

Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Science

Smartphone Authentication Based on Iris Recognition

A Research

Submitted to the Department of Computer Science\ College of Sciences\ University of Diyala in a Partial Fulfillment of the Requirements for the Degree of Master in Computer Science

Вy

Rana Jassím Mohammed

Supervised By

Dr. Taha M. Hassan Assistant Professor Naji M. Sahib

Assistant Professor

2018 A.D.

1439A.H.

مِسْمِ ٱللَّهِ ٱلرَّحِيمِ ﴿ قُلْ عُمَرَ الَّذِي أَنْشَأَكُمْ وَجَعَلَ لَكُمُ السَّمْعَ وَالْأَبْحَارَ وَالْأَفْنِدَةَ قَلِيلاً مَا تَشْكُرُونَ 33 قُلْ لَمُوَ الَّذِي ذَرَأَكُمْ فِي الْأَرْض وَإِلَيْهِ تَحْشَرُونَ 24 حَدِي ٱللَّهُ الْعَظيم سورة الملك

أياب (24-23)

Dedication

То...

My family

My dear parents

My dear husband

My children Safa & Abdallah

All our distinguished teachers those who paved the way for our science and knowledge

Rana Jassim Mohammed

Acknowledgment

First of all, praise is to **GOD**, the lord of the whole creation, on all the blessing was the help in achieving this research to its end.

I wish to express my thanks to my supervisors, Asst. Prof. Dr. Taha Mohammad Hassan and Asst. prof. Naji Mutar Sahib for supervising this research and for the generosity, patience and continuous guidance throughout the work. It has been my good fortune to have the advice and guidance from them. My thanks to the academic and administrative staff at the Department of the computer sciences.

I would like to express my gratitude to **my father**, **my mother**, **my sister** and **my brothers** who were unlimited support and patience.

Finally, there are no words enough to thank **my dear husband** for being supportive and believing in me all the time and his encouragement during the period of my study. Praise be to God Who helped me and gave me the ability and power to perform and complete my thesis.

I wish to express my thanks to MICHE (Mobile Iris Challenge Evolution) Group.

RANA - TASSIM

Linguistic Certification

I certify that this research entitled "Smartphone Authentication Based on Iris Recognition" was prepared by Rana Jassim Mohammed and was reviewed linguistically. Its language was amended to meet the style of English language.

Signature : 5 a rab

: Assist.Prof. Dr. Sarab Kadir Mugair

Name

Date

20/1/2019

Supervisor's Certification

We certify that this research entitled "Smartphone Authentication Based on Iris Recognition" was prepared by Rana Jassim Mohammed under our supervisions at the University of Diyala Faculty of Science Department of Computer Science, as a partial fulfillment of the requirements needed to award the degree of Master of Science in Computer Science.

(Supervisor)

Signature :

Name: Assist. Prof. Dr. Taha M. Hassan Date : 20/ 1 / 2019

(Supervisor)

Signature :

Name : Assist. Prof. Naji M. Sahib Date 32/ 1/2019

Approved by University of a Diyala Faculty of Science Department of Computer Science.

Signature:

Name : Assist. Prof. Dr. Taha M. Hassan Date : 20/ 1 / 2019

(Head of Computer Science Department)

Examination Committee Certification

We certify that we have read this research entitled "Smartphone Authentication Based on Iris Recognition", and as an examining committee, examined the student "Rana Jassim Mohammed" in its contents and that in our opinion, it is adequate as fulfill the requirements for the Degree of Master in Computer Science at the Computer Science Department, University of Diyala.

(Chairman)

Ayad Al My

Signature: Mydd A. Al-Ani Name: Prof. Dr. Ayad A. Al-Ani Date: 224 1/2019

(Member)

(Member)

Signature: Name: Assist. Prof. Dr. Salam A. Noaman Date: 21/1/2019 Signature: Name: Dr. Jumana W. Saleh Date: : 71/1/2019

(Member / Supervisor)

Signature: Name:Assist. Prof. Dr. Taha M. Hassan Date:2/1/2019

(Member/Supervisor)

Signature: Name: Assist. Prof. Naji M. Sahib Date:21/1/2019

Approved by the Dean of College of Science, University of Diyala.

(The Dean)

79thrown

Abstract

The widespread use of smartphones with internet connectivity has resulted in the storage of sensitive data. This has heightened the need to perform reliable user authentication on smartphones in order to prevent an adversary from accessing such data.

Biometric systems are getting further attention in the field of mobiles Security. Iris recognition is one of the fast, accurate, reliable and secure biometric techniques for human identification and verification. It provides automatic authentication of an individual based on characteristics and unique features in iris structure.

In this thesis, we build an efficient iris recognition system (IRS) in smartphones environment in order to decrease the error rate in the identification and verification process and obtain high recognition rate. This system consists of five main stages aiming to build an efficient IRS, the stages of the system are: (1) Picking up the iris patterns, (2) Locating the iris boundaries, (3)Transforming the iris boundaries to the polar coordinate system, (4) Features extraction, and (5) Pattern matching.

The proposed system uses a new method of circular histogram to find initial center of the iris in noisy images . In iris segmentation stage uses circular distribution of angles to segmented iris, for feature extraction uses three methods: (1)Color Histogram (CH), (2) Hu moments (HMs) and (3) Zernike moments (ZMs) to extract features and represent those features as numeric vectors stored in database so that they can be used in pattern matching stage and achieve high matching rate. Pattern matching stage uses (K Nearest Neighbor (KNN)) to find the similarity degree between the two irises, one is the tested iris template and the other stored in the database. The proposed system has been tested by using MICHE -I (Galaxy S4) dataset has been registered 85% segmentation accuracy. The results indicate that the proposed system has high average accuracy rate compared to other existing methods where it (80%) average accuracy rate using (MICHE GS4) with ZMs, (78.6%) average accuracy rate with Color Histogram feature , and (50.5%) average accuracy rate with HMs.

Contents

	Contents			
	Chapter One: General Introduction	1-14		
1.1	Introduction	1		
1.2	Biometrics	3		
1.3	Iris Recognition	5		
1.4	Related Works	7		
1.5	Problem Statement	11		
1.6	Aim of The Thesis	13		
1.7	Thesis Organization	13-14		
	Chapter Two: Theoretical Background	15-46		
2.1	Introduction	15		
2.2	Biometrics in Mobile Systems	15-16		
2.3	Biometric Authentication	17		
2.4	Operational Modes of Biometric System	18		
2.4.1	Enrollment Mode	18		
2.4.2	Authentication Mode	18		
2.5	Measures of Biometrics System Performance	20		
2.6	The human eye structure	22		
2.7	The Iris of the Human Eye	23		
2.8	Iris Recognition	24		
2.9	Iris Image Database	26		
2.10	Iris Recognition system	27		
2.10.1	Image Acquisition	28		
2.10.2	Image Preprocessing	29		
	A. Contrast Stretching	29		
	B. Grayscale Image	30		
	C. Image histogram	30		
	D. Image Thresholding	31		
2.10.3	Iris Segmentation	32		
2.10.4	Iris Normalization	34		
	A. Introduction to Circular Normal Distribution	34		
	B. Image Enhancement with Histogram	36		

	Equalization	
	C. Canny Edge Detector (CED)	37
2.10.5	Feature Extraction	39
	1. Hu' Seven Moments	40
	2. Zernike Moment	42
2.10.6	Iris Matching	44
	A. Euclidean Distance	45
	B. K Nearest Neighbor (KNN)	45-46
	Chapter Three : The Proposed Iris Recognition	47-80
	System	
3.1	Introduction	47
3.2	Proposed System Framework	47
3.3	The Proposed System	50
3.3.1	Image Acquisition Stage	51
3.3.2	Iris Image Pre-Processing Stage	52
	1. Eye Image Localization	53
	2. Eye Image contrast stretching	54
	3. Eye Image Transformation	56
	4. Circular Histogram Method	56
	5. Image Binarization	58
3.3.3	Iris Image Segmentation	60
	1. Predicate Iris Outer Boundary	61
	2. Circular Distribution of Angles Method	63
3.3.4	Iris Normalization	67
	1. Iris Region Enhancement with Histogram Equalization	68
	2. Canny Edge Detection	70
3.3.5	Features Extraction	73
	1. Color Histogram Feature	73
	2. Hu Moment Invariants	75
	3. Zernike moment	76
3.3.6	Pattern Matching	79-80

	Chapter Four: The Experimental Results and				
	Tests				
4.1	Introduction	81			
4.2	Databases	81			
4.3	Proposed System Implementation	82			
4.3.1	Eye Image Acquisition	82			
4.3.2	Eye Iris Image Preprocessing Steps	83			
4.3.3	Iris Segmentation Results	88			
4.3.4	Iris Normalization	92			
4.3.5	Iris Feature Extraction	94			
	1. Color Histogram Features	94			
	2. Hu Moment Invariants	95			
	3. Zernike Moments	95			
4.4	Iris Recognition System Phases (IRS)	96			
4.4.1	Training Data Phase	97			
4.4.2	Testing Data Phase	97			
4.5	MICHE-I GS4 Database	97			
4.6	Accuracy	99			
	Chapter Five: Conclusions and Suggestions	100-101			
5.1	Conclusions	100			
5.2	Suggestions for Future Works	101			
	References	102-108			

List of Figures

Figure	Caption				
No.					
1.1		2			
1.1	Examples of mobile devices capable of capturing biometric data	3			
1.2	Examples of different biometric types	5			
1.3	Comparison of various biometric modalities	5			
1.4	Image of an eye representing the iris with examples of some irises				
1.5	Iris images acquired using mobile devices	12			
2.1	Examples of biometric traits that can be acquired using mobile devices	17			
2.2	General Operations of Biometric System	18			
2.3	Verification versus Identification	19			
2.4	Impostor and genuine matching score distributions	21			
2.5	Receiver Operating Curve (ROC)	21			
2.6	Schematic of the human eye	22			
2.7	Human iris, (a) Iris front view (b) Composite drawing of the surfaces and layers of the iris				
2.8	Unique pattern of the human iris				
2.9	Examples of images from the MICHE database	27			
2.10	Overview of an iris recognition system	28			
2.11	Example of image color histogram	31			
2.12	Example of image thresholding	32			
2.13	Segmented iris image	33			
2.14	Example of distribution of angles	33			
2.15	Example of unwrapping of the Iris	34			
2.16	Example of Circular Distribution	35			
2.17	Histogram Equalization (HE) of the Image	36			
2.18	Prewitt Mask	38			
2.19	Image Conversion	43			
2.20	Example of KNN matching	46			
3.1	The proposed Iris authentication system (Enrollment and Verification models)	48			
3.2	The Proposed System Flowchart	50			
3.3	Examples of images in MICHE database				
3.4	Preprocessing stage flow chart	52			
3.5	Example of image localization ,(a) Original Iris Image, (b) Localized Eye Region Image	53			

3.6	Eye Image Enhancement , (a) Original image, (b) Image after contrast stretching			
3.7	An Example of Gray scale Eye Image Transformation (a) Original image, (b) Gray scale image			
3.8	An Example of Circular Histogram (a) Original image, (b) Circular histogram Initial $(xc,yc)=(256,256)$, New $(xc,yc)=(310,286)$.	57		
3.9	Histogram graph of best threshold	58		
3.10	An Example of global threshold (a) Grayscale image, (b) Binary image	59		
3.11	Iris Image Segmentation steps	61		
3.12	Example of Predicate Iris Outer Boundary	61		
3.13	Circular distribution of angles	64		
3.14	Final Iris Segmentation Output	65		
3.15	Example of normalization process output	68		
3.16	Iris Region Enhancement	69		
3.17	Canny Edge Detection Steps	72		
3.18	Color Histogram Result	74		
4.1	Example of find eye region results using Galaxy S4	83		
4.2	Examples of Contrast Stretching ,(a) Eye image , (b) Histogram of Eye image ,(c) Image after contrast stretching , (d) Histogram of image contrast	84		
4.3	Examples of image conversation ,(a) Image after contrast stretching ,(b) Histogram of image contrast stretching ,(c) Gray scale image, (d) Histogram of gray scale image	85		
4.4	Examples of circular histogram method ,(a) Gray scale image ,(b) Circular histogram ,(c) Histogram in arrange (0-30).	86		
4.5	Examples of Image conversation in (Galaxy S4) ,(a) Gray scale image , (b) the best threshold, (c) Global threshold.	87		
4.6	Examples of predicate iris outer boundary ,(a) Binary image ,(b) predicate iris outer boundary ,(c) Output of iris outer boundary ,(d) Remove interpolation inside iris boundary	89		
4.7	Examples of Iris segmentation in MICHE dataset (Galaxy S4), (a) Image after remove interpolation, (b) Circular distribution of angles,(c) Segmented iris (d) Remove interpolation after segmented iris	91		
4.8	Examples of normalized irises	92		

4.9	Examples of iris enhancement results,(a) iris normalization , (b) histogram equalization	93
4.10	Examples of CED results , (a) Iris Region Enhancement with Histogram Equalization,(b) Iris edge detection	93
4.11	Example of color histogram features,(a) Iris Region Enhancement with Histogram Equalization ,(b) color histogram graph	94
4.12	Features extraction drawing result with Hu Moment	95
4.13	Features extraction drawing result with Zernike moment.	96
4.14	The testing performance of the proposed system for MICHE GS4 database with KNN matching	99

List of Tables

Table	Caption	Page
No.		No.
4.1	Describe the information of each angles	90
4.2	Example of the best angle that determine the fit of	90
	boundary of iris	
4.3	The accuracy of the proposed system and other existing	91
	systems	
4.4	Features extraction result with the Hu Moments.	95
4.5	Features extraction result with Zernike Moments.	96
4.6	The results of Average FAR, FRR and Accuracy of the	98
	proposed system for MICHE-I GS4.	
4.7	The accuracy of the proposed system and other existing	99
	systems.	

Pseudo Code	Title	Page No.
1	Eye Image Localization	53-59
3.1	Eye Image Localization	53
3.2	Eye Image contrast stretching	55
3.3	Gray scale Eye Image	56
3.4	Circular Histogram method	57
3.5	Global Thresholding	59
2	Iris Image Segmentation	60-66
2.1	Predicate Iris Outer Boundary	62
2.2	Circular distribution of angles	65
3	Iris Normalization	67 -72
3.1	Iris Normalization	68
3.2	Iris Enhancement with Histogram Equalization	69
3.3	X and Y Gradient	70
3.4	Canny edge detector	71
4	Features Extraction	73-77
4.1	Color Histogram Feature	74
4.2	Hu' Seven Moments Feature	75
4.3	Zernike Moment Feature	77
5	Pattern Matching	80
5.1	Iris matching using KNN	80

List of Pseudo codes

List of Abbreviations

Abbreviations	Meaning			
IRS	Iris Recognition System			
BMP	Bitmap Image			
C#	C sharp			
MICHE	Mobile Iris Challenge Evaluation			
CD	Circular Distribution			
Avg	Average			
DB	Data Base			
EER	Equal Error Rate			
FA	False Accepts			
TA	True Accepts			
ROC	Receiver Operating Characteristic			
FAR	False Acceptance Rate			
FRR	False Rejection Rate			
Т	Threshold			
2D	Two Dimension			
NMs	Normal Moments			
ZMs	Zernike Moments			
μ	Mean Value			
σ	Standard Deviation			
A _{nm}	Moment Based Operators			
R _{pq}	Radial Polynomials			
V′ _{pq}	Complex polynomial			

List of Symbols Table

Symbol	Meaning
*	Multiplication operation
+	Addition operation
/	Division operation
-	Subtraction operation
=	Equality sign
Θ	Theta
Σ	Summation - sum of all values in range of series
X	The absolute value bars
Log	Logarithm
Δ	Delta
Σ	Sigma
%	Percent sign
Sin	Sin function
Cos	Cos function
\oplus	Circled plus / oplus – xor
Θ	Circled minus /ominus
	Square root
(<i>a</i> , <i>b</i>)	Ordered pair, collection of 2 elements
()	Parentheses, calculate expression inside first
0	Degree, 1 turn = 360°

Chapter One

General Introduction

Chapter one General Introduction

1.1 Introduction

A 'Smartphone' is defined as a mobile phone that can be used as a small computer and that connects to the internet, in spite of the first smartphone - IBM Simon - was introduced more than two decades ago, the world witnessed an immense evolution of smartphones after the introduction of the first iPhone in 2007, the world noticed a great growth for smartphones, the present smartphones are not only a computer, a camera, a database, a phone, a locator and contain all the information in the world at our fingertips, but a personal companion that can be considered part of our daily life, It is speculated that the smartphone's role as a constant companion, helper, coach and guardian has only just begun[1].

"In less than two year, a smartphones could be your only computer", wrote Christina Bonnington on wried.com in 2015[2], referring to the rapid takeover of the consumer computing market by smartphones and tablet computers .

Modern phones and tablet computers provide unparalleled convenience to users, allow them to browse the social network, check emails, take photographs, bank and shop online on the go. Many modern mobile devices are provided with high resolution cameras, GPS, radio, accelerometer, and other sensors that enable novel application, such as instant video calls, navigation, fitness, and support for many other applications not practical with traditional laptop and desktop computers[3].

1

The number of mobile phone users worldwide is expected to pass the five billion mark by 2019 [4], and by 2018, the number of tablet computer users is projected to reach 1.34 billion [5].

This proliferation of smartphones and tablets raises concerns about the security and privacy of data stored on mobile devices if there are lost, stolen, or hacked. An attacker with physical accesses to a mobile device can potentially steal a user's banking information, read his/her emails, look at private photos, and perform other criminal actions. The scale of the problem is vast, according to the consumer Reports.org, 2.1 million mobile phones were stolen and 3.1 million phones were lost in 2013 in United states alone [6].

The initial countermeasures for restricting unauthorized access of mobile devices were password (e.g Google Android-based device) and four digit PIN codes (e.g iPhone smartphones and iPad tablets). However, this approach has proven ineffective, for the sake of conveniences, many users choice easily guessable passwords and PINs. For example ,according to TIME magazine, the most widely iPhones PIN numbers in 2011 were are follows :

1. "1234"	2. "0000"	3. "2580"	4. "1111"
5. "5555"	6. "2683"	7. "0852"	8. "2222"
9. "1212"	10. "1998"		

Similar problems still exist in 2016 [7,8].

Unlike PCs and laptops, users store their personal data on the smartphone, health information, passwords, daily calendars, and much more[10]. Hence, secure authentication of a smartphone user's identity is crucial.

There must be a mechanism to authenticate users and it is difficult to be imitated or stolen which is unique to each user to achieve security balancing for smartphones. 'Biometrics' could be ideal for this purpose[1]. Some devices that have the ability to capture biometric data are shown in Figure (1.1).

Figure (1.1) : Examples of mobile devices capable of capturing biometric data: (a) smartphones, (b) tablet computers, (c) digital cameras, (d) digital video recorders, (e) wearable activity trackers (e.g., Fitbit), (f) wearable head-mount displays (e.g., Google Glass), (g) 3D sensors [e.g., STRUCTURE (2014)], and (h) portable game consoles (e.g., XBOX Kinect)[1].

1.2 Biometrics

Biometrics is the science of recognizing individuals depend on their physical or behavioral traits, there are more physical characteristics that may be used for identification such us fingerprints, hand geometry, palm prints, iris patterns and retinal patterns, behavioral characteristics include signature, keystroke dynamics and voice pattern[11].

Traits of individuals that can be used for identification or verification purposes. refer to the technology of identifying a person or verifying a person identity based on these unique biometric traits. Such technology is widely deployed in several applications today, from immigration and border control to access control in online banking, ATM, laptops, and mobile phones[12,13]. Passwords and PINs are susceptible to loss, theft, and guessing attacks. Similarly, magnetic cards are subject to loss, theft, forgery, and duplication. Biometric-based techniques, on the other hand, are resilient to such threats: people's biological traits cannot be misplaced or forgotten, and are difficult to steal or forge[12]. Biometric techniques are categorized as either **st tic** or

mic. Static biometrics examine physiological traits of the individual such as face, fingerprints, iris, and hand geometry. Dynamic biometrics examine behavioral characteristics such as keystroke dynamics and voiceprints. Some biometric types are shown in Figure (1.2).

Any physiological or behavioral traits which satisfy a number of requirements such as universality, permanence, distinctiveness, performance, collectability, acceptability, and circumvention can be classified as a practical biometric trait, out of all the multiple physical characteristics available, for physiological characteristics the iris is consider a common examples that can be used [1]. A brief comparison of these modalities is shown in Figure (1.3).

A good biometric is described by using of a feature that is highly unique so that the chance having of any two people will be minimal with the same characteristics, stable so that the feature doesn't change over time, and be easily captured in order to provide convenience to the user, and prevent misrepresentation of the feature[13].

Figure (1.2) Examples of different biometric types[13].

BIOMETRIC	FINGERPRINT	FACE	HAND GEOMETRY	IRIS	VOICE
		0	₩		
Barriers to universality	Worn ridges; hand or finger impairment	None	Hand impairment	Visual impairment	Speech impairment
Distinctiveness	High	Low	Medium	High	Low
Permanence	High	Medium	Medium	High	Low
Collectibility	Medium	High	High	Medium	Medium
Performance	High	Low	Medium	High	Low
Acceptability	Medium	High	Medium	Low	High
Potential for circumvention	Low	High	Medium	Low	High

Figure (1.) Comparison of various biometric modalities[11].

1. ris ecog itio

It is recognition is the method of recognizing individuals depend on their it pattern. As in Figure (1.4), the annular area within the eye