Spectral properties of the Helmholtz problem with spectral parameter Dependent conditions.
 spectral parameter
 Haythab A. shahad \Wassit University

Haythab A. shahad \Wassit University
Haythabali@gmail.
Received 21 May 2014 ; Accepted 27 October 2014

Abstract

: We consider Helmholtz problems containing a spectral parameter both in the equation and in the boundary conditions. we prove that the system of corresponding eigen functions forms an orthonormal basis in some adequate Hilbert spaces. The oscillation properties as completeness, minimality and basic properties are investigated for the eigenfunction of the Helmholtz operator equation in the triple of adequate Hilbert spaces. Asymptotic formula for eigenvalue and eigenfunction are deduced.

Keywords: Helmholtz equation ,boundary conditions, operator, Eigenvalue, Eigenfunction , Basis property.

الخواص الطيفية لمسالة هلمهولتز مع وجود المعلمة الطيفية في الشروط الحدودية

الملخص
في هذا البحث تناولنا مسالة هلمهولنز (معادلة نفاضلية جزئية من الرتبة الثانبة) مع وجود المعلمة الطيفية في الثروط الحدودية ، هذه المسالة تتحول باستخدام طريقة فصل المتغيرات الى مسالة قيم ذاتية من الرتبة الثنانية مع وجود القيمة الذاتبة في المعادلة وشرط حدودي واحد ، بر هنا ان انظمة الدو ال الذاتية للمؤثرات التفاضلية الاعتيادية المكافئة
 الاو ال الذاتية لمؤثر هلمهولنز في فضـاء هلبرت الثلاثني تشكل نظام اصغر مـا يمكن ومتكامل. وتم استنتاج صيغة نقاربية للقيم الذاتية و اللو ال الذاتيـة.

الكلمات المفتّاحية: المعادلة هيلمهولتز، الشروط الحدية، العامل القيمة الذاتية، اساس الاحتمالية.

1-Introdaction

The scalar Helmholtz equation

$$
\begin{equation*}
\nabla^{2} \omega(x, y, z)+\varphi^{2} \omega(x, y, z)=0, \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{1-1}
\end{equation*}
$$

Where $\omega(x, y, z)$ is a complex scalar function (potential) defined at a spatial point $(x, y, z) \in R^{3}$ and φ is some real or complex constant (eigenvalue), takes its name from Hermann Von Helmholtz (1821-1894), the famous German scientist, whose impact on acoustics, hydrodynamics, and electromagnetics is hard to overestimate. This equation naturally appears from general conservation laws of physics and can be interpreted as a wave equation for monochromatic waves (wave equation in the frequency domain). The Helmholtz equation it can also be derived from the heat conduction equation, Schrodinger equation ,

Haythab A. shahad \Wassit University

telegraph and other wave-type, or evolutionary, equations. From a mathematical point of view it appears also as an eigenvalue problems for the Laplace operator ∇^{2}.
Helmholtz equation is an equation of the elliptic type, for which if is usual to consider boundary value problems. Boundary conditions follow from particular physical laws (conservation equation) formulated on the boundaries of the domain in which a solution is required. This domain can be finite (internal problems) or infinite (external problems). For infinite domains, the solutions should satisfy some conditions at the infinity. These conditions also have a physical origin. For the Helmholtz equation that arise as a transform of the wave equation into the frequency domain, the boundary conditions should be understood in the context of the original wave equation.
The Helmholtz equation was solved for many basic shapes in the $19^{\text {th }}$ century , the rectangular membrane by Simian Denis poisson in 1829,the equilateral triangle by Gabriel in 1852, and the circular membrane by Alfred Clebsch in 1862. The elliptical drumhead was studied by Emile Mathieu, leading to Mathieus differential equation.[1]
This paper presents a study. For Helmholtz problem with spectral parameter dependent conditions:
$\omega_{x x}+\omega_{y y}+\omega_{z z}+\varphi^{2} \omega=0,0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$
$\omega(0, y, z)=\omega(x, 0, z)=\omega(x, y, 0)=0$
$\omega_{x}(1, y, z)=\varphi^{2} \omega(1, y, z)$
$\omega_{y}(x, 1, z)=\varphi^{2} \omega(x, 1, z)$
$\omega_{z}(x, y, 1)=\varphi^{2} \omega(x, y, 1)$
The Helmholtz problem (1-2), (2-2) when the boundary conditions contain a spectral parameter θ^{2}, this problem cant interpreted an eigenvalue - Eigen function problem in the Hilbert space $L_{2}(0,1)$. [10]
In order to motivate the subject of this paper we recall that the generalized Regge problem is realized by a second order differential operator which depends quadrafically on the eigenvalue parameter and which has eigenvalue parameter dependent boundary conditions, see [2]. The particular feature of the Regge problem is that coefficient operators of the corresponding quadratic operator pencil are self-adjoin,[12]. Applying the separation of variables to the boundary value problems associated with Helmholtz equation:
Assume that $\omega(x, y, z)=u(x) v(y) w(z)$
Then the equation (1-2) becomes
$v w \frac{d^{2} u}{d x^{2}}+u w \frac{d^{2} v}{d y^{2}}+u v \frac{d^{2} w}{d z^{z}}+\varphi^{2} u v w=0$
Dividing (1-5) by uvw, we obtain:
$\frac{1}{u} \frac{d^{x} u}{d x^{2}}+\frac{1}{v} \frac{d^{2} v}{d y^{2}}+\frac{1}{w} \frac{d^{x} w}{d z^{2}}+\varphi^{2}=0 \quad, u(x) \neq 0, \forall x, \frac{1}{v} \neq 0 \quad, \forall y$
Let us write (1-6) as :
$\frac{1}{u} \frac{d^{x} u}{d x^{2}}=-\frac{1}{v} \frac{d^{2} v}{d y^{2}}-\frac{1}{w} \frac{d^{x} w}{d z^{2}}-\varphi^{2}$
Now we have a paradox. The LHS of (1-7) depends only on the x-variable while the RHS of (1-7) depends on y \& z- variables. One way to avoid this paradox is to say $-\mathrm{U}^{2}{ }_{1}$. Continuing a similar process, we separate Helmholtz equation into three ordinary differential equations:
$\frac{1}{u} \frac{d^{2} u}{d x^{2}}=-\mu_{1}^{2}$
$\frac{1}{v} \frac{d_{2} v}{d y^{2}}=-\mu_{2}^{2}$
$\frac{1}{w} \frac{d^{2} w}{d z^{2}}=-\mu_{3}^{2}$
Where $\varphi^{2}=\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}$
and the equation (1-3) becomes:
$u(0)=v(0)=w(0)=0$
$\dot{u}(1)=\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) u(1)$
$\hat{v}(1)=\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) v(1)$
$\hat{w}(1)=\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) w(1)$
We obtain three second order eigenvalue problems:
$\dot{u}(x)+\mu_{1}^{2} u(x)=0$
$u(0)=0$
$\dot{u}(1)-\left(\mu_{2}^{2}+\mu_{3}^{2}\right) u(1)=\mu_{1}^{2} u(1)$
and
$\hat{v}(y)+\mu_{2}^{2} v(y)=0$
$v(0)=0$
$v(1)-\left(\mu_{1}^{2}+\mu_{3}^{2}\right) v(1)=\mu_{2}^{2} v(1)$
And
$\dot{\vec{w}}(z)+\mu_{3}^{2} w(z)=0$
$w(0)=0$
$\dot{w}(1)-\left(\mu_{1}^{2}+\mu_{2}^{2}\right) w(1)=\mu_{3}^{2} w(1)$
This paper presented a study the properties as completeness, minimafity and basis property are investigated for eigenfunction of the spectral problem (1-2)-(1-3) in adequate Hilbert space.

2-An operators formulation in the adequate Hilbert space

Define Adequate Hilbert space H by :
$\mathrm{H}=\mathrm{H}_{1} * \mathrm{H}_{2} * \mathrm{H}_{3}$ where
$H_{1}=L_{21}(0,1) \oplus c=\left\{\tilde{u}=(u, a): u \in L_{21}(0,1), a \in c\right\}$ s.t (c is complex number, v \&w are constants, where $L_{21}(0,1)$ is standee).
$H_{2}=L_{22}(0,1) \quad c=\left\{\tilde{v}=(v, b): v \in L_{22}(0,1), b \in c\right\} \quad$ s.t (u \& w constant).
$H_{3}=L_{23}(0,1) \quad c=\left\{\widetilde{w}=(w, c): w \in L_{23}(0,1), c \in c\right\} \quad$ s.t $(u \& v$ constant $)$.
and the inner product by:

$$
\begin{aligned}
\langle\widetilde{U} \tilde{V} \tilde{W}, \widetilde{U} \tilde{V} \tilde{W}\rangle & =\langle\tilde{u}, \tilde{u}\rangle+\langle\tilde{v}, \tilde{v}\rangle_{2}+\langle\tilde{w}, \tilde{w}\rangle_{3} \ldots \ldots \ldots \ldots(2-1) \\
& =\int_{0}^{1} u(x) \bar{u}(x) d x+a \bar{a}+\int_{0}^{1} v(y) \bar{v}(y) d y+b \bar{b}+\int_{0}^{1} w(z) \bar{w}(z) d z+c \bar{c} \\
\|\cdot\|^{2}= & <, .\rangle_{-2} \\
& =\|u\|^{2}+|a|^{2}+\|v\|^{2}+|b|^{2}+\|w\|^{2}+|c|^{2}
\end{aligned}
$$

and denote by L_{1}, L_{2} and L_{3} the operators in the $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} respectively:

$$
\begin{aligned}
& L_{1} \widetilde{U}=L_{1}(u, a)=\left(-u^{11}, u^{1}(1)-\left(\mu_{2}^{2}+\mu_{3}^{2}\right) u(1)\right) \text { for } \tilde{u} \in H_{1} \ldots .(2-2) \\
& L_{2} \tilde{V}=L_{2}(v, b)=\left(-v^{11}, v^{1}(1)-\left(\mu_{1}^{2}+\mu_{3}^{2}\right) v(1)\right) \text { for } \tilde{v} \in H_{2} \ldots . .(2-3)
\end{aligned}
$$

Spectral properties of the Helmholtz problem with spectral parameter Dependent conditions.
Haythab A. shahad \Wassit University
$L_{3} \widetilde{w}=L_{3}(w, c)=\left(-w^{11}, w^{1}(1)-\left(\mu_{1}^{2}+\mu_{2}^{2}\right) w(1)\right)$ for $\widetilde{w} \in H_{3} \ldots(2-4)$
And defined the operator L in adequate Hilbert space H by :
$L(\tilde{u} \tilde{v} \tilde{w})=\left[\begin{array}{c}v w L_{1} u \\ v w L_{1} a \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}u w L_{2} v \\ 0 \\ u w L_{2} b \\ 0\end{array}\right]+\left[\begin{array}{c}u v L_{3} w \\ 0 \\ 0 \\ u v L_{3} c\end{array}\right]$
for $\tilde{u}, \tilde{v}, \& \widetilde{w} \in H$.
and its domains $\mathrm{D}\left(\mathrm{L}_{1}\right), \mathrm{D}\left(\mathrm{L}_{2}\right), \mathrm{D}\left(\mathrm{L}_{3}\right)$ and $\mathrm{D}(\mathrm{L})$ of all elements $(u, a)(v, b)(w, c) \in H$ satisfying the conditions:

1. $\mathrm{D}(\mathrm{L})=\mathrm{D}\left(\mathrm{L}_{1}\right) * \mathrm{D}\left(\mathrm{L}_{2}\right) * \mathrm{D}\left(\mathrm{L}_{3}\right)$.
2. u, u^{1}, v, v^{1} and w, w^{1} absolutely continuous on $(0,1)$
3. $\mathrm{a}=\mathrm{u}(1)$
4. $\mathrm{b}=\mathrm{v}(1)$
5. $\mathrm{c}=\mathrm{w}(1)$
6. $u(0)=v(0)=w(0)=0$
we can easily obtains the boundary problems (1-16)-(1-17),(1-18)-(1-19) and (1-20)-(1-21) are equivalent to the spectral problems:
$L_{1} \widetilde{U}=\mu_{1}^{2} \widetilde{U}$ for $\tilde{u} \in H_{1}$.
$L_{2} \tilde{V}=\mu_{2}^{2} \tilde{V}$ for $\tilde{v} \in H_{2}$
$L_{3} \widetilde{W}=\mu_{3}^{2} \widetilde{W}$ for $\widetilde{w} \in H_{3} \ldots \ldots(2-8)$
Remark 2.1: the operator L (2-5) describes the eigenvalue problem (1-2),(1-3).
Lemma 2.2: The domains $D\left(L_{1}\right), D\left(L_{2}\right)$ and $D\left(L_{3}\right)$ are dense in the spaces H_{1}, H_{2} and H_{3} respectively.

proof:[3]

lemma 2.3: the eigenvalues $\mu_{01}^{2}, \mu_{02}^{2}$ and μ_{03}^{2} of the problems(1-16)-(1-17), (1-18)-(1-19) and (1-20)-(1-21) respectively, with multiplicity coincide with eigenvalues of the operators L_{1} L_{2} and L_{3} resp.
proof : let $\widetilde{u_{i}} \in D\left(L_{1}\right), \tilde{v}_{2} \in D\left(L_{2}\right)$ and $\widetilde{w_{i}} \in D\left(L_{3}\right)$ be the eigenfunctions corresponding to the eigenvalues $\mu_{01}^{2}, \mu_{02}^{2}$, and μ_{03}^{2} of the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} resp. then:
$L_{1} \widetilde{U}_{a}=\mu_{01}^{2} \widetilde{U}_{u}$
$L_{2} \widetilde{V}_{2}=\mu_{02}^{2} \tilde{V}_{2}$

Haythab A. shahad \Wassit University

$L_{3} \widetilde{W}_{2}=\mu_{03}^{2} \widetilde{W}_{2}$
$\left(-\bar{u}_{i}, u_{i}^{1}(1)-\left(\mu_{02}^{2}+\mu_{03}^{2}\right) u_{i}(1)\right)=\mu_{01}^{2}\left(u_{i}, u_{i}(1)\right)$
$\left(-v_{i}^{11}, v_{i}^{1}(1)-\left(\mu_{01}^{2}+\mu_{03}^{2}\right) v_{i}(1)\right)=\mu_{02}^{2}\left(v_{i}, v_{i}(1)\right)$
$\left(-w_{i}^{11}, w_{i}^{1}(1)-\left(\mu_{01}^{2}+\mu_{02}^{2}\right) w_{i}(1)\right)=\mu_{03}^{2}\left(w_{i}, w_{i}(1)\right)$
We can obtain
$-u_{i}^{11}=\mu_{01}^{2} u$ and $u_{i}^{1}(1)-\left(\mu_{02}^{2}+\mu_{03}^{2}\right) u_{i}(1)=\mu_{01}^{2} u_{i}$ (1)
$-v_{i}^{11}=\mu_{01}^{2} v_{i}$ and $v_{i}^{1}(1)-\left(\mu_{01}^{2}+\mu_{03}^{2}\right) v_{i}(1)=\mu_{02}^{2} v_{i}(1)$
$-w_{i}^{11}=\mu_{03}^{2} w_{i}$ and $w_{i}^{1}(1)-\left(\mu_{01}^{2}+\mu_{02}^{2}\right) w_{i}(1)=\mu_{03}^{2} w_{i}(1)$
Then
$u_{i}^{11}+\mu_{01}^{2} u_{i}=0$
$u_{i}(0)=0$
$u_{i}^{1}(1)=\left(\mu_{01}^{2}+\mu_{02}^{2}+\mu_{03}^{2}\right) u_{i}(1)$
and
$v_{i}^{11}+\mu_{02}^{2} v_{i}=0$
$v_{i}(0)=0$
$v_{i}^{1}(1)=\left(\mu_{01}^{2}+\mu_{02}^{2}+\mu_{03}^{2}\right) v_{i}(1)$
and
$w_{i}^{11}+\mu_{03}^{2} w_{i}=0$
$w_{i}(0)=0$
$w_{i}^{1}(1)=\left(\mu_{01}^{2}+\mu_{02}^{2}+\mu_{03}^{2}\right) w_{i}(1)$
The lemma is proved.
Lemma 2.4: the eigenvalues $\varphi_{0}^{2}=\mu_{01}^{2}+\mu_{02}^{2}+\mu_{03}^{2}$ of the problem (1-2)- (1-3) with multiplicity coincide with the eigenvalues of the operator L . the similar is true for the associated functions.
Proof : let $\widetilde{u}_{1} \widetilde{v}_{2} \widetilde{w}_{2} \in D(L)$ the eigenfunctions corresponding to the eigenvalues φ_{0}^{2} of the operator L then

$$
L \widetilde{u_{1}} \tilde{v}_{2} \widetilde{w_{t}}=\varphi_{0}^{2} \widetilde{u_{t}} \widetilde{v}_{1} \widetilde{w_{i}}
$$

$\left[\begin{array}{c}v_{i} w_{i} L_{1} u_{i} \\ v_{i} w_{i} L_{1} a \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}u_{i} w_{i} L_{2} v_{i} \\ 0 \\ u_{i} w_{i} L_{2} b \\ 0\end{array}\right]+\left[\begin{array}{c}u_{i} v_{i} L_{3} w_{i} \\ 0 \\ 0 \\ u_{i} v_{i} L_{3} c\end{array}\right]=$
$\left[\begin{array}{c}\mu_{01}^{2} u_{i} v_{i} w_{i} \\ \varphi_{0}^{2} u_{i}(1) v_{i} w_{i} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}\mu_{02}^{2} u_{i} v_{i} w_{i} \\ 0 \\ \varphi_{0}^{2} u_{i} v_{i}(1) w_{i} \\ 0\end{array}\right]+\left[\begin{array}{c}\mu_{03}^{2} u_{i} v_{i} w_{i} \\ 0 \\ 0 \\ \varphi_{0}^{2} u_{i} v_{i} w_{i}(1)\end{array}\right]$

Spectral properties of the Helmholtz problem with spectral parameter Dependent conditions.

Haythab A. shahad \Wassit University

$\left[\begin{array}{c}-u_{i}^{11} v_{i} w_{i} \\ v_{i} w_{i} u_{i}^{1}(1) \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}-u_{i} v_{i}^{11} w_{i} \\ 0 \\ u_{i} w_{i} v_{i}^{1} \\ 0\end{array}\right]+\left[\begin{array}{c}-u_{i} v_{i} w_{i}^{11} \\ 0 \\ 0 \\ u_{i} v_{i} w_{i}^{1}\end{array}\right]$
$=\left[\begin{array}{c}\mu_{01}^{2} u_{i} v_{i} w_{i} \\ \varphi_{0}^{2} u_{i}(1) v_{i} w_{i} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}\mu_{02}^{2} u_{i} v_{i} w_{i} \\ 0 \\ \varphi_{0}^{2} u_{i} v_{i}(1) w_{i} \\ 0\end{array}\right]+\left[\begin{array}{c}\mu_{03}^{2} u_{i} v_{i} w_{i} \\ 0 \\ 0 \\ \varphi_{0}^{2} u_{i} v_{i} w_{i}(1)\end{array}\right]$
$\left[\begin{array}{c}-u_{i}^{11} v_{i} w_{i}-u_{i} v_{i}^{11} w_{i}-u_{i} v_{i} w_{i}^{11} \\ v_{i} w_{i} u_{i}^{1}(1) \\ u_{i} v_{i}^{1}(1) w_{i} \\ u_{i} v_{i} w_{i}^{1}(1)\end{array}\right]=\left[\begin{array}{c}\left(\mu_{01}^{2}+\mu_{02}^{2}+\mu_{03}^{2}\right) u_{i} v_{i} w_{i} \\ \varphi_{0}^{2} u_{i}(1) v_{i} w_{i} \\ \varphi_{0}^{2} u_{i} v_{i}(1) w_{i} \\ \varphi_{0}^{2} u_{i} v_{i} w_{i}(1)\end{array}\right]$
We can obtain
$u_{i}^{11} v_{i} w_{i}+u_{i} v_{i}^{11} w_{i}+u_{i} v_{i} w_{i}^{11}=-\varphi_{0}^{2} u_{i} v_{i} w_{i}$

$$
\begin{aligned}
& v_{i} w_{i} u_{i}^{1}(1)=\varphi_{0}^{2} u_{i}(1) v_{i} w_{i} \\
& u_{i} v_{i}^{1}(1) w_{i}=\varphi_{0}^{2} u_{i} v_{i}(1) w_{i}
\end{aligned}
$$

$u_{i} v_{i} w_{i}^{1}(1)=\varphi_{0}^{2} u_{i} v_{i} w_{i}(1)$
Then
$\omega_{i x x}+\omega_{i y y}+\omega_{i z z}+\varphi_{0}^{2} \omega_{i}=0$
$\omega_{i x}(1, y, z)=\varphi_{0}^{2} \omega_{i}(1, y, z)$
$\omega_{i y}(x, 1, z)=\varphi_{0}^{2} \omega_{i}(x, 1, z)$
$\omega_{i z}(x, y, 1)=\varphi_{0}^{2} \omega_{i}(x, y, 1)$
The lemma is proved.
Lemma 2.5 : the operators L_{1}, L_{2} and L_{3} are semi-bounded from below in spaces $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} resp.
Proof: [3]
Lemma 2.6 : the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} are invertible if and only if
$\mu_{1}^{2}=0, \mu_{2}^{2}=0$ and $\mu_{3}^{2}=0$ are not eigenvalues of L_{1}, L_{2} and L_{3} resp.
Proof: [4]
Lemma 2.7 : there are unboundedly increasing sequences are
$\left\{\mu_{1 n}\right\}_{0}^{\infty},\left\{\mu_{2 n}\right\}_{0}^{\infty}$ and $\left\{\mu_{3 n}\right\}_{0}^{\infty}$ of eigenvalues of the boundary value problems (1-16)-(1-17),(1-
18)-(1-19) and (1-20)-(1-21) respectively:
$\mu_{11}^{2}<\mu_{12}^{2}<\mu_{13}^{2}<\cdots<\mu_{1 n}^{2}<\cdots$
$\mu_{21}^{2}<\mu_{22}^{2}<\mu_{23}^{2}<\cdots<\mu_{2 n}^{2}<\cdots$
and
$\mu_{31}^{2}<\mu_{32}^{2}<\mu_{33}^{2}<\cdots<\mu_{3 n}^{2}<\cdots$
Moreover, the eigenfunctions $\mathrm{U}_{\mathrm{n}}(\mathrm{x}), \mathrm{V}_{\mathrm{n}}(\mathrm{y})$, and $\mathrm{W}_{\mathrm{n}}(\mathrm{z})$ corresponding to $\mu_{1 n}^{2}, \mu_{2 n}^{2}$ and $\mu_{3 n}^{2}$ respectively, has exactly n simple zeros in the interval $[0,1]$.
Proof:[5,12]

Haythab A. shahad \Wassit University

Remarks 2.8:

1. since $\mathrm{D}(\mathrm{L})=\mathrm{D}\left(\mathrm{L}_{1}\right) * \mathrm{D}\left(\mathrm{L}_{2}\right) * \mathrm{D}\left(\mathrm{L}_{3}\right)$ and $\mathrm{D}\left(\mathrm{L}_{1}\right), \mathrm{D}\left(\mathrm{L}_{2}\right)$ and $\mathrm{D}\left(\mathrm{L}_{3}\right)$ dense in $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} resp., then $\mathrm{D}(\mathrm{L})$ is dense in H .
2. since the operators L_{1}, L_{2} and L_{3} are semi-bounded from below then L is semibounded from below in H .
3. addition the equations (2.9)-(2.10) and (2.11) we get: $\left(\mu_{11}^{2}+\mu_{21}^{2}+\mu_{31}^{2}\right)<\left(\mu_{12}^{2}+\mu_{22}^{2}+\mu_{32}^{2}\right)<\cdots<\left(\mu_{1 n}^{2}+\mu_{2 n}^{2}+\mu_{3 n}^{2}\right)<\cdots$
then $\varphi_{1}^{2}<\varphi_{2}^{2}<\cdots<\varphi_{n}^{2}<\cdots$
there is an unboundedly increasing sequence $\left\{\varphi_{n}^{2}\right\}_{0}^{\infty}$ of eigenvalues of the Helmholtz problem (1-2)-(1-3).

Lemma 2.9:

1. the operator L_{1} is symmetric with respect to H_{1}.
2. the operator L_{2} is symmetric with respect to H_{2}.
3. the operator L_{3} is symmetric with respect to H_{3}
proof:
4. let \tilde{u}_{1} and $\tilde{u}_{2} \in D\left(L_{1}\right)$

$$
\begin{aligned}
\left\langle L_{1} \tilde{u}_{1}, \tilde{u}_{2}\right\rangle_{1} & =\left\langle L_{1}\left(u_{1}, a_{1}\right),\left(u_{2}, a_{2}\right)\right\rangle_{1}=\left\langle L_{1}\left(u_{1}, u_{1}(1)\right),\left(u_{2}, u_{2}(1)\right)\right\rangle_{1} \\
& =\left\langle\left(-u_{1}^{11}, u_{1}^{1}(1)-\left(\mu_{2}^{2}+\mu_{3}^{2}\right) u_{1}(1)\right),\left(u_{2}, u_{2}(1)\right)\right\rangle_{1} \\
& =-\int_{0}^{1} u_{1}^{11}(x) \bar{u}_{2}(x) d x+\left[u_{1}^{1}(1)-\left(\mu_{2}^{2}+\mu_{3}^{2}\right) u_{1}\right] \bar{u}_{2}(1)
\end{aligned}
$$

Using two times the integration by parts and the equations (1-17),(1-19) and (1-21) we obtain:

$$
\begin{aligned}
& \left\langle L \tilde{u}_{1} \tilde{v}_{1} \tilde{w}_{1}, \tilde{u}_{2} \tilde{v}_{2} \tilde{w}_{2}\right\rangle=\int_{0}^{1} u_{1}(x) \bar{u}_{2}^{11}(x) d x+\left[\bar{u}_{2}^{1}(1)-\left(\mu_{2}^{2}+\mu_{3}^{2}\right) \bar{u}_{2}(1)\right]\left[u_{1}(1)\right] \\
& \\
& =\left\langle\left(u_{1}, u_{1}(1),\left(-u_{2}^{11}, u_{2}^{1}(1)-\left(\mu_{2}^{2}+\mu_{3}^{2}\right) u_{2}(1)\right)\right\rangle_{1}\right. \\
& \\
& =\left\langle\left(u_{1}, u_{1}(1), L_{1}\left(u_{2}, u_{2}(1)\right)\right\rangle_{1}\right. \\
& \\
& =\left\langle\left(u_{1}, a_{1}\right), L_{1}\left(u_{2}, a_{2}\right)\right\rangle_{1} \\
& \\
& =\left\langle\tilde{u}_{1}, L_{1} \tilde{u}_{2}\right\rangle_{1}
\end{aligned}
$$

The operator L_{1} is symmetric with respect to $<, .>$.
The proofs of $2 \& 3$ are similar to the proof of 1 .
Remark 2.10 : the operator L is symmetric with respect to $<, .>$ in H .
Lemma 2.11: the operators $\left(L_{1}-\mu_{1}^{2} I\right)^{-1},\left(L_{2}-\mu_{2}^{2} I\right)^{-1}$ and $\left(L_{3}-\mu_{3}^{2} I\right)^{-1}$ where I is the unit

DIVALA JOURNAL FOR PURE SCIENCES

Spectral properties of the Helmholtz problem with spectral parameter Dependent conditions.

Haythab A. shahad \Wassit University

operator) are compact if μ_{1}^{2}, μ_{2}^{2} and μ_{3}^{2} are not eigenvalues of $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} resp.
Proof: [6,9]
Remark 2.12: $\operatorname{since} \mu_{1}^{2}, \mu_{2}^{2}$ and μ_{3}^{2} are not eigenvalues of L_{1}, L_{2} and L_{3} resp, then $\varphi^{2}=\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}$ is not eigenvalue of the operator L then
is compact in H.

3-Greens Functions of the operators L_{1}, L_{2} and L_{3}

The solutions of the equations (1.16), (1.18) and (1-20) are given by the functions in the form:
$U(x)=c_{1} \cos \mu_{1} x+c_{2} \sin \mu_{1} x$
$W(z)=c_{5} \cos \mu_{3} z+c_{6} \sin \mu_{3} z$
Where $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ and $\mathrm{c}_{5}, \mathrm{c}_{6}$ are constants. Let $\mathrm{U}_{1}(\mathrm{x})$ and $\mathrm{U}_{2}(\mathrm{x})$ two solutions of the equation (116) such that μ_{1}^{2} is a not eigenvalue of L_{1} and satisfying the initial conditions:
$U_{1}(0)=0$
$U_{1}^{1}(0)=-1$
$U_{2}(1)=1$
$U_{2}^{1}=\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right)$
Then
$U_{1}(x)=-\frac{1}{\mu_{1}} \sin \mu_{1} x \quad \mu_{1} \neq 0$
$U_{2}(x)=\frac{1}{\mu_{1}}\left[\mu_{1} \cos \mu_{1}-\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) \sin \mu_{1}\right] \cos \mu_{1} x+\frac{1}{\mu_{1}}\left[\mu_{1} \sin \mu_{1}+\left(\mu_{1}^{2}+\mu_{2}^{2}+\right.\right.$
$\left.\left.\mu_{3}^{2}\right) \cos \mu_{1}\right] \sin \mu_{1} x$
And the solutions of the equations (1-18) and (1-20) ($\mathrm{V}_{1}(\mathrm{y}), \mathrm{V}_{2}(\mathrm{y})$ and $\mathrm{W}_{1}(\mathrm{z}), \mathrm{W}_{2}(\mathrm{z})$ resp. $)$ are similar to the solution $(1-16), \mathrm{U}_{1}(\mathrm{x}), \mathrm{U}_{2}(\mathrm{x})$ we get
$V_{1}(y)=-\frac{1}{\mu_{2}} \sin \mu_{2} y \quad \mu_{2} \neq 0$
$V_{2}(y)=\frac{1}{\mu_{2}}\left[\mu_{2} \cos \mu_{2}-\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) \sin \mu_{2}\right] \cos \mu_{2} y+\frac{1}{\mu_{2}}\left[\mu_{2} \sin \mu_{2}+\left(\mu_{1}^{2}+\mu_{2}^{2}+\right.\right.$ $\left.\left.\mu_{3}^{2}\right) \cos \mu_{2}\right] \sin \mu_{2} y$

And

$$
\begin{align*}
& W_{1}(z)=-\frac{1}{\mu_{\mathrm{s}}} \sin \mu_{3} z \quad \mu_{3} \neq 0 \tag{3-7}\\
& W_{2}(z)=\frac{1}{\mu_{\mathrm{s}}}\left[\mu_{3} \cos \mu_{3}-\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) \sin \mu_{3}\right] \cos \mu_{3} z+\frac{1}{\mu_{\mathrm{s}}}\left[\mu_{3} \sin \mu_{3}+\left(\mu_{1}^{2}+\mu_{2}^{2}+\right.\right. \\
& \left.\left.\mu_{3}^{2}\right) \cos \mu_{3}\right] \sin \mu_{3} z \tag{3-9}
\end{align*}
$$

That can be observed

$$
W\left(u_{1}, u_{2}, 0\right) \neq 0, W\left(v_{1}, v_{2}, 0\right) \neq 0 \text { and } W\left(w_{1}, w_{2}, 0\right) \neq 0
$$

Haythab A. shahad \Wassit University

For all x, y and $z \in[0,1]$ where W is the wronskian determinate. and this means $\mathrm{u}_{1}, \mathrm{u}_{2}$ and $\mathrm{v}_{1}, \mathrm{v}_{2}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}$ linearly independent.
The Greens functions of the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} such that μ_{1}^{2}, μ_{2}^{2} and μ_{3}^{2} are not eigenvalues of L_{1}, L_{2} and L_{3} resp., are given by the functions in the form:
$G_{1}\left(x, t, \mu_{1}^{2}\right)= \begin{cases}u_{1}(t) u_{2}(x) & 0 \leq t<x \leq 1 \\ u_{2}(t) u_{1}(x) & 0 \leq x<t \leq 1\end{cases}$
$G_{2}\left(y, t, \mu_{2}^{2}\right)= \begin{cases}v_{1}(t) v_{2}(y) & 0 \leq t<y \leq 1 \\ v_{2}(t) v_{1}(y) & 0 \leq y<t \leq 1\end{cases}$
$G_{3}\left(z, t, \mu_{3}^{2}\right)= \begin{cases}w_{1}(t) w_{2}(z) & 0 \leq t<z \leq 1 \\ w_{2}(t) w_{1}(z) & 0 \leq z<t \leq 1\end{cases}$
Where u_{1}, u_{2} and v_{1}, v_{2} and w_{1}, w_{2} defined in the equations (3-4)-(3-5), (3-6)-(3-7) and (3-8)-(39).

Theorem 3.1: the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and L are self-adjoint in the spaces $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and H , resp.
Proof: from lemma (2-9) and remark (2-10) the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and L
$\left(L_{1}-\mu_{1}^{2}\right)^{-1} H_{1}=D\left(L_{1}\right)$
$\left(L_{2}-\mu_{2}^{2}\right)^{-1} \mathrm{H}_{2}=\mathrm{D}\left(\mathrm{L}_{2}\right)$
$\left(L_{3}-\mu_{3}^{2}\right)^{-1} \mathrm{H}_{3}=\mathrm{D}\left(\mathrm{L}_{3}\right)$
$\left(L-\varphi^{2} I\right)^{-1} H=\mathrm{D}(L)$
Let $\tilde{u}=(u(x), a) \in D\left(L_{1}\right)$ and satisfying:
$\left(L_{1}-\mu_{1}^{2}\right)^{-1} \widetilde{U}=F_{1}$ where $\mathrm{F}_{1}=\left(\mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{11}\right) \in \mathrm{H}_{1}$ and μ_{1}^{2} is a not eigenvalue of L_{1}
Let $\tilde{v}=(v(y), b) \in D\left(L_{2}\right)$ and satisfying:
$\left(L_{2}-\mu_{2}^{2}\right)^{-1} \tilde{V}=F_{2}$ where $F_{2}\left(f_{2}(y), f_{21}\right) \in H_{2}$ and μ_{2}^{2} is a not eigenvalue of L_{2}.
$\widetilde{w}=(w(z), c) \in D\left(L_{3}\right)$ and satisfying:
$\left(L_{3}-\mu_{3}^{2}\right)^{-1} \widetilde{W}=F_{3}$
where $F_{3}\left(f_{3}(z), f_{31}\right) \in H_{3}$ and μ_{3}^{2} is a not eigenvalue of L_{3}.
Then $\tilde{\omega}=\left(\omega, \omega_{0}\right) \in D(L)$ and $\tilde{\omega}=\tilde{u} \tilde{v} \tilde{w}$ and $\omega_{0}=a b c$ and satisfying:
$\left(L-\varphi^{2} I\right) \quad \widetilde{\omega}=F$
Where $\mathrm{F}=\mathrm{F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \in \mathrm{H}$ and $\varphi^{2}=\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}$ is a not eigenvalue of L .
The equations (3-17),(3-18) and (3-19) are nonhomogeneous differential equations have solutions are given by:[7]
$U(x)=k_{1} u_{1}(x)+k_{2} u_{2}(x)+\int_{0}^{1} G_{1}\left(x, t, \mu_{1}^{2}\right) f_{1}(t) d t$
$\mathrm{a}=\mathrm{u}(1)$
and
$V(x)=k_{3} v_{1}(y)+k_{4} v_{2}(y)+\int_{0}^{1} G_{2}\left(y, t, \mu_{2}^{2}\right) f_{2}(t) d t$
$\mathrm{b}=\mathrm{v}(1)$

DIYALA JOURNAL FOR PURE SCIENCES

Spectral properties of the Helmholtz problem with spectral parameter Dependent conditions.
Haythab A. shahad \Wassit University
and
$W(z)=k_{5} w_{1}(z)+k_{6} w_{2}(z)+\int_{0}^{1} G_{3}\left(z, t, \mu_{3}^{2}\right) f_{3}(t) d t$
$\mathrm{c}=\mathrm{w}(1)$
where $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}$ and $\mathrm{k}_{5}, \mathrm{k}_{6}$ are constants and $G_{1}\left(x, t, \mu_{1}^{2}\right), G_{2}\left(y, t, \mu_{2}^{2}\right)$ and $G_{3}\left(z, t, \mu_{3}^{2}\right)$ defined in equations (3-10),(3-11) and (3-12).
To find the constants we obtain:
$u^{11}(x)-\mu_{1}^{2} u(x)=f_{1}(x)$
$\mathrm{u}(0)=0$
$U^{1}(1)-\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) U(1)=f_{11}$
and
$V^{11}(y)-\mu_{2}^{2} v(y)=f_{2}(y)$
$\mathrm{V}(0)=0$
$V^{1}(1)-\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) V(1)=f_{21}$
and
$W^{11}(z)-\mu_{3}^{2} w(z)=f_{3}(z)$
$W^{1}(1)-\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right) W(1)=f_{31}$
Then
$U(x)=-\frac{f_{11} \sin \mu_{1} x}{v_{1} \mu_{1}}+\int_{0}^{1} G_{1}\left(x, t, \mu_{1}^{2}\right) f_{1}(t) d t \quad c_{1} \mu_{1} \neq 0$
$\mathrm{a}=\mathrm{u}(1)$
and
$V(x)=-\frac{f_{21} \sin \mu_{2} y}{c_{2} \mu_{2}}+\int_{0}^{1} G_{2}\left(y, t, \mu_{2}^{2}\right) f_{2}(t) d t \quad c_{2} \mu_{2} \neq 0$
$\mathrm{b}=\mathrm{v}(1)$
and
$W(z)=-\frac{f_{34} \sin \mu_{\mathrm{s}} z}{c_{\mathrm{B}} \mu_{\mathrm{s}}}+\int_{0}^{1} G_{3}\left(z, t, \mu_{3}^{2}\right) f_{3}(t) d t \quad c_{3} \mu_{3} \neq 0$
$\mathrm{c}=\mathrm{w}(1)$
from [4]:
$\tilde{u} \in\left(L_{1}-\mu_{1}^{2} I\right)^{-1} H_{1}$
$\tilde{v} \in\left(L_{2}-\mu_{2}^{2} I\right)^{-1} H_{2}$
$\widetilde{w} \in\left(L_{3}-\mu_{3}^{2} I\right)^{-1} H_{3}$
Then
$D\left(L_{1}\right) \quad\left(L_{1}-\mu_{1}^{2} I\right)^{-1} H_{1}$
$D\left(L_{2}\right)\left(L_{2}-\mu_{2}^{2} I\right)^{-1} H_{2}$
$D\left(L_{3}\right)\left(L_{3}-\mu_{3}^{2} I\right)^{-1} H_{3}$
Since μ_{1}^{2}, μ_{2}^{2} and μ_{3}^{2} are not eigenvalues of L_{1}, L_{2} and L_{3}, for all $F_{1}=\left(f_{1}(x), f_{11}\right) \in H_{1}$, $F_{2}=\left(f_{2}(y), f_{21}\right) \in H_{2} \quad$ and $\quad F_{3}=\left(f_{3}(z), f_{31}\right) \in H_{3}$, there exist $\widetilde{U}=(u(x), a), \tilde{V}=(v(y), b)$ and $\widetilde{W}=(w(z), c)$ such that
$\left(L_{1}-\mu_{1}^{2}\right) \quad \widetilde{U}=F_{1}$
$\left(L_{0}-\mu_{n}^{2}\right) \tilde{V}=E$

Spectral properties of the Helmholtz problem with spectral parameter Dependent conditions.
Haythab A. shahad \Wassit University
$\left(L_{3}-\mu_{3}^{2}\right) \quad \widetilde{W}=F_{3}$
We obtain u, u^{1}, v, v^{1} and w, w^{1} absolutely continuous on $[0,1]$ and $u(0)=v(0)=w(0)=0$
Then
$\widetilde{U}=(u(x), u(1)) \in D\left(L_{1}\right)$
$\tilde{V}=(v(y), v(1)) \in D\left(L_{2}\right)$
$\widetilde{W}=(w(z), w(1)) \in D\left(L_{3}\right)$
From [4]:
$\widetilde{U}=\left(L_{1}-\mu_{1}^{2} I\right)^{-1} F_{1}$
$\tilde{V}=\left(L_{2}-\mu_{2}^{2} I\right)^{-1} F_{2}$
$\widetilde{W}=\left(L_{3}-\mu_{3}^{2} I\right)^{-1} F_{3}$
Then
$\left(L_{1}-\mu_{1}^{2} I\right)^{-1} F_{1} \in D\left(L_{1}\right)$
$\left(L_{2}-\mu_{2}^{2} I\right)^{-1} F_{2} \in D\left(L_{2}\right)$
$\left(L_{3}-\mu_{3}^{2} I\right)^{-1} F_{3} \in D\left(L_{3}\right)$
So
$\left(L_{1}-\mu_{1}^{2} I\right)^{-1} H_{1} \quad D\left(L_{1}\right)$
$\left(L_{2}-\mu_{2}^{2} I\right)^{-1} H_{2} \quad D\left(L_{2}\right)$
$\left(L_{3}-\mu_{3}^{2} I\right)^{-1} H_{3} \quad D\left(L_{3}\right)$
From (3-30)-(3-33), (3-31)-(3-34) and (3-32)-(3-35) we get
$\left(L_{1}-\mu_{1}^{2} I\right)^{-1} H_{1}=D\left(L_{1}\right)$
$\left(L_{2}-\mu_{2}^{2} I\right)^{-1} H_{2}=D\left(L_{2}\right)$
$\left(L_{3}-\mu_{3}^{2} I\right)^{-1} H_{3}=D\left(L_{3}\right)$
The equations (3-20) is a nonhomogeneous differential equation has solution:
$\widetilde{\omega}=\tilde{u} \tilde{v} \tilde{w}=(u(x), a)(v(y), b)(w(z), c)=\left[\left(\frac{-f_{11} \sin \mu_{1} x}{c_{1} \mu_{1}}+\int_{0}^{1} G\left(x, t, \mu_{1}^{2}\right) f_{1}(t) d t, U(1)\right) *\right.$
$\left(\frac{-f_{32} \sin \mu_{2} y}{v_{2} \mu_{z}}+\int_{0}^{1} G_{2}\left(y, t, \mu_{2}^{2}\right) f_{2}(t) d t, V(1) *\left(\frac{-f_{33} \sin \mu_{\mathrm{s}} z}{\varepsilon_{\mathrm{s}} \mu_{\mathrm{s}}}+\int_{0}^{1} G\left(z, t, \mu_{3}^{2}\right) f_{3}(t) d t, W(1)\right)\right]$

$$
c_{1} \mu_{1} \neq 0, c_{2} \mu_{2} \neq 0
$$

From [4]
$\widetilde{\omega} \in\left(L-\varphi^{2} I\right)^{-1} H$
Then
$D(L) \quad\left(L_{1}-\mu_{1}^{2} I\right)^{-1} H$
Since φ^{2} a not eigenvalue of L, for all $F=F_{1} \mathrm{~F}_{2} \mathrm{~F}_{3}=\left(\mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{11}\right)\left(\mathrm{f}_{2}(\mathrm{y}), \mathrm{f}_{21}\right)\left(\mathrm{f}_{3}(\mathrm{z}), \mathrm{f}_{31}\right) \in \mathrm{H}$ such that $\left(L-\varphi^{2} I\right) \widetilde{\omega}=F$
We obtain ω, ω absolutely continuous on $[0,1]$ and $\omega(0)=u(0) v(0) w(0)=0$
Then
$\widetilde{\omega}=\left(\omega(x, y, z), \omega_{0}\right) \in D(L)$
From [4]:
$\widetilde{\omega}=\left(L-\varphi^{2} I\right)^{-1} F$
Then
$\left(L-\varphi^{2} I\right)^{-1} F \in D(L)$

So
$\left(L-\varphi^{2} I\right)^{-1} F \quad D(L)$
From (3-39)-(3-40) we get
$\left(L-\varphi^{2} I\right)^{-1} H=D(L)$
The lemma is proved.

4-The Basis Property of eigenfunctions

Theorem 4.1: The eigenfunction of the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and L form orthogonal basis in the spaces $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and H resp.
Proof:
The eigenvalues of the boundary problems (1-16)-(1-17), (1-18)-(1-19) and (1-20)-(1-21) we must find the intersection of the curves:

1. $\quad \tan \mu_{1}$ and $\frac{\mu_{1}}{\mu_{1}^{2}+\left(\mu_{2}^{2}+\mu_{8}^{2}\right)} \quad, \mu_{1}^{2}+\left(\mu_{2}^{2}+\mu_{3}^{2}\right) \neq 0$
(figure 1)
2. $\quad \tan \mu_{2}$ and $\frac{\mu_{2}}{\mu_{2}^{2}+\left(\mu_{1}^{2}+\mu_{\Omega}^{2}\right)} \quad, \mu_{2}^{2}+\left(\mu_{1}^{2}+\mu_{3}^{2}\right) \neq 0$
(figure 2)
3. $\tan \mu_{3}$ and $\frac{\mu_{8}}{\mu_{8}^{2}+\left(\mu_{1}^{2}+\mu_{2}^{2}\right)} \quad, \mu_{3}^{2}+\left(\mu_{1}^{2}+\mu_{2}^{2}\right) \neq 0$

It can be easily obtained that the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} have at most countable eigenvalues $\mu_{1 n}^{2}, \mu_{2 n}^{2}$ and $\mu_{3 n}^{2}$ which have the asymptotic from:
$\mu_{1 k}^{2}=(k \pi)^{2}+o\left(\frac{1}{k^{2}}\right) \quad$ as $k \rightarrow \infty$
$\mu_{2 m}^{2}=(m \pi)^{2}+o\left(\frac{1}{m^{2}}\right)$ as $m \rightarrow \infty$
$\mu_{3 n}^{2}=(n \pi)^{2}+o\left(\frac{1}{n^{2}}\right) \quad$ as $n \rightarrow \infty$
Then
$\varphi_{j}^{2}=\mu_{1 k}^{2}+\mu_{2 m}^{2}+\mu_{3 n}^{2}$
$\varphi_{j}^{2}=(k \pi)^{2}+(m \pi)^{2}+(n \pi)^{2}+o\left(\frac{1}{k^{2} m^{2} n^{2}}\right)$
The operator L has at most countable eigenvalues φ_{j} which have the asymptotic from in equation (4-4) . From the lemmas (2-5),(2-11) and theorem(3.1), the operators $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and L : compact, selfadjoint and bounded. Applying the Hilbert-Schmidt theorem [8,11], to operators $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and L we obtain that the eigenfunctions of this operators from an orthogonal basis in the spaces $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and H resp.
Theorem 4.2: let $\mathrm{k}_{0}, \mathrm{~m}_{0}$ and n_{0} be an arbitrary fixed nonnegative integers. The systems of the eigen-functions: $\left\{U_{k}\right\}_{0}^{\infty}\left(k \neq k_{0}\right),\left\{V_{m}\right\}_{0}^{\infty}\left(m \neq m_{0}\right)$ and $\left\{W_{n}\right\}_{0}^{\infty}\left(n \neq n_{0}\right)$, of the boundary problems (1-16)-(1-17), (1-18)-(1-19) and (1-20)-(1-21) resp., are complete and minimal systems.
Proof: according to theorem(4.1) the eigenfunctions:
$\widetilde{U}_{k}(x)=\left(u_{k}(x), a\right)$
$\tilde{V}_{k}(y)=\left(v_{k}(y), b\right)$
$\widetilde{W}_{k}(z)=\left(w_{k}(z), c\right)$
Of the boundary problems (1-16)-(1-17), (1-18)-(1-19) and (1-20)-(1-21) from a basis in :

Haythab A. shahad \Wassit University

$H_{1}=L_{21} \oplus c$
$H_{2}=L_{22} \oplus c$
$H_{3}=L_{23} \oplus c$
So, the system: $\left\{U_{k}(x)\right\}_{0}^{\infty},\left\{V_{m}(y)\right\}_{0}^{\infty}$ and $\left\{W(z)_{n}\right\}_{0}^{\infty}$ are complete and minimal in the spaces H_{1}, H_{2} and H_{3} resp. we denote by P_{1}, P_{2} and P_{3} the orthoprojection which is defined by the formulas:

$$
\begin{array}{lr}
P_{1} \widetilde{U}_{k}(x)=U_{k}(x) & \text { in } \mathrm{H}_{1} \\
P_{2} \widetilde{V}_{m}(x)=U_{m}(y) & \text { in } \mathrm{H}_{2} \\
P_{3} \widetilde{W}_{n}(x)=U_{n}(z) & \text { in } \mathrm{H}_{3}
\end{array}
$$

Thus, of course, codim $\mathrm{P}_{1}=\operatorname{codim} \mathrm{P}_{2}=\operatorname{codim} \mathrm{P}_{3}=1$. Then, by[10], the systems:
$\left\{P_{1} \widetilde{U}_{k}(x)\right\}_{0}^{\infty}=\left\{U_{k}(x)\right\}_{0}^{\infty}$
$\left\{P_{2} \tilde{V}_{m}(y)\right\}_{0}^{\infty}=\left\{V_{m}(y)\right\}_{0}^{\infty}$
$\left\{P_{3} \widetilde{W}_{n}(z)\right\}_{0}^{\infty}=\left\{W_{n}(z)\right\}_{0}^{\infty}$
Whose one element is omined from forms a complete and minimal systems in:
$H_{1} P_{1}=P_{1}\left(H_{1}\right)=L_{21}(0,1)$
$H_{2} P_{2}=P_{2}\left(H_{2}\right)=L_{22}(0,1)$
$H_{3} P_{3}=P_{3}\left(H_{3}\right)=L_{23}(0,1)$
Hence, the eigenfunctions: $\left\{U_{k}(x)\right\}_{0}^{\infty},\left\{V_{m}(y)\right\}_{0}^{\infty}$ and $\left\{W(z)_{n}\right\}_{0}^{\infty}$ of the boundary problems (1-16)-(1-17), (1-18)-(1-19) and (1-20)-(1-21) resp., are complete and minimal in $\mathrm{L}_{21}(0,1)$, $\mathrm{L}_{22}(0,1)$ and $\mathrm{L}_{23}(0,1)$.
Remark 4.3:
According to theorem(4.1) the eigenfunctions of Helemholtz problem (1-2)-(1-3):
$\tilde{\omega}_{j}(x, y, z)=\left(\tilde{\omega}_{j}(x, y, z), \omega_{0}\right)$
$\tilde{\omega}_{j}(x, y, z)=\tilde{\omega}_{k m n}(x, y, z)=\widetilde{U}_{k}(x) \tilde{V}_{m}(y) \widetilde{W}_{n}(z)=\left(U_{k}(x), a\right)\left(V_{m}(y), b\right)\left(W_{n}(z), c\right)$
From basis in H. so, the systems $\left\{\omega_{j}(x, y, z)\right\}_{0}^{\infty}$ are complete and minimal in H.
We denote by $\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$ the orthoprojection which is defined by the formula :
$P \tilde{\omega}_{j}(x, y, z)=\omega_{j}(x, y, z) \quad$ in H .

Haythab A. shahad \Wassit University

References

[1] Riley .K .F, Hobson, M.P , and Bence, S.J. (2002).
Mathematical methods for physics and engineering, Cambridge University press, Ch.19.ISBN 0-521-89067-5.
[2] V. P.vovar chik, C.VAK DER MEE: The inverse generalized Regge Problem. Inverse Probl.17(2001), 1831-1845.
[3] Ibrahim R ."Eigenvalue Problems for Linear Differential operators with eigenvalue parameter in the boundary conditions", m.sc. dissertation, University of Dundee, 1978.
[4] Hellwing, G. " Differential operators of Mathematical physics", U.S.A Addison Wesley 1967.
[5] P.A.Binding, P.J. Browne, K. Siddighi, " Sturm-Louville problems with Eigen parameter Dependent Conditions " proc. Edinburge math. Soc. V.37,No1 (1999), pp.57-72.
[6] Naji.M. AL-Salmaoi " Stady on Expansion theorem for some boundary value problems ", M.sc. University of Baghdad 1985.
[7] Stakgold, Ivar. " Boundary value problem of mathematical physics ", volume I , U.S.A, Macmllan 1967.
[8] Ranardy, Michael and Rogert c. " An inforduction to partial differential equations, " Texts in Applied mathematics 13 (second auditioned. New York: springer-verlag. P. 356. IBN 0-387-00444-0. 2004.
[9] Yagif Y.G and A.A, " On Basis Property for a Boundary-value problem with a Spectral parameter in the Boundary Condition ", Journal of Arts and science says: 5, mayors 2006.
[10] Ziyatkhan S. Aliyew and Nazim B. Kerimov. " Spectral properties of the Differential operators of the Fourth-order with Eigenvalue parameter Dependent Boundary Condition ", Academic Editor: Amin Bounmenir, Received 15 August 2011; Accepted 12 November 2011. [11] Nazim B.Kerimov, Ufuk Kaya, " Spectral a asymptotes and basis properties of fourth order differential operators with regular boundary conditions ", John Wiley and Sons, Lid 2013.

