𝜇 is the viscosity of time t, z is the distance from the (wetted plate), 

after that, they found that the differential equation to describe the displacement 𝑋 on the plate 

is: 

𝑚�̈� =  𝐹𝑥 =  −𝐺𝑋 − 2𝐴 𝛿(𝑡, 0), 

(They considered a rigid plate of mass 𝑚 immersed in a Newtonian fluid of infinite extent and 

connected by a massless spring of stiffness 𝐺 to a fixed point) 

Finally, 

𝑚
𝑑2𝑥

𝑑𝑡2 + 2𝐴√𝜇𝛼𝐷𝑡

3
2⁄

𝑋 + 𝐺𝑋 = 0, 

Where, 

𝐷
3

2⁄ 𝑋 = 𝐷
1

2⁄ 𝑑𝑥

𝑑𝑡
= 

𝑑

𝑑𝑡
𝐷

1
2⁄  𝑋 . (more details can be found in [10]). 

 

4.2. Solution of Certain Forms of Bagley –Torvik Equation  

In this section, we use our method to solve three special cases of Bagley – Torvik equation and 

extract the exact solution. The general form of nonhomogeneous Bagley-Torvik equation is [9]: 

𝐴𝐷∗
2 𝑦(𝑡) + 𝐵𝐷∗

3

2𝑦(𝑡) + 𝐶𝑦(𝑡) = 𝑓(𝑡) ,      (𝑡 ≥ 0)                                         (30) 

With the initial conditions  𝑦(0) = 0 , 𝑦′(0) = 1 , and 𝐴 = 𝐵 = 𝐶 = 1. 

Example 4.1: 

Consider the nonhomogeneous Bagley-Torvik equation: 

𝐷∗
2 𝑦(𝑡) + 𝐷∗

3

2𝑦(𝑡) + 𝑦(𝑡) = 𝑡2 + 4√
𝑡

𝜋
+ 2 , (𝑡 ≥ 0)                                   (31)    

With the initial conditions,𝑦(0) = 0 , 𝑦(5) =25. 

Where the exact solution is  𝑦(𝑡) = 𝑡2,   

Since the series form  ∑ 𝑐𝑛 𝑡
3𝑛

2∞
𝑛=0  , is not applicable because we cannot get a form 𝑡

1

2 , so we 

suppose the series mixed form or in the form: 

𝑦 = ∑ 𝑏𝑛𝑡𝑛∞
𝑛=0  ,                                                              (32)   
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In order to apply our method, we must compute the functions 𝑦′, 𝑦′′, 𝑦
3

2  ,to complete the 

fractional power series. So,   

  𝑦′ =  ∑ 𝑏𝑛𝑛 𝑡𝑛−1∞
𝑛=0  

𝑦′′ =  ∑ 𝑏𝑛𝑛(𝑛 − 1) 𝑡𝑛−2∞
𝑛=0                                             (33) 

𝑦
3

2 =  ∑ 𝑏𝑛
Γ(𝑛+1)

Γ(𝑛−
3

2
+1)

𝑡𝑛−
3

2∞
𝑛=2 .                                                (34) 

To get the solution of equations (31), substitute the expansion formulas of equations (32),(33) 

and (34) into (31), getting : 

∑ 𝑏𝑛𝑛(𝑛 − 1)𝑡𝑛−2∞
𝑛=0 + ∑ 𝑏𝑛

Γ(𝑛+1)

Γ(𝑛−
3

2
+1)

𝑡𝑛−
3

2∞
𝑛=2 +∑ 𝑏𝑛𝑡𝑛∞

𝑛=0 = 𝑡2 + 4√
𝑡

𝜋
+ 2.                 (35) 

For 𝑛 = 0,1,2,3, …, getting the values of the constants: 

2𝑏2 + 𝑏0 = 2 ,        (Scalar value) 

𝑏2
Γ(3)

Γ(
3

2
)

=
4

√𝜋
,           (Coefficient of 𝑡

1

2 ) 

12𝑏4 + 𝑏2 = 1,      (Coefficient of 𝑡2 ) 

So, 𝑏2 = 1, and the remaining Coefficient are zeros , by substituting all the outputs  in (32), 

getting: 

𝑦 =  ∑ 𝑏𝑛𝑡𝑛∞
𝑛=0  = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3+𝑏4𝑡4, … , 

We can easily obtain the exact solution  𝑦(𝑡) = 𝑡2 . If we see the same example in [2] and make 

a comparison between the results, we will obtain the same results.  

 

Example 4.2: 

Now if we solve the nonhomogeneous Bagley-Torvik equation: 

𝐷∗
2 𝑦(𝑡) + 𝐷∗

3

2𝑦(𝑡) + 𝑦(𝑡) =  7𝑡 +  
8

√𝜋
𝑡3 + 1 , (𝑡 ≥ 0)                                            (36)    

With the initial conditions,𝑦(0) =1 ,  𝑦′(0) =1 . 

Where the exact solution is  𝑦(𝑡) = 𝑡3 + 𝑡 + 1,   

If we use the same steps in example (5.1) to solve equation (36), and use the same hypothesis 

𝑦 = ∑ 𝑐𝑛 𝑡
3𝑛

2 +  ∑ 𝑏𝑛𝑡𝑛∞
𝑛=0

∞
𝑛=0 , we will get the following results : 

2𝑐2𝑡 +  6𝑏3𝑡 + 𝑏1𝑡 = 1 , 
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𝑐2
6

Γ(
5

2
)

𝑡
3

2 + 𝑏3
6

Γ(
5

2
)

𝑡
3

2 + 𝑐1𝑡
3

2 =  
8

√𝜋
𝑡

3

2 , 

𝑐3

Γ(
11

6
)

6
𝑡3 +  𝑐2𝑡3 +  𝑏3𝑡3 = 𝑡3 , 

2𝑏2 + 𝑐1Γ (
5

2
) + 𝑐0 + 𝑏0 =1 , 

63

4
𝑐3𝑡

5

2 + 𝑏4
24

Γ(
7

2
)

𝑡
5

2 = 0, 

12 𝑏4𝑡2 +  𝑏2𝑡2 = 0 , 

𝑏4𝑡4 =0 , 

𝑐3𝑡
9

2 = 0 . 

By identifying the coefficients, we can obtain the following: 

𝑐1 = 𝑐3 = 𝑏2 = 0 and 𝑏1 = 1 , whereas 𝑐0 = 𝑏0 =  𝑐2 = 𝑏3 =
1

2
 . 

Finally, we obtain the solution of y(t) . 

𝑦(𝑡) = 𝑐0  + 𝑐1𝑡
3

2 + 𝑐2𝑡3+ 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3, 

         = 
1

2
+ 0 +

1

2
𝑡3 +

1

2
+ 𝑡 + 0 +

1

2
𝑡3 , 

Consequently, 𝑦(𝑡) = 1 + 𝑡3 + 𝑡. 

Return to reference [15], this equation has solved by fractional  iteration method (VIM), for 

comparing the results in our example and the same example in [15].  We obtained the same 

results.  

 

Example 4.3: Consider the nonhomogeneous  Bagley-Torvik equation : 

𝐷∗
2 𝑦(𝑡) + 𝐷∗

3

2𝑦(𝑡) + 𝑦(𝑡) =  𝑡 + 1 (𝑡 ≥ 0),                                                (37)    

With the initial condition 𝑦(0) = 1, 𝑦′ (0)=1, 

Whereas the exact solution  𝑦(𝑡) = 𝑡 + 1. 

To solve equation (37) by our method, we can use the hypotheses 𝑦 = ∑ 𝑐𝑛 𝑡
3𝑛

2 +∞
𝑛=0

∑ 𝑏𝑛𝑡𝑛∞
𝑛=0 , 

to get the same results. If we follow the same steps as the previous example, we can obtain the 

solution   𝑦(𝑡) = 𝑡 + 1.  
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Returning to example 2 in reference [9], we can see that they solved this example by 

(Applying generalized differential transform) and obtained the same results. 

In general, we can prove that our method can applied on most of these kinds of equations, as in 

the applicable examples above.  

Conclusion 

A new method for solving fractional initial value problems of different fractional orders 

(𝐷
3

2, 𝐷
5

2 ) has been applied, by using mixed power and fractional series solution. The usefulness 

of this method is to get the exact solution of Bagley-Torvik equation and other 

nonhomogeneous fractional differential equations. Consequently, we proved that the results we 

obtained were very accurate as the results in the references [2], [9]and [15], by applying our 

new method to the same examples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.24237/djps.1402.385C


 

   

                    Solving Fractional Initial Value Problems by Using Hybrid Series  

                       Saad Naji Al-Azzawi, Ronak Bagelany and Ahmed Murshed  

 

119 Vol: 14 No:2, April 2018 

DOI: http://dx.doi.org/10.24237/djps.1402.385C 
 

     P-ISSN: 2222-8373 

     E-ISSN: 2518-9255   

 

References 

1. Mohammadi F., Mohyud-DinS. T., (2016), “A fractional-order Legendre collocation method 

for solving the Bagley-Torvik equations”, Advances in Difference Equations , Springer, ,pp. 3-

10. 

2. Mohammadi F., (2014), “Numerical solution of Bagley-Torvik equation using Chebyshev 

wavelet operational matrix of fractional derivative”,Int. J. Adv. Appl. Math. ,vol. 2, no. 1,pp.  

83-87. 

3. Ishteva M. K., M.Sc. Thesis ,(2015), "Properties and Applications of the Caputo Fractional 

Operator", University of Karlsruhe (TH), (Bulgaria), pp. 9-20. 

4. Gorenflo R., Mainardi F.,(1997), " FRACTIONAL CALCULUS : Integral and  differential 

Equations of Fractional Order",  International Centre for Mechanical Sciences, Springer 

Vienna,vol.378, pp. 230-240. 

5. Mladenov V., Mastorakis N., (2014)," Advanced Topics on Applications of Fractional Calculus 

on Control Problems, System Stability and Modeling", World Scientific and Engineering 

Academy and Society, p. 4-15. 

6. Wei H. M., Zhong X. C., Huang Q. A., (2016), "Uniqueness and approximation of solution for 

fractional Bagley–Torvik equations with variable coefficients." International Journal of 

Computer Mathematics ,pp. 1-6. 

7. Xu, F., Gao, Y., Yang, X., Zhang, H., (2016)," Construction of fractional power series solutions 

to fractional Boussinesq equations using residual power series method", Mathematical 

Problems in Engineering, Hindawi Publishing Corporation, pp.3-6. 

8. El-Ajou, A., Arqub, O. A., Zhour, Z. A., Momani, S. , (2013)," New results on fractional power 

series: theories and applications". Entropy, vol. 15 no. 12, pp. 5305-5323. 

9. Bansal M. K., Jain R.,(2016) "Analytical solution of Bagley Torvik Equation by Generalize 

Differential Transform", International Journal of Pure and Applied Mathematics ,vol.110, 

no.2,pp. 266-272. 

10. Bagley R. L., Torvik P. J., (1984), "On the appearance of the fractional derivative in the 

behavior of real materials" , Journal of Applied Mechanics, vol.51, no.2, pp. 295-297. 

http://dx.doi.org/10.24237/djps.1402.385C
https://link.springer.com/bookseries/76


 

   

                    Solving Fractional Initial Value Problems by Using Hybrid Series  

                       Saad Naji Al-Azzawi, Ronak Bagelany and Ahmed Murshed  

 

120 Vol: 14 No:2, April 2018 

DOI: http://dx.doi.org/10.24237/djps.1402.385C 
 

     P-ISSN: 2222-8373 

     E-ISSN: 2518-9255   

11. Öğrekçi S.,(2015), "Generalized Taylor series method for solving nonlinear fractional 

differential equations with modified Riemann-Liouville derivative" Advances in Mathematical 

Physics, Hindawi Publishing Corporation, vol. 2015,pp.1-4 . 

12. Labecca, W., Osvaldo G., José R., Piqueira C.,(2015), "Analytical solution of general Bagley-

Torvik equation" Mathematical Problems in Engineering, Hindawi Publishing Corporation, 

vol.  2015, pp. 1-3. 

13. Raja, M. A. Z., Junaid  A. K., Ijaz M. Q.,(2011), "Solution of fractional order system of Bagley-

Torvik equation using evolutionary computational intelligence" Mathematical Problems in 

Engineering , Hindawi Publishing Corporation,vol.2011 ,pp. 1-6. 

14. Yan, T., Shuanghua L., (2016), "Local polynomial smoother for solving Bagley-Torvik 

fractional differential equations", School of Mathematics and Statistics, China, pp. 1-2. 

15. Mekkaoui T., Hammouch Z., (2012),"Approximate analytical solutions to the Bagley-Torvik 

equation by the fractional iteration method" Annals of the University of Craiova-Mathematics 

and Computer Science Series ,vol.39,no.2, pp. 251-254. 

16. Diethelm K., Ford J.,(2002), "Numerical solution of the Bagley-Torvik equation" BIT 

Numerical Mathematics ,vol.42,no.3,pp. 490-507. 

17. Wei H. M., Zhong X. C., Huang Q. A.,(2016), "Uniqueness and approximation of solution for 

fractional Bagley–Torvik equations with variable coefficients", International Journal of 

Computer Mathematics ,pp. 1-15. 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.24237/djps.1402.385C

