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Abstract 

As a complement to the former work of 𝐺𝑍-regular modules, in this paper along the lines of 𝑍-

regular modules due to Zelmanowitz, we improve the study of the endomorphism ring of 𝑍-

regular modules to 𝐺𝑍-regular modules. We give a sufficient condition on 𝐺𝑍-regular module 

𝑀 such that  𝑆 = 𝐸𝑛𝑑(𝑀)  is 𝜋-regular ring and we prove that 𝑅-module 𝑀 is 𝐺𝑍-regular if 

and only if 𝑆 = 𝐸𝑛𝑑(𝑀)  is 𝜋 -regular ring in case that 𝑀  is a projective finitely power 

generated 𝑅 -module. Also we show that for a 𝐺𝑍-regular 𝑅 -module 𝑀 , the center of 𝑆 =

𝐸𝑛𝑑(𝑀) , 𝐶𝑒𝑛(𝑆) , is 𝜋 -regular ring. Even further if 𝑀  is a 𝐺𝑍 -regular 𝑅 -module then 

𝑅/𝑎𝑛𝑛(𝑀) is dense in 𝐶𝑒𝑛(𝑆). 

Keywords: endomorphism ring, 𝑍 -regular module, 𝐺𝑍 -regular module, 𝜋 -regular ring, 

projective module. 
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 خلاصةال

, في هذا البحث وعلى غرار الموديولات المنتظمة من النمط 𝐺𝑍استكمالا للعمل السابق حول الموديولات المنتظمة من النمط

𝑍  بحسب زيلمانووتز, نطور دراسة حلقة التشاكلات للموديولات المنتظمة من النمط𝑍  الى الموديولات المنتظمة من النمط

𝐺𝑍 نعطي شرطا كافيا على الموديول .𝑀 المنتظم من النمط 𝐺𝑍  بحيث ان𝑆 = 𝐸𝑛𝑑(𝑀)  تكون حلقة منتظمة من النمط

𝜋  ونبرهن ان الموديول𝑀  على الحلقة𝑅  يكون منتظم من النمط𝐺𝑍  اذا وفقط اذا كانت𝑆 = 𝐸𝑛𝑑(𝑀)  حلقة منتظمة من

من  𝑀. ايضا نبين ان للموديول المنتظم  𝑅هو اسقاطي منتهي قوى التولد على الحلقة  𝑀ول في حالة كون المودي 𝜋النمط 

𝑆يكون مركز حلقة التشاكلات  𝑅على الحلقة  𝐺𝑍النمط  = 𝐸𝑛𝑑(𝑀) ,𝐶𝑒𝑛(𝑆),  هو حلقة منتظمة من النمط𝜋 ابعد من .

 .𝐶𝑒𝑛(𝑆)تكون كثيفة في  𝑅/𝑎𝑛𝑛(𝑀)فان  𝑅على الحلقة  𝐺𝑍هو موديول منتظم من النمط  𝑀ذلك اذا كان 

, حلقة منتظمة من النمط 𝐺𝑍 , موديول منتظم من النمط 𝑍 , موديول منتظم من النمط حلقة تشاكلات  الكلمات المفتاحية:

 𝜋موديول اسقاطي ,. 

Introduction 

Throughout this paper all rings are commutative with identity and all modules are left unitary, 

unless otherwise stated. For an 𝑅-module 𝑀, 𝑆 = 𝐸𝑛𝑑(𝑀), 𝑇(𝑀) and 𝐶𝑒𝑛(𝑆) will be denote 

the endomorphism ring of 𝑀, the trace of 𝑀 and the center of the endomorphism ring 𝑆 =

𝐸𝑛𝑑(𝑀) respectively. It is well known that a ring 𝑅 is called regular (in the sense of Von 

Neumann) if for each 𝑎 ∈ 𝑅 , there exists 𝑏 ∈ 𝑅  that 𝑎𝑏𝑎 = 𝑎  [1]. McCoy in [2] was 

generalized the concept of regular rings to 𝜋-regular rings, a ring 𝑅 is said to be 𝜋-regular if for 

each 𝑎 ∈ 𝑅  there exist 𝑏 ∈ 𝑅  and a positive integer 𝑛  such that 𝑎𝑛𝑏𝑎𝑛 = 𝑎𝑛 . Just like the 

concept of regular rings was extended to modules in two different ways by Feildhouse[3] and 

Zelmanowitz[4], the concept of 𝜋-regular rings extended to modules in [5] and [6] to two non-

equal concepts. Following [7], we denoted Fieldhouse’ and Zelmanowitz’ regular modules by 

𝐹-regular and 𝑍-regular modules respectively. Recall that an 𝑅-module 𝑀 is 𝐹-regular if each 

submodule of 𝑀 is pure [3] and an 𝑅-module 𝑀 is 𝑍-regular if for each 𝑚 ∈ 𝑀 there exists 𝑓 ∈

𝑀∗ = 𝐻𝑜𝑚 (𝑀, 𝑅) such that 𝑓(𝑚)𝑚 = 𝑚 [4]. Generalizing these concepts, an 𝑅-module 𝑀 is  

called 𝐺𝐹-regular if for each 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and positive integer 𝑛 such 

that 𝑟𝑛𝑡𝑟𝑛𝑥 = 𝑟𝑛𝑥 [5]. And in a parallel form an 𝑅-module 𝑀 is said to be 𝐺𝑍-regular if for 

each 𝑥 ∈ 𝑀  and for each 𝑟 ∈ 𝑅 , there exist 𝑡 ∈ 𝑅  and a positive integer 𝑛  such that 

𝑟𝑛𝑡𝑟𝑛𝑓(𝑥)𝑥 = 𝑟𝑛𝑥  for some 𝑓 ∈ 𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅)  [6]. According to the latest 
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generalizations, a ring 𝑅 is 𝜋-regular if and only if 𝑅 is 𝐺𝐹-regular 𝑅-module if and only if 𝑅 

is 𝐺𝑍-regular 𝑅-module [6]. 𝐺𝐹-regular modules and 𝐺𝑍-regular modules studied extensively 

in [5,6,8].Thus, the primary goal of this paper will be to study the endomorphism ring of the 

𝐺𝑍-regular module 𝑀, 𝑆 = 𝐸𝑛𝑑(𝑀), and study the relationships between 𝑆 and a number of 

concepts like the trace of a module 𝑀, 𝑇(𝑀), 𝜋-regular rings, the center of 𝑆, 𝐶𝑒𝑛(𝑆) and 

others. In [4] Zelmanowitz was proved that the endomorphism ring of a 𝑍-regular module need 

not be 𝑍-regular. Motivated by this fact we investigate whether the endomorphism ring 𝑆 =

𝐸𝑛𝑑(𝑀) of a 𝐺𝑍-regular 𝑅-module 𝑀 is 𝜋-regular or not. Also we show that if 𝑀 is finitely 

power generated 𝑅 -module, then 𝑆 = 𝐸𝑛𝑑(𝑀)  is 𝜋-regular ring and we show that if the 

endomorphism ring of an 𝑅-module 𝑀, 𝑆 = 𝐸𝑛𝑑(𝑀), is 𝜋-regular then the endomorphism ring 

of any direct summand of 𝑀 is 𝜋-regular. Moreover for every 𝐺𝑍-regular 𝑅-module 𝑀  the 

center of the endomorphism ring of 𝑀, 𝐶𝑒𝑛(𝑆), is 𝜋-regular. Furthermore we give examples to 

explain and support some statements.The rest of the paper is organized as follows. Section 2 is 

devoted to set up notation and terminology that is not part of the main work. The important of 

this section is to delineate concise results that are not original but are needed for the paper. 

Section 3 address the issue of the trace of a 𝐺𝑍 -regular 𝑅 -module 𝑀 , 𝑇(𝑀) , and we 

encountered this issue in connection with the notion of the endomorphism ring of a 𝐺𝑍-regular 

𝑅-module 𝑀, 𝑆 = 𝐸𝑛𝑑(𝑀), and its center, 𝐶𝑒𝑛(𝑆). Finally, in Section 4 we present the main 

results of our work considering the endomorphism ring of a 𝐺𝑍-regular 𝑅-module 𝑀 , 𝑆 =

𝐸𝑛𝑑(𝑀), and its relationship with 𝜋-regular rings, 𝑇(𝑀), 𝐶𝑒𝑛(𝑆) and others. 

Preliminaries: 

In this section we survey some previous not original results of related work which is not part of 

the technical contribution but is needed in the rest of the paper. 

In [6] the author introduced the following definitions. 

Definitions 2.1: An 𝑅-module 𝑀 is said to be 𝐺𝑍-regular if for each 𝑚 ∈ 𝑀 and for each 𝑠 ∈

𝑅 there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛 such that 𝑠𝑛𝑡𝑠𝑛𝑓(𝑚)𝑚 = 𝑠𝑛𝑚 for same 𝑓 ∈ 𝑀∗ =

𝐻𝑜𝑚(𝑀, 𝑅). Every 𝑍-regular 𝑅-module is 𝐺𝑍-regular and a ring 𝑅 is called 𝐺𝑍-regular if and 

only if 𝑅 is 𝐺𝑍-regular as an 𝑅-module [6].  
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Recall that 𝑀 is 𝐺𝐹-regular 𝑅-module if for each 𝑚 ∈ 𝑀 and 𝑠 ∈ 𝑅 there exist 𝑡 ∈ 𝑅 and a 

positive integer 𝑛 such that 𝑠𝑛𝑡𝑠𝑛𝑚 = 𝑠𝑛𝑚 [5]. 

Every 𝐹-regular module is 𝐺𝐹-regular and a ring 𝑅 is 𝐺𝐹-regular if 𝑅 is 𝐺𝐹-regular as an 𝑅-

module [5]. 

A ring 𝑅 is 𝜋-regular if and only if 𝑅 is 𝐺𝑍-regular 𝑅-module if 𝑅 is 𝐺𝐹-regular 𝑅-module [6].  

It is well known that any 𝑍-regular module is 𝐹-regular, but the converse may not be true in 

general [7]. Analogously, over any ring a 𝐺𝑍-regular module is 𝐺𝐹-regular, but the converse 

need not be true [6]. The following proposition gives a condition such that the converse true 

[6]. 

Proposition 2.2: [6] Let 𝑚 be an element of 𝐺𝑍-regular 𝑅-module 𝑀, then for each 𝑠 ∈ 𝑅 there 

exist 𝑡 ∈ 𝑅 and a positive integer 𝑛 such that 𝑎𝑛𝑛(𝑠𝑛𝑚) = 𝑎𝑛𝑛(𝑓(𝑚)𝑠𝑛𝑡) and 𝑓(𝑚)𝑠𝑛𝑡 is an 

idempotent element. 

Proposition 2.3: [6] Suppose that 𝑀 is a projective module over a ring 𝑅. 𝑀 is 𝐺𝑍-regular 

module if and only if it is 𝐺𝐹-regular. 

The following concept introduced in [5]: 

Definition 2.4: Let 𝑃 be any submodule of an 𝑅-module 𝑀. 𝑃 is said to be 𝐺-pure if for each 

𝑠 ∈ 𝑅, there exists a positive integer 𝑛 such that 𝑠𝑛𝑀 ∩ 𝑃 = 𝑠𝑛𝑃.  

Every pure submodule is 𝐺-pure [5]. 

There are many characterizations of 𝐺𝐹 -regular modules and 𝐺𝑍 -regular modules. The 

following theorem appears in [5]. 

Theorem 2.5: [5] Let 𝑅 be any ring. The following statements are equivalent: 

(1) 𝑀 is a 𝐺𝐹-regular 𝑅-module. 

(2) 𝑅/𝑎𝑛𝑛(𝑚) is a 𝜋-regular for each 0≠ 𝑚 ∈ 𝑀. 

(3) For each 𝑚 ∈ 𝑀 and 𝑠 ∈ 𝑅 there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛 such that 𝑠𝑛+1𝑚 =

𝑠𝑛𝑚. 

(4) If 𝑁 is any submodule of 𝑀, then 𝑁 is 𝐺-pure. 

(5) For each 𝑚 ∈ 𝑀, there exists 𝑢 ∈ 𝑅 and a positive integer 𝑛 such that 𝑅𝑢𝑛𝑚  is a 𝐺-pure 

submodule. 

(6) In case 𝑀 is finitely generated 𝑅-module, then 𝑅/𝑎𝑛𝑛(𝑚) is a 𝜋-regular ring. 
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The concept of finitely power generated submodule introduced in [6]. Recall that a submodule 

𝑁  of an 𝑅 -module 𝑀  is power generated if 𝑁  is generated by the set 𝐸 =

 {𝑠1
𝑛1𝑚1, 𝑠2

𝑛2𝑚2, … } where 𝑠𝑖 ∈ 𝑅 and 𝑛𝑖 are positive integers. In case 𝐸 is finite, then 𝑁 is said 

to be finitely power generated submodule. 

Theorem 2.6: [6] An 𝑅 -module 𝑀  is 𝐺𝑍 -regular if and only if every power generated 

submodule of 𝑀 is projective and direct summed of 𝑀. 

Corollary 2.7: [6] Every finitely power generated 𝐺𝑍-regular 𝑅-module is projective. 

Corollary 2.8: [6] Every countable power generated 𝐺𝑍-regular 𝑅-module is projective. 

The following theorem gives same characterization of 𝐺𝑍-regular modules: 

Theorem 2.9:[6] The following conditions are equivalent for any 𝑅-module 𝑀: 

(1) 𝑀 is 𝐺𝑍-regular module. 

(2) For any 𝑚 ∈ 𝑀 and for any  𝑠 ∈ 𝑅 there exists a positive integer n such that the 𝑅𝑠𝑛𝑚 is 

projective direct summand of 𝑀. 

(3) For any 𝑠𝑖
𝑛𝑖𝑚𝑖 ∈ 𝑀 where 𝑚𝑖 ∈ 𝑀, 𝑠𝑖 ∈ 𝑅 and 𝑛𝑖 are positive integers 𝑖 = 1,2,3, . . . . 𝑡 we 

have that ∑ 𝑅𝑠𝑖
𝑛𝑖𝑚𝑖

𝑡
𝑖=1  is projective direct summand of 𝑀. 

Proposition 2.10: [6] The following conditions are equivalent for any projective 𝑅-module 𝑀: 

(1) 𝑀 is 𝐺𝑍-regular; 

(2) For any 𝑚 ∈ 𝑀 and 𝑠 ∈ 𝑅 there exists a positive integer n such that the 𝑅𝑠𝑛𝑚  is a direct 

summand of 𝑀. 

Proposition 2.11: [6] Suppose that 𝑀 is a projective 𝑅-module. 𝑀 is 𝐺𝑍-regular 𝑅-module if 

and only if every finitely power generated submodule of 𝑀 is direct summand. 

3. The Trace of 𝑮𝒁-regular Modules: 

Recall that the trace of an 𝑅-module 𝑀 𝑖𝑠 ∶ 
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𝑇(𝑀) = ∑ 𝑓(𝑀)

𝑓∈𝑀∗

 

where 𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅). It’s obvious that 𝑇(𝑀) is an ideal of 𝑅 and it is called the trace ideal 

of 𝑀, we denote it by 𝑇. It is known that if 𝑀 is projective module on 𝑅, then 𝑇(𝑀) = 𝑀 and 

𝑇 is pure ideal [6], which implies that 𝑇 is 𝐺-pure ideal, also 𝑎𝑛𝑛(𝑇) = 𝑎𝑛𝑛(𝑀)𝑇 [8]. 

The following proposition shows that the trace of 𝐺𝑍 -regular modules satisfies the same 

properties without assuming the module to be projective. 

Proposition 3.1:  Let 𝑀 be a 𝐺𝑍-regular 𝑅-module then: 

(1) 𝑇(𝑀) = 𝑀. 

(2) 𝑇 is 𝐺-pure ideal in 𝑅 can be generated by idempotent elements. 

(3) 𝑎𝑛𝑛(𝑇) = 𝑎𝑛𝑛(𝑀). 

Proof: 

(1) It is clear that 𝑀𝑇 ⊆ 𝑀 and  𝑀 is 𝐺𝑍-regular module, then for each 𝑚 ∈ 𝑀 and for each 

𝑟 ∈ 𝑅, there exist 𝑡 ∈ 𝑅 and a positive integer 𝑛 such that 𝑟𝑛𝑡𝑟𝑛𝑓(𝑚)𝑚 = 𝑟𝑛𝑚 for some 𝑓 ∈

𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅). But 𝑓(𝑚) ∈ 𝑇, therefore 𝑟𝑛𝑚 ∈ 𝑀𝑇. Take r=1 we get that 𝑚 ∈ 𝑀𝑇 and 

hence 𝑀 ⊆ 𝑀𝑇 which implies that 𝑀𝑇 = 𝑀. 

(2) It is clear that 𝑟𝑚𝑇 ⊆ 𝑇 ∩ 𝑟𝑚𝑅 for each 𝑟 ∈ 𝑅 and for each positive integer 𝑚. Now let 𝑡 ∈

𝑇 ∩ 𝑟𝑚𝑅, then 𝑡 ∈ 𝑇 and 𝑡 = 𝑟𝑚𝑦 for some 𝑦 ∈ 𝑅. We have to prove that 𝑡 ∈ 𝑟𝑚𝑇. Since 𝑡 ∈

𝑇, then 𝑡 = ∑ ℎ𝑖(𝑥𝑖)
𝑛
𝑖=1  where ℎ𝑖 ∈ 𝑀∗  and 𝑥𝑖 ∈ 𝑀. Because 𝑀  is 𝐺𝑍-regular 𝑅-module, so 

for each 𝑥𝑖 ∈ 𝑀  and for each 𝑟 ∈ 𝑅 , there exist s  ∈ 𝑅  and a positive integer 𝑘  such that 

𝑟𝑘𝑠𝑟𝑘𝑓(𝑥𝑖)𝑥𝑖 = 𝑟𝑘𝑥𝑖  for some 𝑓𝑖 ∈ 𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅) . Therefore 𝑟𝑘𝑡 = ∑ ℎ(𝑟𝑘𝑥𝑖)
𝑛
𝑖=1 =

∑ ℎ𝑖(𝑟𝑘𝑠𝑟𝑘𝑓𝑖(𝑥𝑖)𝑥𝑖)
𝑛
𝑖=1 . 

Put 𝑤𝑖 = 𝑓𝑖(𝑥𝑖)𝑟𝑘𝑠 givs 𝑤𝑖 = 𝑤𝑖
2 and 𝑟𝑘𝑤𝑖 = 𝑤𝑖𝑟

𝑘𝑥𝑖[6, Proposition 3.2.3]. Since this is true 

for each 𝑟 ∈ 𝑅, then 𝑊 = 1 − ∏ 1 − 𝑤𝑖 ∈ 𝑇𝑛
𝑖=1 .  
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Thus 𝑊𝑥𝑖 = 𝑅𝑥𝑖 , so 𝑡 = 𝑟𝑘𝑡  and hence 𝑡 ∈ 𝑟𝑘𝑇  which means that 𝑇 ∩ 𝑟𝑘𝑇 ⊆ 𝑟𝑘𝑇 . 

Consequently, 𝑟𝑘𝑇 = 𝑇 ∩ 𝑟𝑘𝑇 and this means that 𝑇 is a 𝐺-pure ideal. 

Now to prove the other part, let 𝑡 ∈ 𝑇, then 𝑡 = ∑ ℎ𝑖(𝑥𝑖)
𝑛
𝑖=1  where ℎ𝑖 ∈ 𝑀∗ and 𝑥𝑖 ∈ 𝑀. Since 

𝑀 is 𝐺𝑍 -regular 𝑅 -module then there exist 𝑓𝑖 ∈ 𝑀∗  such that 𝑟𝑘𝑠𝑟𝑘𝑓(𝑥𝑖)𝑥𝑖 = 𝑟𝑘𝑥𝑖 , 

i=1,2,3....n. As 𝑤𝑖 = 𝑤𝑖
2 for each 𝑟 ∈ 𝑅, then 𝑡 = ∑ ℎ𝑖(𝑥𝑖)

𝑛
𝑖=1  and 𝑇 can be generated by an 

idempotent element. 

(3) By (1) 𝑀 = 𝑀𝑇 , then 𝑎𝑛𝑛𝑅(𝑇) ⊆ 𝑎𝑛𝑛𝑅(𝑀) . On the other hand let 𝑡 ∈ 𝑇 , hence 𝑡 =

∑ ℎ𝑖(𝑥𝑖)
𝑛
𝑖=1 . Suppose that  𝑟 ∈ 𝑎𝑛𝑛𝑅(𝑀), so 𝑟𝑡 = ∑ ℎ𝑖(𝑟𝑥𝑖) = 0𝑛

𝑖=1 . Therefore 𝑟 ∈ 𝑎𝑛𝑛(𝑇)  

and 𝑎𝑛𝑛(𝑇) = 𝑎𝑛𝑛(𝑀). ∎ 

4- The Endomorphism Ring of 𝑮𝒁-Regular Modules: 

In this section we investigate the relationship between a 𝐺𝑍 -regular 𝑅 -module 𝑀  and its 

endomorphism ring 𝑆 = 𝐸𝑛𝑑(𝑀) and we seek answers to the questions:  

(1) If 𝑀 is 𝐺𝑍-regular module, is 𝑆 = 𝐸𝑛𝑑(𝑀) a 𝜋- regular ring? And 

(2) When does the converse of (1) become true?  

Also we investigate the answers for the questions with respect to the center of the 

endomorphism ring of 𝑀 which we denoted by 𝐶𝑒𝑛(𝑆). 

Lemma 4.1: Let 𝑀 be an 𝑅-module. The endomorphism ring 𝑆 is a 𝜋-regular if and only if for 

each 𝑓 ∈ 𝑆  there exists a positive integer 𝑛  such that 𝐾𝑒𝑟(𝑓𝑛)  and 𝐼𝑚(𝑓𝑛)  are direct 

summands of 𝑀. 

Proof: Let 𝑆 be a 𝜋-regular endomorphism ring, then for each 𝑓 ∈ 𝑆 there exist 𝑔 ∈ 𝑆 and a 

positive integer 𝑛 such that 𝑓𝑛𝑔 𝑓𝑛 = 𝑓𝑛 . Therefore by [10, Theorem 8, p: 23] there exist 

𝑔|𝐼𝑚(𝑓𝑛) splits the exact sequence. 

0→ 𝐾𝑒𝑟(𝑓𝑛) → 𝐾𝑒𝑟(𝑓𝑛)⨁𝐼𝑚(𝑓𝑛) → 𝐼𝑚(𝑓𝑛) → 0 
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and 𝑔𝑓𝑛 splits the exact sequence 

0 → 𝐼𝑚(𝑓𝑛) → 𝐾𝑒𝑟(𝑓𝑛)⨁𝐼𝑚(𝑓𝑛). 

 This means that the following diagram is commutative [11]. 

                                       

which implies that 𝐾𝑒𝑟(𝑓𝑛)  and 𝐼𝑚(𝑓𝑛) are direct summand of 𝑀. 

Conversely, suppose that for each 𝑓 ∈ 𝑆, there exists a positive integer 𝑛 such that 𝐾𝑒𝑟(𝑓𝑛) 

and 𝐼𝑚(𝑓𝑛) is direct summand of 𝑀. Then there exists 𝑔́, 𝐼𝑚(𝑓𝑛) → 𝑀 such that 𝑦𝑔́𝑓𝑛 = 𝑦 

for each 𝑦 ∈ 𝐼𝑚(𝑓𝑛), that is 𝑥𝑓𝑛𝑔́𝑓𝑛 = 𝑥𝑓𝑛 for each 𝑥 ∈ 𝑀. But 𝐼𝑚(𝑓𝑛) is a direct summand 

of 𝑀, so we can extend 𝑔́ to 𝑔 on 𝑀 by taking 𝑔 = 0, on the other supplement of the summand. 

Therefore, for any 𝑥 ∈ 𝑀 , 𝑥𝑓𝑛𝑔𝑓𝑛 = 𝑥𝑓𝑛  which implies that 𝑓𝑛𝑔𝑓𝑛 = 𝑓𝑛 . Thus 𝑆  is 𝜋 -

regular ring. ∎ 

The following example shows that there is a 𝐺𝑍-regular module 𝑀 = 𝑃 ⊕ 𝑁 such that the 

endomorphism ring of 𝑃  and the endomorphism ring of 𝑁  are 𝜋 -regular rings, but 𝑀∗ =

𝐸𝑛𝑑(𝑀) is not 𝜋-regular. 

Example 4.2: Let 𝐹  be field. Put 𝐹𝑖 = 𝐹 , 𝑖 ∈ 𝐼 . Let 𝑅 = ∏ 𝐹𝑖
∞
𝑖=1 . Let 𝑃 = 𝑅  and 𝑁 =

⊕
𝑖 ∈ 𝐼

𝐹𝑖 ⊂ ∏ 𝐹𝑖
∞
𝑖=1 = 𝑅 . Let 𝑀 = 𝑃 ⊕ 𝑁 , then 𝑃 ,  𝑁  and 𝑀  are 𝑍 -regular module [11] and 

hence,  𝑃 ,  𝑁  and 𝑀  are 𝐺𝑍 -regular. Again by [11] 𝐸𝑛𝑑(𝑃) ≃ 𝑅 ≃ 𝐸𝑛𝑑(𝑁)  are 𝐺𝑍 -regular 

rings, so 𝜋-regular rings. Now we claim that 𝐸𝑛𝑑(𝑀) is not 𝜋-regular ring. For, let 𝑓 be the 

endomorphism of 𝑀  defined such that 𝑓𝑛: (𝑥1, 𝑥2) → (𝑥2, 0)  for same positive integer 𝑛 , 

therefore 𝐼𝑚(𝑓𝑛) =
⊕

𝑖 ∈ 𝐼
𝐹𝑖 ⊂ 𝑅 = 𝑃. Since 𝐼𝑚(𝑓𝑛) =⊕𝑖∈𝐼 𝐹𝑖 is not a direct summand of 𝑅, 

then 𝐼𝑚(𝑓𝑛) =
⊕

𝑖 ∈ 𝐼
𝐹𝑖 is not a direct summand of 𝑀 = 𝑃 ⊕ 𝑁 [11]. Consequently, by Lemma 

4.1 𝐸𝑛𝑑(𝑀) is not 𝜋-regular ring. ∎ 
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Concerning question (1) we do have the following: 

Proposition 4.3: If 𝑀 is a 𝐺𝑍-regular finitely power generated 𝑅-module, then 𝐸𝑛𝑑(𝑀) is 𝜋-

regular ring. 

Proof: Let 𝑓 be an endomorphism of 𝑀 of such that there exists a positive integer 𝑛 with 𝑓𝑛 ∈

𝐸𝑛𝑑(𝑀) . Since 𝑀  is finitely power generated, then 𝐼𝑚(𝑓𝑛)  is finitely power generated 

submodule of 𝑀. Because 𝑀 is 𝐺𝑍-regular, so by [6, Theorem 3.2] 𝐼𝑚(𝑓𝑛) is projective and 

direct summand of 𝑀. Now we have the exact sequence 

0 → 𝐾𝑒𝑟(𝑓𝑛) → 𝑀 → 𝐼𝑚(𝑓𝑛) → 0 

Since 𝐼𝑚(𝑓𝑛) is projective, therefore by [10, Theorem 1.2.8] the above sequence is split and 

this  means that 𝑀 = 𝐼𝑚(𝑓𝑛) ⊕ 𝐾𝑒𝑟(𝑓𝑛). Thus 𝐸𝑛𝑑(𝑀) is 𝜋-regular ring by Lemma 4.1.∎ 

It is well know that if 𝑀 is an 𝑅-module, 𝑁 is a direct summand of 𝑀 and 𝜋 is the projection of 

𝑀 onto 𝑁, then 𝜋 is an idempotent of 𝑆 = 𝐸𝑛𝑑(𝑀) and 𝐸𝑛𝑑(𝑁) = 𝜋𝑆𝜋. Also it is known that 

if 𝑅 is 𝜋-regular ring and 𝑥 ∈ 𝑅, then there exist 𝑦 ∈ 𝑅 and a positive integer 𝑛 such that 𝑥𝑛 =

𝑥𝑛𝑦𝑥𝑛, by taking 𝑒 = 𝑥𝑛𝑦 we get that 𝑒 is an idempotent element satisfies 𝑅𝑒 = 𝑅𝑥𝑛. 

Lemma 4.4: Let 𝑀 be an 𝑅-module and 𝑁 be any direct summand of 𝑀. If 𝐸𝑛𝑑(𝑀) is 𝜋-

regular ring, then 𝐸𝑛𝑑(𝑁) is 𝜋-regular ring. 

Proof: Let 𝑁 be any direct summand 𝑀 and 𝜋 be the projection of 𝑀 onto 𝑁. We that that 

𝐸𝑛𝑑(𝑁) = 𝜋𝑆𝜋, but 𝜋𝑆𝜋 is 𝜋-regular ring for any 𝜋-regular ring 𝑆 and any idempotent 𝜋 ∈ 𝑆, 

therefore 𝐸𝑛𝑑(𝑁) is 𝜋-regular ring.∎ 

To answer question 2 we give conditions such that the converse of Proposition 4.3 is true.  

Theorem 4.5: Let 𝑀  be a projective finitely power generated 𝑅 -module. 𝑀  is 𝐺𝑍 -regular 

module if and only if 𝐸𝑛𝑑(𝑀) is 𝜋-regular ring. 

Proof: If 𝑀  is a 𝐺𝑍 -regular module, then 𝐸𝑛𝑑(𝑀)  is 𝜋 -regular ring by Proposition 3.4. 

Conversely, suppose that 𝐸𝑛𝑑(𝑀) is a 𝜋-regular module. If 𝑀  is cyclic module and since 𝑀 is 

projective finitely power generated, then for each 𝑟 ∈ 𝑅  there exists 𝑥 ∈ 𝑅  such that 𝑀 ≃



 

   

Endomorphism Ring of 𝑮𝒁-Regular Modules 

Areej M. Abduldaim  

 

 

88 Vol: 12 No:3 , July 2016 ISSN: 2222-8373  

𝑅𝑟𝑛𝑥  for some positive integer 𝑛  such that 𝑟𝑛𝑥 = 𝑒 = 𝑒2 ∈ 𝑅 , hence, it is clear that 

𝐸𝑛𝑑(𝑀) ≃ 𝑅𝑒. Since 𝐸𝑛𝑑(𝑀) is 𝜋-regular ring, therefore 𝐸𝑛𝑑(𝑀) is 𝐺𝑍-regular 𝑅-module 

[5]. Thus 𝑅𝑒 is 𝐺𝑍-regular module which implies that 𝑀 is a 𝐺𝑍-regular module. Now for any 

module 𝑀 , by the dual basis Lemma, let {𝑟𝑖
𝑛𝑖𝑥𝑖}𝑖∈𝐼  be a generating set of 𝑀  and {𝑓𝑖}𝑖∈𝐼 ⊂

𝐸𝑛𝑑(𝑀) such that for each 𝑥 ∈ 𝑀 we have that 𝑓𝑖(𝑥) = 0 for all but finite number of 𝑖 and 𝑥 =

∑ 𝑓𝑖(𝑥)𝑖∈𝐼 𝑟𝑖
𝑛𝑖𝑥𝑖 . Define the map 𝑃𝑖: 𝑀 → 𝑅𝑟𝑖

𝑛𝑖𝑥𝑖  by 𝑃𝑖(𝑥) = 𝑓𝑖(𝑥)𝑟𝑖
𝑛𝑖𝑥𝑖  for each 𝑥 ∈ 𝑀 . 

Therefore 𝑃𝑖 is an endomorphism of 𝑀. Since 𝐸𝑛𝑑(𝑀) is 𝜋-regular ring, then by Lemma 4.1 

we get that 𝑃𝑖(𝑀) is a direct summand of 𝑀 and hence, a direct summand of 𝑅𝑟𝑖
𝑛𝑖𝑥𝑖, so 𝑃𝑖(𝑀) 

is cyclic and by Lemma 4.4 the endomorphism of 𝑃𝑖(𝑀) is 𝜋-regular. Hence, by the first part 

of this theorem we conclude that 𝑃𝑖(𝑀)  is a 𝐺𝑍-regular module. Now by [6, Proposition 3.4.2] 

and [5, Corollary 24] the module 
⊕

𝑖 ∈ 𝐼
𝑃𝑖(𝑀)   is 𝐺𝑍-regular. However, 𝑀 = ∑ 𝑃𝑖(𝑀)𝑖∈𝐼 , so it 

is clear that there is a natural epimorphism 
⊕

𝑖 ∈ 𝐼
𝑃𝑖(𝑀) → ∑ 𝑃𝑖(𝑀)𝑖∈𝐼 → 0 . Since 𝑀 =

∑ 𝑃𝑖(𝑀)𝑖∈𝐼  is projective, then 𝑀 is direct summand of 
⊕

𝑖 ∈ 𝐼
𝑃𝑖(𝑀) [10, Theorem 1.28, P:23], 

but 
⊕

𝑖 ∈ 𝐼
𝑃𝑖(𝑀)  is 𝐺𝑍 -regular module wherefore 𝑀  is 𝐺𝑍 -regular module again by [6, 

Proposition 3.4.2] and [5, Corollary 24]. ∎ 

In the rest of this section we study the center of the endomorphism ring 𝑆 = 𝐸𝑛𝑑(𝑀), which 

we denoted by 𝐶𝑒𝑛(𝑆). We showed in example 4.2 that the endomorphism ring of a 𝐺𝑍-regular 

module need not be 𝜋-regular ring. However, in the following proposition we prove that 

𝐶𝑒𝑛(𝑆) is 𝜋-regular ring. 

Proposition 4.6: Let 𝑀 be an 𝑅-module. If 𝑀 is 𝐺𝑍-regular, then 𝐶𝑒𝑛(𝑆) is 𝜋-regular ring. 

Proof: Let 𝑓 ∈ 𝐶𝑒𝑛(𝑆), since 𝑀 is 𝐺𝑍-regular module then for each 𝑥 ∈ 𝑀, there exist 𝑔 ∈

𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅) and a positive integer 𝑛 such that 

𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑔(𝑓(𝑥))𝑓(𝑥) = 𝑤𝑛(𝑥)𝑓(𝑥) 

where 𝑤, 𝑣 ∈ 𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅). But since 𝑓 ∈ 𝐶𝑒𝑛(𝑆), therefore  
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𝑤𝑛(𝑥)𝑓(𝑥) = 𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑔(𝑓(𝑥))𝑓(𝑥) = 𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓(𝑔(𝑥))𝑓(𝑥) =

𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓(𝑓(𝑥))𝑔(𝑥) = 𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓2(𝑥)𝑔(𝑥).  

Now we can write 𝑤𝑛(𝑥)𝑥 as the following: 

 𝑤𝑛(𝑥)𝑥 =  𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓(𝑥)𝑔(𝑥) + [𝑤𝑛(𝑥)𝑥 − 𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓(𝑥)𝑔(𝑥)]. 

It is clear that  

𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓(𝑥)𝑔(𝑥) ∈ 𝐼𝑚(𝑓). 

Now  

𝑓(𝑤𝑛(𝑥)𝑥 − 𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓(𝑥)𝑔(𝑥)) = 𝑓(𝑤𝑛(𝑥)𝑥) − 𝑤𝑛(𝑥)𝑣(𝑥)𝑤𝑛(𝑥)𝑓2(𝑥)𝑔(𝑥) =

𝑓(𝑤𝑛(𝑥)𝑥 − 𝑤𝑛(𝑥)𝑓(𝑥)) = 𝑤𝑛(𝑥)𝑓(𝑥) − 𝑤𝑛(𝑥)𝑓(𝑥) = 0. 

Thus  

𝑀 = 𝐼𝑚(𝑓) + 𝐾𝑒𝑟(𝑓),  

but if 𝑓(𝑥) ∈ 𝐼𝑚(𝑓) ∩ 𝐾𝑒𝑟(𝑓), then 𝑓(𝑥) ∈ 𝐾𝑒𝑟(𝑓), which implies that 𝑓(𝑓(𝑥)) = 𝑓2(𝑥) =

0, and hence 𝑓(𝑥) = 0. Thus 𝑀 = 𝐼𝑚(𝑓)⨁𝐾𝑒𝑟(𝑓), so 𝐶𝑒𝑛𝑡(𝑆) is 𝜋-regular ring by Lemma 

4.1. ∎ 

Remark 4.7: Let 𝑀  be an 𝑅 -module, define a map  𝑓: 𝑅 → 𝐸𝑛𝑑(𝑀)  by 𝑓(𝑟) = 𝑓𝑟  where 

𝑓𝑟(𝑥) = 𝑟𝑥  for all 𝑥 ∈ 𝑀 . It is clear that 𝑓  is a ring homomorphism and that 𝐾𝑒𝑟(𝑓) =

𝑎𝑛𝑛(𝑀).  Hence by 𝑓  we can consetruct a ring homomorphism 𝑔: 𝑅 𝑎𝑛𝑛(𝑀)⁄ → 𝐸𝑛𝑑(𝑀) 

such that 𝑔(𝑟 + 𝑎𝑛𝑛(𝑀)) = 𝑓(𝑟) and 𝑔 is a monomorphism, consequently it can be consider 

𝑅 𝑎𝑛𝑛(𝑀)⁄  as a subring of 𝐸𝑛𝑑(𝑀) and moreover 𝑅̅ = 𝑅 𝑎𝑛𝑛(𝑀)⁄ ⊆ 𝐶𝑒𝑛(𝑠). 

We mention that if 𝑓: 𝑀 → 𝑅  is homomorphism, then for each 𝑦 ∈ 𝑀  define the 

homomorphism, 𝑓𝑦: 𝑀 → 𝑀 by 𝑓𝑦(𝑥) = 𝑦 𝑓(𝑥) for all 𝑥 ∈ 𝑀 [13]. 

The following proposition and its corollaries appears in [12] 
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Proposition 4.8: Let 𝑀  be an 𝑅 -module. If 𝑇(𝑀)  is generated by an idempotent and 

𝑎𝑛𝑛(𝑀) = 𝑎𝑛𝑛(𝑇), then 𝐶𝑒𝑛(𝑆) = 𝑅/𝑎𝑛𝑛(𝑀). 

Proof: Let 𝑔 ∈ 𝐶𝑒𝑛(𝑆), then 𝑔 ∘ 𝑓𝑦 = 𝑓𝑦 ∘ 𝑔 for each 𝑦 ∈ 𝑀, where 𝑓𝑦(𝑥) = 𝑦𝑓(𝑥) for each 

𝑥 ∈ 𝑀  as defined above. Thus 𝑔 𝑜 𝑓𝑦(𝑥) = 𝑓𝑦 𝑜 𝑔(𝑥), that is 𝑔 (𝑓𝑦(𝑥)) = 𝑓𝑦(𝑔(𝑥)), which 

means that 𝑔 (𝑦(𝑓(𝑥))) = 𝑦𝑓(𝑔(𝑥)). Hence 𝑓(𝑥)𝑔(𝑦) = 𝑦. 𝑓(𝑔(𝑥)) … (*). Since 𝑇(𝑀) is 

generated by an idempotent 𝑒 = 𝑒2 ∈ 𝑇(𝑀), then 𝑒 = ∑ 𝑓𝑖(𝑥𝑖)𝑖∈𝐼 , where 𝑥𝑖 ∈ 𝑀 , and 𝑓𝑖 ∈

𝑀∗ = 𝐻𝑜𝑚(𝑀, 𝑅) . Therefore 𝑒. 𝑔(𝑦) = ∑ 𝑓𝑖(𝑥𝑖)𝑖∈𝐼 𝑔(𝑦)  for each 𝑦 ∈ 𝑀 , so that by (*) 

𝑔(𝑒. 𝑦) = ∑ 𝑓𝑖(𝑥𝑖)𝑖∈𝐼 𝑦. Because 𝑎𝑛𝑛(𝑀) = 𝑎𝑛𝑛(𝑇(𝑀)), thus 𝑒. 𝑔(𝑦) = 𝑔(𝑦), which implies 

that 𝑔(𝑦) = 𝑟𝑦 = 𝜑𝑟𝑦  where 𝑟 = ∑ 𝑓𝑖(𝑔(𝑥𝑖)𝑖∈𝐼 ) ∈ 𝑅 . Consequently 𝑔 ∈ 𝑅/𝑎𝑛𝑛(𝑀)  and 

hence 𝐶𝑒𝑛(𝑆) ⊆ 𝑅/𝑎𝑛𝑛(𝑀). Therefore 𝐶𝑒𝑛(𝑆) = 𝑅/𝑎𝑛𝑛(𝑀). ∎ 

Corollary 4.9: Let 𝑀 be an 𝑅-module such that 𝑇(𝑀) = 𝑅, then 𝐶𝑒𝑛(𝑆) = 𝑅. 

Proof: Since 𝑎𝑛𝑛(𝑀) ⊆ 𝑎𝑛𝑛(𝑇(𝑀)) for any 𝑅-module 𝑀  and since 𝑎𝑛𝑛(𝑇(𝑀)) = 0, then 

𝑎𝑛𝑛(𝑀) = 𝑎𝑛𝑛(𝑇(𝑀)) = 0. Hence, by Proposition 4.8 we have that 𝐶𝑒𝑛(𝑆) = 𝑅. ∎ 

Corollary 4.10: Let 𝑀  be an 𝑅-moudle. If 𝑀  is finitely generated projective module, then 

𝐶𝑒𝑛(𝑆) = 𝑅/𝑎𝑛𝑛(𝑀). 

Proof: Since 𝑀 is finitely generated projective module, then 𝑇(𝑀) is finitely generated [9]. 

Also since 𝑀 is projective, then 𝑇(𝑀) is pure and 𝑎𝑛𝑛(𝑇(𝑀)) = 𝑎𝑛𝑛(𝑀) [14]. Now we have 

that 𝑇(𝑀) is pure and finitely generated, so 𝑇(𝑀) is generated by an idempotent [9]. Therefore 

by Proposition 4.8 we have that 𝐶𝑒𝑛(𝑆) = 𝑅/𝑎𝑛𝑛(𝑀). ∎ 

With the following definition which appeared in [15] we can use 𝐺𝑍-regular modules to study 

the behavior of 𝑅/𝑎𝑛𝑛(𝑀) in 𝐶𝑒𝑛(𝑆). 

Definition 4.11: A subset 𝐷 of 𝑆 = 𝐸𝑛𝑑(𝑀) is said to be dense in 𝑆 if for every finite set 

{𝑥1, … … 𝑥𝑛} of elements of 𝑀 and any 𝛼 ∈ 𝑆, there exists 𝛿 ∈ 𝐷 such that 𝛼(𝑥𝑖) = 𝛿(𝑥𝑖) for 

1 ≤ 𝑖 ≤ 𝑛. 
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Theorem 4.12: Let 𝑀 be an 𝑅-module. If 𝑀 is a 𝐺𝑍-regular module, then 𝑅/𝑎𝑛𝑛(𝑀) is dense 

in 𝐶𝑒𝑛(𝑆). 

Proof: Let 𝑁 be a submodule of 𝑀 generated by the set {𝑥1, … … 𝑥𝑛} of 𝑀. Since 𝑀 is a 𝐺𝑍-

regular, then by [6, Theorem 3.3.2] there exists a projective submodule 𝐾 of 𝑀 such that 𝑀 =

𝑁 ⊕ 𝐾. Let 𝛽: 𝑀 → 𝑀 be a homomorphism defined by 𝛽(𝑛, 𝑘) = (𝑛, 0) for each 𝑛 ∈ 𝑁, 𝑘 ∈

𝐾 and let 𝑓 ∈ 𝐶𝑒𝑛(𝑆), accordingly for 𝛽 = 𝛽 𝑜 𝑓. Put 𝑓𝑁 = 𝑓|𝑁 then 𝑓𝑁 ∈ 𝐸𝑛𝑑(𝑁) = 𝑆́  (for 

if 𝑓𝑁: 𝑁 → 𝑀 but 𝑓 𝑜 𝛽(𝑀) = 𝛽 𝑜 𝑓(𝑀) = 𝛽(𝑓(𝑀)) ⊆ 𝑁, thus 𝑓𝑁: 𝑁 → 𝑁). We have to prove 

that 𝑓𝑁 ∈ 𝐶𝑒𝑛(𝑆́), let 𝑔 ∈ 𝑆́, then 𝑔 can be extended to an endomorphism of 𝑀, defined by 

𝑃(𝑛, 𝑘) = (𝑔(𝑛), 𝑘) for each 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾 . Therefore 𝑓 ∘ 𝜌 = 𝜌 ∘ 𝑓  which implies that 𝑔 ∘

𝑓𝑁 = 𝑓𝑁 ∘ 𝑔 . Since 𝑁  is projective by [6, Theorem 3.3.2] and finitely generated, then by 

corollary 4.10 there exists 𝑟 ∈ 𝑅, such that 𝑓(𝑥𝑖) = 𝑓𝑁(𝑥𝑖) = 𝑟𝑥𝑖 where 1 ≤ 𝑖 ≤ 𝑛. There fore 

𝑅/𝑎𝑛𝑛(𝑀) is dense in 𝐶𝑒𝑛(𝑆). ∎ 

Recall that an element 𝑚 in an 𝑅-module 𝑀 is 𝐿-regular if there exists 𝛼 ∈ 𝑀∗ = 𝐻𝑜𝑚𝑅(𝑀, 𝑅) 

such that (𝛼(𝑚))2 = 𝛼(𝑚) and 𝑚 − 𝛼(𝑚)𝑚 ∈ 𝐿(𝑀). An 𝑅-module 𝑀 is 𝐿-regular if each 

element of 𝑀 is 𝐿-regular. A ring 𝑅 is 𝐿-regular if 𝑅 is 𝐿-regular as an 𝑅-module [16]. The 

following diagram shows all implications among these properties (with no other implications 

holding, except by transitivity):      
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Conclusion 

In this work we study and investigate the relationship between 𝐺𝑍-regular 𝑅-module 𝑀 and 

their endomorphism rings 𝑆 = 𝐸𝑛𝑑(𝑀). In particular we describe 𝐺𝑍-regular modules whose 

endomorphism rings are 𝜋- regular. Moreover if 𝑀 be a projective finitely power generated 𝑅-

module, then 𝑀 is 𝐺𝑍-regular module if and only if 𝐸𝑛𝑑(𝑀) is 𝜋-regular ring. On the other 

hand we proved that if 𝑀  is 𝐺𝑍-regular module, then 𝐶𝑒𝑛(𝑆) is 𝜋-regular ring. Finely we 

exploited 𝐺𝑍-regular modules to study the behavior of 𝑅/𝑎𝑛𝑛(𝑀) in 𝐶𝑒𝑛(𝑆) such that if 𝑀 is 

a 𝐺𝑍-regular module, then 𝑅/𝑎𝑛𝑛(𝑀) is dense in 𝐶𝑒𝑛(𝑆). 
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