

Ministry of Higher Education and Scientific Research University of Diyala Department of Computer

Secure Data Retrieval from a Remote Server

By Nibras Raad Abdallah Supervised By Asst. Prof. Dr. Taha Mohammed Hassan Co-supervised By Asst. Prof. Dr. Ahmed Chalak Shakir

> A thesis submitted to the University of Diyala College of Science in a partial fulfillment of the requirements of the degree of MASTER in the Computer Science.

> > April 7, 2019

Certificate of The Supervisors

We certify that read this thesis entitled "Secure Data Retrieval from a Remote Server" that was made under our guidance and supervision for the award of Degree of Master of Department of Computer Science of Diyala University. In addition, as an examing committee, examined the contents and in what is related for the student " Nibras Raad Abdallah", and that in our opinion it meets the standard of a **thesis** for the degree of master of sciences in Computer Science.

*SIGNATURE :

SUPERVISED BY

ASST.PROF.DR.TAHA MOHAMMED HASSAN

April 7, 2019

*SIGNATURE :

Co-supervised By

ASST.PROF.DR.AHMED CHALAK SHAKIR

April 7, 2019

Certificate of The Linguistic

This is to certify that this **thesis** entitled **"Secure Data Retrieval from a Remote Server"** by **"Nibras Raad Ab-dallah"** was prepared under supervisors from a linguistic point of view. Its language is amended to meet the style of the standard English language.

*SIGNATURE :

NAME :

April 7, 2019

Examination Committee Certification

We certify that thesis entitled "Secure Data Retrieval from a Remote Server " and as an examining committee, examined the student "Nibras Raad Abdallah" in its contents, and that in our opinion it meets the standard of a **thesis** for the degree of master of sciences in Computer Science.

(CHAIRMAN) SIGNATURE : NAME : PROF.DR.QASIM M.HUSSEIN April 7, 2019

(MEMBER) SIGNATURE : NAME : ASST. PROF. NAJI M.SAHIB NAME : L. JUMANA W.SALIH April 7, 2019

(MEMBER) SIGNATURE : April 7, 2019

(MEMBER/SUPERVISOR) SIGNATURE : NAME : ASST. PROF. DR. TAHA M. HASSAN April 7, 2019

(MEMBER/SUPERVISOR) SIGNATURE : NAME : ASST. PROF. DR. AHMED CH. SHAKIR April 7, 2019

Approved by University of a Diyala Faculty of Science Department of Computer Science.

> (THE DEAN) SIGNATURE : NAME : PROF.DR.TAHSEEN HUSSEIN MUBARAK April 7, 2019

Declarations

I acknowledge that I have also been advised by academic staff about standards for good academic conduct and how to avoid plagiarism and other assessment irregularities.

I acknowledge that plagiarism is the unacknowledged use of another person's ideas, words or work either verbatim or in substance without specific and appropriate acknowledgment.

I acknowledge that the inclusion of a footnote or a source in a bibliography is insufficient for attribution of another's work.

I hereby certify that the research work in this thesis is my original work and it does not include any copied parts without the appropriate citation. I acknowledge that any work that I submit for assessment at Department of Computer Science , College of Science , University of Diyala , Iraq:

- Must be all my own work.
- Must not have been prepared with the assistance of any other person, except those permitted within University guidelines or the specific assessment guidelines for the piece of work.
- Has not previously been submitted for assessment at this University or elsewhere.

I acknowledge that I must take reasonable steps to ensure that my assessments – and related preparatory work for submissions – are kept secure so that I do not enable another person to copy my work.

I accept that the College may check the originality of my work using a range of techniques, including computer based plagiarism detection software.

I accept that any suspected irregularity in my work will be dealt with under the University's Assessment Irregularities Procedure.

> Kirkuk, Iraq Nibras Raad April 7, 2019

Acknowledgements

Thanks God for his generosity in the primarily and the lastly

At the end of this thesis, I would like to take some time to thank all the people without whom this project would never have been possible. Although it is just my name on the cover, many people have contributed to the research in their own particular way and for that, I want to give them special thanks.

First, my supervisors, Assist. Prof. Dr. Taha Mohammed Hassan, you have created an invaluable space for me to do this research and develop myself as a researcher in the best possible way. I greatly appreciate the freedom you have given me to find my own path and the guidance and support you offered when needed. He is someone you will instantly love and never forget once you meet him. He's the funniest advisor and one of the smartest people I know. I hope that I could be as lively, enthusiastic, and energetic as him.

Assist.Prof.Dr.Ahmed Chalak Shakir, you have always been there for me, kept me in check and over the days have become a friend as well. I truly hope that we will be given the opportunity to work even closer together in the future. He has been supportive and has given me the freedom to pursue various projects without objection and he has also provided insightful discussions about the research. He is my primary resource for getting my science questions answered and was instrumental in helping me crank out this thesis. You was and remains my best role model for a scientist, mentor, and teacher. I will forever be thankful for you.

Next, I would like to thank the administration of The College of Sciences for the University of Diyala for their efforts to provide a distinctive model research university.

I also want to take a moment to thank my other committee members, to Prof.Dr. Qasim M.Hussein,Asst.Prof. Naji M.Sahib, and L. Jumana W.Salih. Thank you for investing time and providing interesting and valuable feedback. I feel proud and honored that you have accepted to be on my committee.

Last but not least, some people of outstanding importance for my research, I would like to show my sincere appreciation and gratitude to my wife. Thanks, to my beloved family, dad, mum and sibling for their self-sacrifice, consistent love, support, understanding and encouragement.

Nibras Raad AL_Bayaty

Abstract

Internet of Things (IoT) applications nowadays have a wide impact on people's daily life while the size of IoT has been increasing rapidly. Millions of devices, a huge amount of data ,and different kinds of new protocols can bring many security issues. In addition, the malicious activities have increased with more sophisticated attacks, that will result in higher risks. Therefore, the security aspect is becoming increasingly important year-afteryear.

LoRaWAN is a MAC layer protocol for long-range low-power communication dedicated to the IoT. It can be used to transmit messages between IoT end devices and gateways. However, since the development of LoRaWAN is still at an early stage, the security level of the protocol is not well developed, and the need for analyzing and developing the security level of LoRaWAN is necessary and urgent.

In order to be benefited from this modern protocol, it will be applied in a practical manner in the Ministry of Interior/Civil Status Directorate, Passports and Residence in Kirkuk Governorate/National Card(ID). This section is connected with the sub-districts in the same geographical area for exchanging data as an alternative to the Internet service due to the problems and its interruptions.

This thesis summarizes the secure features of LoRaWAN in the aspects of activation methods, key management, cryptography. Then, vulnerabilities of LoRaWAN are found, can be exploited by an attack. Attacks based on these vulnerabilities are designed and described. These attacks are replay attack, eavesdropping, bit flipping, and ACK spoofing.

As a proof-of-concept, the bit flipping attack is implemented and executed in a LoRaWAN environment. Afterward, mitigation and secure solution against this attack are given to protect the security of LoRaWAN networks by adding an encryption layer and digital signature by an adaptive method of elliptic curve cryptography to transfer data.

The result of the proposed system can be used in developing the security level of LoRaWAN protocol.

Contents

Li	st of	Abbreviations	X
Li	st of	Figures	xiii
Li	st of	Tables	xv
1	Intr	oduction	1
	1.1	Introduction	. 1
	1.2	Motivation	2
	1.3	The Aim of The Thesis	3
	1.4	Literature Review	3
	1.5	Thesis Structure	5
2	The	oretical Background	6
	2.1	Fundamentals of Computer Networking	6
		2.1.1 Computer Network Types	6
		2.1.2 Computer Network Topologies	8
		2.1.3 Computer Network Security	9
		2.1.4 Attacks On Cryptosystems	10
	2.2	Elliptic Curves Cryptography (ECC)	12
		2.2.1 Fundamental Concepts	13
	2.3	Internet of Things	20
		2.3.1 Low Power Wide Area Networks	22
	2.4	Basics of LoRa	. 24
		2.4.1 LoRa Parameters	25
	2.5	Media Access Control Layer(MAC)	28
		2.5.1 Network Architecture	28
		2.5.2 Device Classes	30
		2.5.3 PHY and MAC Layer Structure	
		2.5.4 LoRaWAN Network Security	
	2.6	LoRa Concentrator/Gateway	
	2.7	LoRaMAC/LoRaWAN	40
	2.8	LoRaWAN Network Server	42
3	The	Proposed System	45
0	3.1	Introduction	45
	3.2	General Diagram overview	45
	3.3	Data Flow Diagram	50 - 50
	3.4	Flow Chart Diagram	$50 \\ 52$
	3.5	Use Case Diagram	$52 \\ 59$
	0.0	3.5.1 Sequence Diagram	
		$0.0.1$ DOUCHOE DIAGIANI $\dots \dots \dots$. 01

4	Exp	erimental Result & Analysis	63
	4.1	Scenario of Communication	63
		4.1.1 Preliminary Configuration	63
		4.1.2 GUI of The System & It's Implementation	68
	4.2	Analysis	72
		Proof-of-Concept experiment	73
5	Cor	clusions	75
	5.1	Summary	75
	5.2	Future Work	77
Re	References		

List of Abbreviations

- ABP Activation By Personalization.
- ADR Adaptive Data Rate.
- AES Advanced Encryption Standard.
- ALOHA Advocates of Linux Open-source Hawaii Association.
- ANSI American National Standards Institute.
- AppEUI Application Unique Identifier.
- AppSKey Application Session Key.
- BLE Bluetooth Low Energy.
- CSS Chirp Spread Spectrum.
- DevAddr Device Address.
- DevEUI Device Unique Identifier.
- DH Diffie-Hellman.
- *ECC* Elliptic Curve Cryptography.
- *ECCDH* Elliptic Curve Cryptography Diffie-Hellman.
- *ECDLP* Discrete Logarithm Problem.
- *FIPS* Federal Information Processing Standards.
- FSK Frequency-Shift Keying.
- GPIO General-purpose input/output.
- GUI Graphic User Interface.
- Gbit/s Gigabit per second.

HAL	Hardware Abstraction Layer.
IANA	Internet Assigned Numbers Authority.
ICV	Integrity Check Value.
ID	National Unified Card Section.
IEEE	Institute of Electrical and Electronics Engineers.
IETF	Internet Engineering Task Force.
IHS	Information Handling Services.
Iot	Internet of Things .
IP	Internet Protocol.
ISM	Industrial, Scientific and Medical band.
ISM	Industrial, Scientific and Medical.
IT	Information Technology.
LNA	Low Noise Amplifier.
LoRa	Long Range .
LoRaWAN	Long Range Wide Area Network .
LPWAN	Low Power Wide Area Network.
M2M	Machine to Machine.
MAC	Medium Access Control.
MHDR	MAC Header.
MIC	Message Integrity Code.
MOTT	Message Queuing Telemetry Transport.

MQTT Message Queuing Telemetry Transport.

	List of Abbreviations
NIST	National Institute of Standards and Technology.
NwkSKey	Network Session Key.
NFC	Near field communication.
OMA	Open Mobile Alliance.
OTAA	Over The Air Activation.
OFDM	Orthogonal Frequency Division Multiplexing.
PKC	Public Key cryptography.
RF	Radio Frequency.
RSA	Strive, Shamir, Adleman.
RSSI	Received Signal Strength Indicator.
SPI	Serial Peripheral Interface.
SKC	Secret Key Cryptography.
TM	Trademark.
UART	Universal Asynchronous Receiver/Transmitter.
UL	Uplink.
WPAN	Wireless Personal Area Network.
WSNs	Wireless Sensor Networks.

.

List of Figures

2.1	Types of Communication Networks	6
2.2	Discrete Logarithm Problem	12
2.3	Elliptic Curve where $a = -5$ and $b = 8(a)$ Points On the	
	ECC , (b) ECC	15
2.4	ECDHE Schema	16
2.5	Market Opportunities IoT applications	21
2.6	LPWAN Technologies Position Source: PETER R. EGLI, 2015	22
2.7	Wireless LPWA Growth Trends	23
2.8	Actual the bits sent over the air	26
2.9	LoRaWAN Star-of-Stars Topology	28
2.10	Classes Connection DownLink Latency VS Energy Consump-	
	tion	30
2.11	LoRaWAN Classes A,B,C	31
	Message layers LoRa/LoRaWAN	32
2.13	LoRaWAN End To End Security	34
	LoRaWAN Data Encryption	35
2.15	LoRaWAN Over The Air Activation	36
	LoRaWAN Activation by Personalization	37
2.17	LoRaWAN Architecture	37
2.18	LoRaWAN Gateway 868 MHZ and Bridge RHF4T002 Adapter	38
2.19	Hardware Connection Gateway module RHF0M301–868 into	
	Bridge RHF4T002 into RPi3	39
	Seeeduino LoRaWAN W/GPS	40
2.21	$LoRaWAN^{TM}$ protocol stack	41
2.22	Structure LoRa Network Server {red box defied as services ,	
	the others box defied as hardware/software} \ldots	42
3.1	General Diagram overview	45
3.2	Client-Server	50
3.3	Server-Client	51
3.4	Phase1 Client to Server Sending Cipher Message and Digital	
	Signature	52
3.5	ECDHKE Algorithm for proposed method	53
3.6	Phase2 Server to Client Sending Cipher Message and Digital	
	Signature	58
3.7	Actor scenarios	59
3.8	Client scenarios	60
3.9	Server scenarios	61
3.10	Sequence Diagram	62

List of Figures

4.1	The LoRaWAN Devices Connection	64
4.2	GUI of The System	68
4.3	Command Key Exchange	68
4.4	Display all parameters	68
4.5	System Testing of $ID = 115$	70
4.6	System Testing of $ID = 80005$	71
4.7	An example result of a bit-flipping attack	73

List of Tables

2.1	Types of wireless networks $[26]$	7
2.2	The Equivalent keys(bits)[46] $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	13
2.3	IoT connectivity comparison (LoRa vs Sigfox vs NB-IoT) [10]	23
2.4	Error correction and detection capabilities of $LoRa$ [71][73]	25
2.5	SF_Comparison 712 [8] \ldots	27
2.6	The MACPayload Size for Several Regions [83]	33
4.1	The CPU times for encryption&decryption of two methods	72
4.2	Secret keys shared between the parties	73
4.3	Sending ID No. From client to network server	74
4.4	Sending fetched data from a company server to client \ldots .	74

Introduction

1.1 Introduction

Recently, the Internet has spread to every part of the world and has a direct impact on human life. As we entered the era of the most widespread digital communication, many of the devices will be connected to the Internet, that is, we have entered an era Internet of Things(IoT)[1].

Let us highlight the most popular definitions in the world of IoT first of Vermesan et al. in [2] which they defined IoT as an interaction between the digital world and the physical world where the two worlds interact via the use of many actuators in machines and embedded sensors.

In [3] Pena-Lopez et al. define IoT as a model, network capabilities and computing can be embedded in it of an object, these capabilities are used to inquire about the state of the object and change state if possible. We can use them collaboratively to achieve complex tasks that require a high degree of intelligence[1].

The fact, radio waves are easily available and inexpensive. Perhaps the most prominent requirements of IoT area are low bandwidth communications over a long range with low power and cost.

Popped up Several wireless communication standards such as Wi-Fi and Bluetooth, which are characterized by their speed in transmitting data over short distances, therefore it is not to be suitable for long range. Therefore many companies and researchers went to the development of modern technologies to transmit data over long distances at a lower cost with low energy. That was the reason for the emergence of Low Power Wide Area Networks (LPWANs)[4]. LPWAN technologies (NB-IoT, LoRa, SigFox,... etc) successfully offer wide area connectivity from a few kilometers to tens of kilometers with low power, low data rate, and low throughput applications. Their market is expected to be huge, where is about a quarter of overall thirty billion IoT/M2M devices are assumed to be connected through the Internet using LPWAN[5].

Formation of LPWAN networks by using several technologies such as (IEEE 802.11ah, IEEE 802.15.4g, and LoRaWAN), where are into one wide area network[6].

The proposed system of this thesis will discuss the possibility working a private network with distances of up to more than one kilometer in an urban environment scenario and data interchangeability for one important of the prominent LPWAN technologies, LoRaWANTM[7] without the need service of Internet and provide sufficient information to deal with this technology and the LoRaWAN networks, which allows the user to build his network easily without the need to take approvals and licenses by companies or institutions, and an important benefit of the proposed system is to serve the public interest into the provision of money and the cost of equipment.

LoRaWAN has able to the deployment of private and public networks. The work of this net similar to cellular ones.

LoRAWAN (Long Range Network Protocol) [5], mainly developed in January 2015 by the LoRa Alliance to facilitate IoT applications[8][9][10]. That guarantees the full compatibility between the objects of IoT, without need to the complex local applications[11].

1.2 Motivation

The motivation behind the proposed system is that many international companies have shared in this new technology, especially Semtech and its LoRa products, and it is expected that in the next few years a market will be flooded with the products associated with this technology. And the problems with the Internet service and the continuous interruption of service. Therefore, this study will be using the LoRaWAN technology was chosen as an ideal alternative to the INTERNET to transfer data, but recently, many studies have reported a security vulnerability that can develop into

an attack in the LoRaWAN technique called "bit-flipping attack" [12]. This attack changes specific fields in a cryptographical text without decryption [13].

1.3 The Aim of The Thesis

- Establish a large-scale low-cost network in urban areas to exchange data in high confidentiality without the need to use the Internet.
- Connect to a remote database for the purpose of dealing with the stored data.
- Adding an extra layer of security to increase the integrity(reliability) of data sent within this network using an adaptive method of the elliptic curve cryptography without affecting the efficiency of the network and the speed of data transfer.
- Using a modern technology, which has become a top technology of digital communication for the Internet of things, and how to adapted it with the proposed system to exchange data.
- The proposed system prevent dealing with the data that has been manipulated by the bit-flipping attack.

1.4 Literature Review

A little research and literature have been published on LoRa platform and the LoRaWAN stack. This section will be focused on the study of literature and backgrounds to understand the LoRa platform and its applications.

- In [14] Magrin et al. give a detailed overview of the LoRa platform and the IEEE 802.15.4 standard, it is the LoRa base which is used in the IoT environment, by using the star topology in the unlicensed Sub GHz spectrum.
- In [15] Gheorghiu et al. give an initial assessment of LoRa's standard and give an overview of the understanding of the protocol itself. In addition, it provides the differences between LoRa and other radio standards.

- In [16] Lee et al. give a way to protect the message from the risk of bit-flipping attack. By shuffling the location of all octets in the frame payload.
- Ramachandran et al. in [17] by using the LoRa protocol and one among its maximum important capabilities, the potential to limit deployment complexity via wherein gadgets and nodes automatically hook up with the network and transmit obtained data, that is reduced the electricity consumption. Also, it explains the importance of chirp spread spectrum (CSS)[18][19] and its impact on the scalability of the LoRa network, providing multiple data rates over frequency ranges. A Table comparing the data rate, spreading factor [20] and the radio bit rate can be seen in (Table 2.1). That paper also highlights testing techniques for range which are incorporated in this thesis.
- As an application, there are little papers that relied on this technology. In [21]and [5] the covering of LoRa technology was evaluated for outdoor cases.
- Authors in [22] made the attempt to apply LoRa technology for health and wellness monitoring.