

Noor Sabah Al-Obaidi

Synthesis, Characterization and Studying Liquid Crystalline Properties of Some Azo - Schiff base Compounds Derivatives

Noor Sabah Al-Obaidi

Department of Chemistry- College of Science- University of Diyala

noorsabah@sciences.uodiyala.edu.iq

Received: 1 October 2017

Accepted: 28 December 2017

Abstract

Four azo-Schiff base liquid crystalline compounds with different polar groups named (A_1S , A_2S , A_3S , A_4S) have been synthesized and their structures were characterized by using (FTIR) spectrometry technique the peaks in the infrared spectrum matched the literature in diagnosing the functional groups while their liquid crystalline phase transition and temperature range was confirmed by differential scanning calometery (DSC) which indicate the presence of liquid crystalline phases, The textures of the synthesized liquid crystalline compounds were performed using polarized optical microscope which show a nematic phases in the (A_1S) and (A_3S) compounds .

Key word: Azo, Schiff base, Liquid crystal

Noor Sabah Al-Obaidi

تحضير و تشخيص و دراسة الخصائص البلورية السائلة لبعض مشتقات مركبات الأزو و قواعد شف

نور صباح العبيدي

قسم الكيمياء - كلية العلوم - جامعة ديالي

الخلاصة

تم تحضير أربع مشتقات من مركبات آيزو - قواعد شف (A1S, A2S, A3S, A4S) البلورية السائلة ذات مجاميع قطبية مختلفة وتم تشخيصها باستخدام تقنية طيف الأشعة تحت الحمراء و وجدت القمم في طيف الأشعة تحت الحمراء تتطابق مع الأدبيات في تشخيص المجاميع الفعالة، في حين تم التأكد من ظهور الأطوار البلورية السائلة عند درجات الحرارة المختلفة عن طريق القياس التفاضلي كالوميتري و التي تشير إلى وجود إنتقالات بلورية سائلة، تم التأكد من ظهور الحالة البلورية السائلة باستخدام المجهر الضوئي المستقطب حيث أظهرت المركبات (A1S) و (A3S) الطور النيماتي.

الكلمات المفتاحية : الأزو ، قواعد شف ، البلورات السائلة. DIYALA Introduction

Liquid crystals are an intermediate state (Mesophase) [1], were discovered in the 1888, by Australian botanist Friedrich Reinitzer recorded the phase-transition temperatures of cholesteryl benzoate, which turns a milky white at 145.5°C and transparent at 178.5°C and he considered the possibility that a phase intermediate between that of the isotropic liquid and crystalline solid could exist [2], the azobenzene, Schiff bases compounds are very interesting materials because of rich liquid-crystalline polymorphism such type of molecules with azo moiety are well known in literature [3, 4], Azo compounds have been almost importance in many miscellaneous application areas such as in the textile, paper, coloring agents for foods and cosmetics industries its reversible optical storage, nonlinear optical (NLO) devices and liquid crystalline displays (LCDs) [5], recently a homologous series of mesogenic azo compounds containing three rings in the main core and substituted with aromatic or hydroxyl groups on the central benzene nucleus was reported [6, 7], the optic axis of azobenzene groups becomes aligned perpendicular to the electric field vector of polarized light. Inert mesogens undergo alignment together with the azobenzene groups for cooperative motion [8] Liquid

Noor Sabah Al-Obaidi

crystals (LC) have been most extensively used as display materials. Successful applications of the LC display for calculators, sentences display, word processors, and full-color TV display **[9]**.

Experimental

Synthesis of azo Schiff base liquid crystalline compounds, Scheme (1) show the general structure of the studied compounds.

-Ċ-CH2-CH2-CH2-Ċ=N

R: COOH, COCH₃, Br and NO₂

Scheme 1: The general structure of the synthesized azo Schiff base compounds

In the first step was synthesis a diazonium salts by four different primary amines, (0.002 mole) of (Na_2CO_3) in (12 ml) of distilled water and then addition of (0.005 mole) from the primary amine such as (*P*-amino benzoic acid) and heating until it dissolve completely, then after filtration and cooling using ice bath $(0-5^{\circ}C)$ we add (0.005 mole) of $(NaNO_2)$ and stirring and by adding (1.25 ml) of HCl drop wise the good yields at (83%-91%), of aniline (0.0057 mole) and glacial acetic acid (0,5 ml) was added to the diazonium salt prepared in the first step as a drops with continuous stirring and cooling for 15 min and precipitate which differ in colour for different primary amines and then by adding (7.5 ml) from 10% NaOH and checking by using pH paper until the solution become a basic, then we add NaCl and filtering the produced solution which kept for 24 hours, the precipitate was then collected which represents the target amino azo benzene as given in Scheme (2).

SUBJECT COLLEGES

Synthesis, Characterization and Studying Liquid Crystalline properties of Some Azo - Schiff base Compounds Derivatives

Noor Sabah Al-Obaidi

R: COOH, COCH₃, Br, NO₂

Scheme 2: Synthesis root for the diazonium salts

The second step consist of the condensation reaction for amino azo benzene that is synthesized in the first step with the glutaraldehyde, In (250 ml) round bottom, put (0.01 mole) of glutaraldehyde dissolved in (10 ml) from absolute ethanol, then by adding (0.02 mole) from the amino azo benzene dye dissolved in (10 ml) absolute ethanol with three drops of glacial acetic acid and reflux the mixture with stirring for 4hr, the process of the reaction was followed by a thin layer chromatography technique and to ensure the purity of the produc the precipitate was collected, then after filtration and drying the product was recrystallized two times from ethanol to get the azo Schiff base compounds as shown in Scheme (3).

R: COOH, COCH₃, Br, NO₂

Scheme 3: Synthesis root for azo Schiff base compounds

DIVAL TRYVERSITY CULLEG OF

Synthesis, Characterization and Studying Liquid Crystalline properties of Some Azo - Schiff base Compounds Derivatives

Noor Sabah Al-Obaidi

Results and Discussion

Characterization by FT-IR spectroscopy

All the synthesized azo dyes and azo Schiff base compounds were characterized by using Berkin Elmer FT-IR, The spectrum of (A₁S) showed an absorption band at (3407 cm⁻¹) attributed to phenolic (O–H), the strong intensity band occurring at (1679 cm⁻¹) assignable to v(C=N) of the azomethine, while (N=N) appeared at (1493 cm⁻¹), absorption bands for (C–H, aromatic), (C–H, aliphatic) and (C=C, aromatic) were recorded at (3063cm⁻¹, 2946-2866cm⁻¹ and 1592cm⁻¹) respectively [10], the IR spectrum for one azo dye sample (A₁) and one azo Schiff base compound (A₁S) was given in figure(1) and figure (2) respectively.

Figure 1: IR spectrum for azo dye sample A₁

Noor Sabah Al-Obaidi

Figure 2: IR spectrum for azo Schiff base sample A1S

Compound	N-H	C-H st.	C=C	-N=N-	Other	
	st.	aromatic	aromatic	E AF C	specific bands	
A ₁	3400	3188	1588	1504	O-H	3480
	3371		JULLU	1478	C=O	1704
A_2	3445	3120	1528	1509	C-H	2958
1A	3403				aliphatic	S
A ₃	3440	3095	1572	1511	C-Br	654
L.	3385				18	St.
A4	3444	3083	1543	1504		
	3408				Nº 30	

Table 1: important functional groups in Azo dyes samples

Table 2: Important functional groups in Azo-Schiff base samples

C-H st.	C-H st.	C=N	C=C	-N=N-	Other					
aromatic	aliphatic	st.	aromatic		specific bands					
3063	2946	1679	1592	1493	O-H	3407				
	2866				C=O	1716				
3080	2944	1657	1574	1504						
	2854									
3074	2951	1642	1578	1498	C-Br	664				
	2863									
3066	2948	1649	1559	1508						
	2861				-					
	C-H st. aromatic 3063 3080 3074 3066	C-H st. aromatic C-H st. aliphatic 3063 2946 2866 2866 3080 2944 2854 2854 3074 2951 2863 2948 2861 2861	C-H st. aromatic C-H st. aliphatic C=N st. 3063 2946 1679 2866 - - 3080 2944 1657 2854 - - 3074 2951 1642 2863 - - 3066 2948 1649	C-H st. aromatic C-H st. aliphatic C=N st. st. aromatic C=C aromatic 3063 2946 1679 1592 2866 - - 3080 2944 1657 1574 2854 - - - 3074 2951 1642 1578 2863 - - - 3066 2948 1649 1559 2861 - - -	C-H st. aromatic C-H st. aliphatic C=N st. st. 2866 C=C aromatic -N=N- aromatic 3063 2946 1679 1592 1493 2866 1679 1592 1493 3080 2944 1657 1574 1504 3074 2951 1642 1578 1498 3066 2948 1649 1559 1508	C-H st. aromatic C-H st. aliphatic C=N st. st. aromatic C=C aromatic -N=N- specific specific rectified Ot specific specified 3063 2946 1679 1592 1493 O-H C=O 3080 2944 1657 1574 1504				

DIVALA ENVERSIT

Synthesis, Characterization and Studying Liquid Crystalline properties of Some Azo - Schiff base Compounds Derivatives

Noor Sabah Al-Obaidi

Differential scanning calorimetery DSC

The phase transition temperature of the synthesized Azo-Schiff base compounds were confirmed using (DSC) technique which indicate liquid crystalline transition from solid to nematic liquid crystal and then to isotropic liquid in the (A_1S) and (A_3S) compounds as given in fig.(3), fig.(4), respectively.

Noor Sabah Al-Obaidi

Figure 4: DSC for liquid crystalline compound A₃S

Polarized optical microscope

The textures of the samples in this research were investigated through hot stage Polarizing microscope model (LEICA DM 2500 P) with Digital Camera, in the laboratory service in the Ibn al-Haytham College of Education in which the temperature was measured by a digital thermometer with a thermocouple just in contact with the glass of the cell, the make clear nematic phase of the prepared compounds (A_1S, A_3S) may be interpreted on the basis that increase in temperature during the heating causing increases the particle 's energy and thus lead to overcome the attractive forces between molecules , which allows it to arrange themselves depending on the interactions and the new forces causing to be the order of molecules is as parallel within the same level, between classes and thus encourage the emergence of nematic phase [11], figures (5), (6), (7) and (8) show the textures of the prepared compounds samples respectively ,

Noor Sabah Al-Obaidi

Figure 5: Nematic texture sample image of (A₁S) compound

Figure 6: Non-liquid crystal sample image of (A₂S) compound

Noor Sabah Al-Obaidi

Figure 7: Nematic texture sample image of (A₃S) compound

Figure 8: Non-liquid crystal sample image of (A₄S) compound

Conclusion

The synthesized azo – Schiff base compounds with four Compensations group show a clear liquid crystalline phases and some of them show a polymorphism behavior with an excellent color due to the presence of an azo group that is responsible for the absorption of light, the synthesized azo Schiff base compounds mostly show the more stable trans confirmation feature and this will make them exhibit the required linearity for mesophase formation, the appearance of liquid crystalline phases was strongly affected by the different polar groups such as (COOH, Br, NO₂, CO-CH₃) that is present which consequently enhance dipole-dipole interaction or dispersion forces that is responsible for mesophase formation .

Diyala Journal For Pure Sciences

Synthesis, Characterization and Studying Liquid Crystalline properties of Some Azo - Schiff base Compounds Derivatives

Noor Sabah Al-Obaidi

References

- 1. G.Pcarawford, "Liquid Crystal"; Colby-sawyer College New London, (2005), Ch. 1, P,1-2.
- 2. P. J. Collings and M. Hird. Introduction to Liquid Crystals. Taylor & Francis, London, (1997).
- 3. C-a.Yang, H. Xie, S. Chen, H. Zhang, Synthesis and phase structures of combined mainchain/side-chain liquid crystalline polymers with different-number azobenzene moiety in the side-chain based on mesogenjacketed liquid crystalline polymers. Liq Cryst. (2013), Vol.40, P.11.
- **4.** JS. Dave, PR. Patel, Influence of molecular structure on liquid crystalline properties and phase transitions in these structures, part II. Mol Cryst Liq Cryst. (1966), Vol.2, P.115–123.
- D. Bauman, A Plociennik. and K. Inglot, Molecular Interactions in Monolayers of Azo Dye/Liquid Crystal Mixtures at Interfaces, Acta Physica Polonica A,(2009) Vol. 116.
- R.A. Vora, A.K. Prajapati, Azomesogens with 1,2,4 trisubstituted benzene moiety. Bull. Mater. Sci. (2002), Vol. 25, P 355-358.
- A.K. Prajapati, H.M. Pandya, N.L. Bonde, Naphthyl azomezogens with lateral chloro groups. J. Chem. Sci. (2004), 116, 227-233.
- 8. Ruslim and Ichimura, Macromolecules, (1999) Vol. 32, P 4254
- 9. T. Ikeda, H. Shin, K. Durga, K. Seiji, T. Shigeo, Macromolecules, (1990) P 23, 36.
- 10. R. M Silverstein, G. C. Bassler and T. C. Morril, "Spectrometric identification of Organic Compound " 4th Ed; , JhonWilyey and Sons . New York , (1981).
- 11. D.Demus, J.Goodby, G.w.Gray, H.W.Spiess, and V.Vill, "Handbook of Liquid Crystals", Wiley VCH, (1998).

