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AABSTRACT 

 
The main purpose of Artificial Intelligence (AI) in clinical medicine 

is to create a system that can judge medical conditions as accurately as a 
doctor can. Many medical images are assumed classification as accurately 
as healthcare experts are when the precision of image detection and 
recognition in an image processing approach matches that of a human being.  
Training an artificial neural network (ANN) can assist experts and eradicate 
possible errors that can arise in several illness classification. As a result, this 
thesis develops and implements neural network-based methods for cancer 
classification to expose the neural network's strength in this field. 

The term ANN includes some kind of deep learning model. A special 
computer vision architecture is the Convolutional Neural Network (CNN). it 
was designed to obtain and process pixel data. Several hyper parameters that 
control neural network training such as the learning rate and optimization 
algorithm, must be evaluated to find the best neural network structure that 
has the best performance in the identification and diagnosis of tumors.  

The main aim of this thesis is determine which form of ANN is best 
for diagnosing human diseases in the terms of speed and accuracy, and to 
determine the optimum number of layers and neurons in each layer for both 
forms of CNN and Deep Neural Network (DNN) to obtain the best possible 
precision. 

The proposed methods (CNN and DNN) showed impressive results, 
especially in CNNs, for both brain tumors skin cancer diseases, and there 
was a clear superiority of CNN over DNN; The fact that the CNN relies on 
convolution filters, showed great results in extracting features due to the 
focus on the intended area of the image without the surrounding area, which 
led to a remarkable decrease in the number of parameters and the speed of 
extracting results with higher accuracy. The obtained results indicated that 
the CNN-based method has a high accuracy rate comparing with the other 
existing methods where the accuracy rate of CNN and DNN on the same 
dataset (with 80% training and 20% testing) was 99.60% and 91%  for a 
brain tumor, and 88.0%  and 82% for skin cancer. 
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������� ��� 

������� ������������ 

��� ������������ 
Medical science currently has an enormous amount of data, including 

major clinical trials, genomic analyses, and numerous imagery styles. 

Physicians in the clinical setting should be able to quickly interpret 

laboratory results and imaging to assess the best treatment plan. Objectively 

analyzing laboratory data may be done, but also subjectively analyzing 

image data. The identification of images in medical sciences plays a major 

role in the classification of images and diagnosis of diseases  [1]. 

The challenge in clinical medicine for Artificial Intelligent (AI) is to 

develop a system that can as reliably judge medical conditions as a doctor. 

Medical image analysis is a major burden for physicians and is therefore 

used to complement the image processing technique [2].  

Intelligent tools can enhance disease detection and prevention, and 

they can be a huge help to physicians. Predictive modeling is an essential 

part of many healthcare challenges' solutions. It is important to use an 

alternative method in predicting illness, training an artificial neural network 

can assist experts and eliminate potential errors that can occur in many 

illness diagnoses. As a result, this thesis tries to come up with a reasonably 

efficient solution by developing and implementing a neural network-based 

system for predicting cancer to reveal the strength of the neural network in 

this field. 

Tumors in the brain can vary from form to texture and place of the 

tumor based on a few variables. The physicians can identify and anticipate 
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the patient's recovery, depending on the type of tumor, and can also choose 

a medication that can vary from surgery, chemotherapy, and radionuclides 

to a wait-and-see plan that prevents intrusive procedures. Therefore, tumor 

grading is critical in the preparation of treatment and monitoring of care. 

Magnetic resonance brain image analysis has long been an important area of 

research, drawing researchers to work on various tasks, such as detecting 

and dividing lesions, tissue segmentation, and brain segmentation in 

newborns, infants, and adults [3]. 

Per year, there are 5.4 million new skin cancers. Early diagnosis of 

skin cancer is very important because, if detected at the first stages, the 

average five-year rate of survival falls for more than 99%, although it 

declines to just around 14% if diagnosed in its late stages [4]. 

Recently, in several problems for analyzing medical image 

applications including image segmentation, classification, and de-noising, 

deep learning (DL's) techniques have played an important part. 

Convolutional neural networks (CNN) are a type of deep learning 

architecture that is used lately to perform complex operations that involve 

the identification of local multi-dimensional features. Convolutional filters 

have been used in the diagnosis of diseases such as brain tumors and skin 

cancer, and they have provided higher precision with less complication [5]. 

��� ������������� ������ ������� �������� 
A convolutional neural network (sometimes referred to as  ConvNet) 

is a class of deep neural networks used to analyze visual imagery in deep 

learning  [6].The convolution kernels or filters that slide along input features 

and create translation equivariant responses known as feature maps are 

based on a shared-weight design, they are often known as Shift Invariant or 
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Space Invariant Artificial Neural Networks(SIANN). Surprisingly, most 

CNNs are just equivariant, rather than invariant [7]. Video and Image 

recognition, financial time series, brain-computer interfaces, natural 

language processing, recommender technologies, medical image detection, 

and image segmentation and classification are only some of the areas where 

they can be used. 

When CNN is applied to image analysis, the input is convolved by 

convolutional layers, which then transfer the output to the layer after. This 

was motivated by the reaction of the neuron to a particular stimulus in the 

human visual cortex. In image recognition, a CNN that is well-trained 

comprises of a hierarchy of details like a corner, edge, a section of an image 

[8]. A single CNN architecture has several convolutionary layers and 

pooling layers, with a completely linked layer following them. The main 

objective of a convolution layer is to abstract features that are learnable 

from the images, such. The special filter operator parameters, called a 

convolution, are educated and two inputs are taken for mathematical action, 

namely an image and a kernel. Visual characteristics can be effectively 

extracted by learning consequential kernels. The method of convolution can 

be achieved by using a filter bank where each filter is a squared mesh 

moving over the input image. Using the weight of the filter the moveable 

grid image is resumed and several filters are used to construct more 

functional maps of the convolutionary layer [9]. 

To achieve completion of image processing operations, Convolution 

is an essential component of CNN. The map size is reduced efficiently by 

pooling layers. The object forms and position of the semantic features found 

in the image are also preserved. Bundling thus reduces the convolutionary 

layer of the object to minor changes or distortions. In most cases, maximum 
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pooling is used empirically. It is normal to insert periodically the pooling 

layer between successive convolution CNN layers. The high-level inference 

of the neural network occurs through completely connected lays after 

various convolution and pooling layers, which combine all functional 

answers from the complete image to produce the final output [10]. 

Compared to other image recognition algorithms, CNN uses very 

little pre-processing. This allows the network to refine its filters (or kernels) 

utilizing automatic learning although these filters are hand-designed in 

conventional algorithms. This freedom from previous experience and human 

involvement in the extraction of features is a significant benefit [11]. 

1.3 Related Works 
In this section, the study reviews some of the several approaches and 

methods using image processing technique and deep learning that is used for 

brain tumor and skin cancer classification systems, some of them are 

described briefly as follow: 

�� ������ ����� �� ��� ������ [12] focused on the idea that a dermoscopic 

image containing a skin cancer is classified as normal or abnormal by a 

specialized problem of skin cancer classification, especially early melanoma 

identification and a deep-learning approach. The proposed approach is 

constructed around the neural network model of the VGGNet and uses a 

framework of transfer learning. The ISBI 2016 Challenge dataset for Skin 

cancer Analysis towards melanoma detection was used for their 

experiments. The dataset contains a representative mix of images labeled as 

benign or malignant, pre-partitioned into sets of 900 training images and 

379 test images. Investigational findings are promising; the approach 

suggested on the ISIC archive reaches a 78.66% sensitivity score, 

considerably greater than the existing state-of-the-art on the same data set. 
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�� ������ ��� �� �� ���� ������ [13] proposed an automatic brain tumor 

classification system by using CNN to classify the MRI images and 

diagnose a tumor in the brain. The used dataset contains the tumor and 

nontumor MRI images and collected from different online resources. 

Radiopaedia contains real cases of patients, tumor images were obtained 

from Radiopaedia and Brain Tumor Image Segmentation Benchmark 

(BRATS) 2015 testing dataset. The enormous amount of information 

provided by MRI scans thwarts manual tumor vs non-tumor classification at 

a given time. It does also have some restrictions, which means that a small 

number of images have to be accurately quantified. During the deeper 

architecture, small kernels are used. The neuron weight is small. The 

training precision is 97.5%. Similarly, there is a high validation precision 

and a very low validation loss. 

�� �������� ��� �� ������������ ��� ������ [14] proposed a hybrid 

model (CNN-KNN) for MRI image classification to detect brain tumors. 

This model integrates CNNs with K-Nearest Neighbor (KNN). In this 

model, there are 25 layers, 5 of which are Convolution layers and the 1st 

layer of the model is a dimensional input layer equal to the size of the MRI 

image. The 2nd layer in this model is a convolutional layer, which applies to 

the input image a 96 convolutional filter with a size of 11×11×3, stride 4, 

and zero paddings. Experiments are conducted on open dataset images 

chosen from BraTS 2015 and BraTS 2017 database for classification. This 

model's accuracy was determined to be 96.25%. 

�� � �������� �� ��� ������ [15] proposed a system that  is based on CNN 

algorithms  have been put to use for processing medical imagery and 

information in contrast to a manual diagnosis of a tumor, which is a 

tiresome task and involves human error. In general, the functionality is 
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extracted via a CNN, then classified via a fully connected network. A deep 

neural network approach is used in the framework and a CNN model is 

incorporated to identify MRI as tumor detected and tumor not detected. A 

mean accuracy score of 96.08% is obtainable from the model and an F1-

score of 97.3%. 

� � �� ���� � ����� ������ [16] A wide range of methods for detecting skin 

cancers were studied. They experimented with different neural networks 

using recent deep learning models such as the InceptionV4, SENet154, 

InceptionResNetV2, and the PNASNet-5-Large. Tested methods in the 2018 

Challenge Data Collection on the International Skin Imaging Collaboration 

(ISIC). For the PNASNet-5-Large model, the device obtained the best score 

of 0.76%. It was suggested that improving and optimizing the methods 

proposed could increase efficiency by using a larger training data set and 

carefully selected hyper-parameter. 

�� ��������� ��� ��������� ������ [17] Constructed an Artificial 

Convolutional Neural Networks-based model that analyzes MRI using 

matrices operations and mathematical formulas. This neural network 

calculates the probability of the presence of a tumor in the brain, and it was 

treaned on magnetic resonance images of 98 with tumors and 155 healthy 

brains. There are 253 magnetic resonance images in total in this dataset. 

Data augmentation was used to increase its size to 14 times its original size. 

The model performed exceptionally well in predicting the presence of a 

tumor, with validation data of 96.7 % and a test rate of up to 88.25%. 

�� �� ��������� �� ��� ������ [18] Proposed training two models of CNN 

and comparing them to determine the best CNN model for classifying 

tumors in Brain MRI images. The dataset used in this research is Kaggle's 

Brain MRI Images for Brain Tumor Detection. The dataset contains 253 
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images divided into two categories: 98 brain images without tumors and 155 

brain images with tumors. The result obtained a prediction accuracy of up to 

93%. 

�� ����� ��� � ��������� ������ [19] Suggested the diagnosis of brain 

tumor using MRI images through CNN models. The basis is the Resnet50 

architecture, which is one of the CNN models. The Resnet50 model's last 

five layers were removed, and eight new layers were added in their place. 

The brain tumor MRI images used in this research came from the Kaggle 

site's Brain MRI Images for Brain Tumor Detection dataset. There are two 

directories in the dataset. There are 98 tumor-free images on the first page, 

while 155 tumor images on the second folder. A precision value of 97.2% is 

obtained with this model. Googlenet, InceptionV3, Densenet201, Resnet50, 

and Alexnet models are also collected for results. 

� � Toğaçar, et al. (2020) [20] Brain MRNet is a method that is based on a 

CNN model as well. Based on care modules and the hyper-column 

methodology, this architecture features a residual network. First, the image 

in Brain MRNet is preprocessed. Then, by the image augmentation 

technique, the effects of this step are passed to attention modules for each 

image. The image is passed to convolution layers after attention modules 

choose the main image areas. Hyper-column is one of the most important 

technology in the convolution layers used by the Brain MRNet model. The 

array arrangement in the final layer retains the characteristics derived from 

the individual layers of the Brain MRNet model. The success rate of the 

Brain MRNet classification was 96.05 %. 

�� �� ���������� ��� �� � ��������� ������ [21] Because of its 

optimized architecture and ability to achieve higher accuracy, the 

ResNeXt101 was proposed as a tool for MCS cancer classification that 
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outperformed all expert dermatologists and contemporary deep learning 

approaches. The fine-tuning was carried out on seven classes of the 

HAM10000 dataset, and the performance of five pre-trained convolutional 

neural networks (ResNetXt101) and four ensemble models was compared. 

Among the group of models that includes Inceptionv3, InceptionResNetV2, 

Xception, and NASNetLarge models, the individual model (ResNetXt101) 

has the highest accuracy of 93.20 percent. 

����� ������ ����� ��� ������ ��������� ������ (2020) [22]design a 

system to detect and classify skin cancer with high accuracy and sensitivity 

by using the Convolution Neural Network (CNN) .  The dataset was 

collected from the International Skin Imaging Collaboration (ISIC).  The 

system is divided into two types which contain the following stages: image 

acquisition, preprocessing, and classification, while the second part consists 

of image acquisition, classification. There is a significant change between 

the classification with preprocessing and without preprocessing, as with 

preprocessing the accuracy decreased that return to the reason that the 

pictures that were taken to the skin are too close and do not require any 

preprocessing. The maximum obtained accuracy was 85.00%. 

��� ������� ���������� 

With the significance of the early and accurate classification of 

different types of cancers, several of the recent studies rely on Artificial 

Neural Networks (ANN), according to their outstanding performance in 

both accuracy and execution time, compared to other techniques. Several 

methods rely on using the predefined structure of neural networks, e.g., the 

VGG neural network, or propose a certain structure with a certain number of 

layers and neurons. However, enhancing the number of layers beyond the 

complexity of the features to be detected by the neural network to achieve 
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its task increases the complexity of the required computations without 

implying any improvement to the accuracy. Additionally, the use of a lower 

number of layers can dramatically reduce the accuracy of the neural 

network.  

Finding the best neural network structure, several of the 

hyperparameters that govern the neural network training, e.g., the learning 

rate and optimization algorithm, must be evaluated. This evaluation allows 

the recognition of the best neural networks with their best performance in 

tumor detection and diagnosis, according to the significance of such tasks.  

��� ��� �� ������ 
This thesis aims to clarify the usefulness of artificial neural networks 

(ANN) and distinguish which type of ANN is the best in the medical field 

and diagnose diseases with an accuracy that close the human capacity in 

terms of speed and accuracy.  This achieved by verifying the optimal 

number of layers and the number of neurons in each layer for both types 

(CNN and DNN), to achieve the highest possible accuracy and keep model 

structure complication to a minimum. Besides, the ability to use the 

recognized features in diagnosing a different type of cancer is also being 

investigated. Hence, the performance of a specific feature recognized for a 

particular tumor type is used to detect another type. Then, the same 

procedure is repeated to discover optimal features and parameters for the 

other type of cancer, and the difference between performances is clarified 

and discussed. 
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��� ������ �������� 
The thesis is segmented into five chapters� a brief description of their 

contents is given below� 

������� ���� This chapter introduces an overview of the work and related 

works. 

������� ���� �resents theoretical background for the utilized techniques to 

detect tumors and cancers, as well as the advantages and disadvantages of 

using each type of these techniques. 

������� ������ �llustrate the �roposed �ystems �mplementation. 

������� ����� Describes the experiments that are conducted to evaluate the 

proposed systems and validate the hypothesis of this work, in addition to the 

results collected from these experiments. 

������� ����� Conclusions, and lists some �uggestions for Future � ork.


