DIYALA JOURNAL FOR PURE SCIENCES

Synthesis and characterization number of amino phosphazne compounds.

Safaa A. Ahmed Omar J. Mohamed

Synthesis and characterization number of amino phosphazne compounds.

Safaa A. Ahmed* Omar J. Mohamed**

*Department of Chemistry - College of Education - University of Samarra

Received: 18 November 2014; Accepted: 11 January 2015

Abstract

The reaction of hexachloro cyclo triphosphazene (**A**) with 4-aminoantipyrine (**B**), 4-aminophenyl sulfone (**C**) and sulfamethoxazole (**D**) in mole ratio (1:1), in the presence of triethylamine at -80°C as HCl acceptor, provided compounds **1**, **2** and **3**. The synthesized compounds were characterized by FT-IR, ¹H and ³¹P NMR specroscopic techniques. **Keywords:** Amino phosphazene compounds , Hexachlorocyclotriphosphazene , 4-Aminoantipyrine , 4-aminophenyl sulfone, sulfamethoxazole, FT-IR Spectra, ¹H- ³¹PNMR Spectra.

تحضير وتشخيص عدد من المركبات الامينية للفوسفازين صفاء عبدالرحمن احمد عمر جعفر جاسم قسم الكيمياء - كلية التربية - جامعة سامراء

الخلاصة

تتضمن الدراسة تحضير ثلاث مشتقات للفوسفازين من تفاعل سداسي كلوروتراي فوسفازين الحلقي (A) مع كل من 4- امينو انتي بايرين (B) ،4 - امينو فنايل سلفون (C) و سلفاميثوكسزول (D) بنسبة مولية (1:1) في الاسيتون وبدرجة حرارة (80° C) بواسطة النتروجين السائل وباستعمال ثلاثي اثيل امين كمستقبل ل HCl ليعطي المركبات 1 وشخصت هذة المركبات بواسطة طيف الاشعة تحت الحمراء FT-IR وطيف الرنين النووي المغناطيسي 1 - 1 MMR فضلا عن قياس درجة الانصهار.

الكلمات المفتاحية: مركبات الفوسفازين الامينية، سداسي كلوروتراي فوسفازين الحلقي، 4-امينو انتي بايرين، 4-امينو فنايل سلفون، سلفاميثوكسزول.

^{**}Department of Chemistry- College of Education- University of Samarra

Safaa A. Ahmed Omar J. Mohamed

Introduction

Phosphazenes are a class of compounds having –P=N- group in their molecules and constitutes one of the important class of phosphorous and nitrogen chemistry ⁽¹⁻⁴⁾. Several types of cyclotriphosphazenes have been synthesized so far (Chart 1). Hexachlorocyclotriphosphazene is significant because of its interesting structure where halides can be replaced with the substituents of interests⁽⁵⁻⁷⁾.

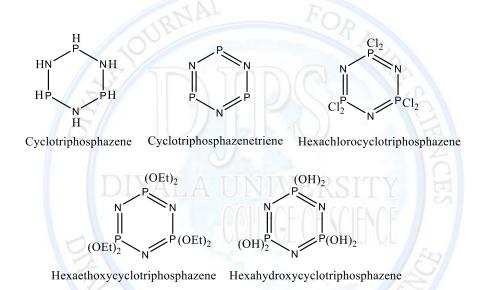


Chart 1: Examples of some cyclotriphosphazene derivatives.

Hexachlorocyclotriphosphazene (P₃N₃Cl₆), can be synthesized easily and are commonly used as starting material for the syntheses of new derivatives of interest^(8,9). A number of its derivatives have been found to reflect divrese biological and pharmacological properties ^(10,11). Recently, some interesting derivatives of P₃N₃Cl₆ have been reported as significant biopharmacores ⁽¹²⁾. However, the structural diverity of these compounds have also been studied and found interesting. For example, Vozicova and co-workers recently synthesized new derivatives (scheme 1) of P₃N₃Cl₆ and their crystal structres were reported ⁽¹³⁻¹⁵⁾. The compounds were synthesized by reacting P₃N₃Cl₆ with amines in the resence of triethyl amine in toluene⁽¹⁶⁾.

Safaa A. Ahmed Omar J. Mohamed

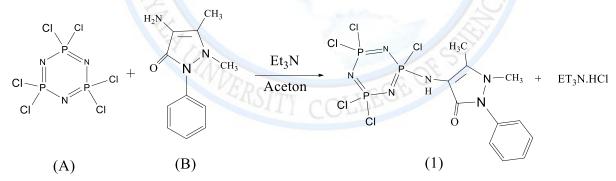
$$\begin{array}{c} \text{CI CI} \\ \text{NPN} \\ \text{NH} \\ \text{N$$

Scheme 1: Reported synthesis of some P₃N₃Cl₆ derivatives bearing aminoadamantane.

Aslan and co-workers, recently reported the synthesis of several new cyclotriphosphazene derivatives bearing Schiff base (scheme 2). Furthermore their photophysical properties were studied⁽¹⁷⁻¹⁹⁾. Some of these compounds exhibited significant fluorescence properties in the visible region^(20,21).

Scheme 2: Reported synthesis of some P₃N₃Cl₆ derivatives bearing Schiff base.

Safaa A. Ahmed Omar J. Mohamed


Instrumentation:

¹H and ³¹PNMR spectra was recorded on a Bruker Avance III 500 MHz spectrometer and was referenced to H₃PO₄ 85% (external standard). The sample was dissolved in deuterated aceton. FT-IR spectra was measured by Shimadzu FT-IR 8300 in KBr disk containing 1.2–1.7 mg of the sample and 100 mg KBr. The melting point measurement was by using Büchi melting point M-565.

Synthesis:

1. Synthesis of compound (1) PcaaP.

The reaction of $P_3N_3Cl_6$ (**A**) with 4-aminoantipyrine (**B**) was carried out simply by mixing the solution of $P_3N_3Cl_6$ in dry acetone under permanent strring in 1:1 mole ratio. The reaction mixture was placed in locked flask and cooled on liquid nitrogen bath for several hours. The product of this reaction, compound (1), was obtained after filteration and solvent evaporation, (0.431g, yield 83.7%), mp. 159-162C°. FT-IR (KBr, V_{max} , cm⁻¹): 3360 (NH stretch), 3053 (aromatic C-H stretch), 1577, 1500 (aromatic C=C stretch), 1296 (C-N stretch), 1184 (P=N stretch), 823 (P-N stretch). ³¹P NMR (202.4 MHz, DMSO- d_6): δ ppm 5.527(2P, d, PCl₂), -3.26 (1P, t, P(N₃C₁₁H₁₂O₁)). ¹H NMR (50.6 MHz, DMSO- d_6): δ ppm 7.08 (2H, t), 6.59 (3H, t), 4.51 (1H, s), 3.09 (3H, s), 2.75(3H, s) scheme 3.

Scheme 3: Synthesis of compound (1).

2. Synthesis of compound (2) PcasP.

The reaction of $P_3N_3Cl_6$ (**A**) with 4-aminophenyl sulfone (**C**) was carried out simply by mixing the solution of $P_3N_3Cl_6$ in dry acetone under permanent strring in 1:1 mole ratio. The reaction mixture was placed in locked flask and cooled on liquid nitrogen bath for several

Vol: 12 No:4 , October 2016 ISSN: 2222-8373

Safaa A. Ahmed Omar J. Mohamed

hours. The product of this reaction, compound (2), was obtained after filteration and solvent evaporation, (0.39g, yield 69.2%), mp. 97.2C°. FT-IR (KBr, V_{max} , cm⁻¹): 3375 (NH₂ stretch), 3303 (NH stretch), 3064 (aromatic C-H stretch), 1595·1495 (aromatic C=C stretch), 1296 (C-N stretch), 1183 (P=N stretch), 835 (P-N stretch). ³¹P NMR (202.4 MHz, DMSO- d_6): δ ppm 12.87 (2P, d, PCl₂), -3.206 (1P, t, P(N₂C₁₀H₁₁O₂S)). ¹H NMR (50.6 MHz, DMSO- d_6): δ ppm 7.43 (4H, d), 6.60 (4H, d), 4.43 (1H, s), 3.50 (2H, s) scheme 4.

Scheme 4: Synthesis of compound (2).

3. Synthesis of compound (3) PcabsP.

The reaction of P₃N₃Cl₆ (**A**) with sulfamethoxazole (**D**) was carried out simply by mixing the solution of P₃N₃Cl₆ in dry acetone under permanent strring in 1:1 mole ratio. The reaction mixture was placed in locked flask and cooled on liquid nitrogen bath for several hours. The product of this reaction, compound 3, was obtained after filteration and solvent evaporation, (0.458g, yield 82.1%), mp. 171C°. FT-IR (KBr, V_{max}, cm⁻¹): 3369, 3336 (NH_{asy,sy} stretch), 3218 (NH stretch), 3091, 2933 (C-H ar, alp stretch), 1570 (1495 (aromatic C=C stretch), 1319 (C-N stretch), 1201 (P=N stretch), 835 (P-N stretch). ³¹P NMR (202.4 MHz, DMSO-*d*₆): δ ppm 13.62 (2P, d, PCl₂), -3.501 (1P, t, P(N₃C₁₀H₁₀O₃S)). ¹H NMR (50.6 MHz, DMSO-*d*₆): δ ppm 10.93(1H, s), 7.56 (2H, d). 6.57 (2H, d), 6.20 (1H, s), 5.62 (1H, s), 3.39 (3H, s) scheme 5.

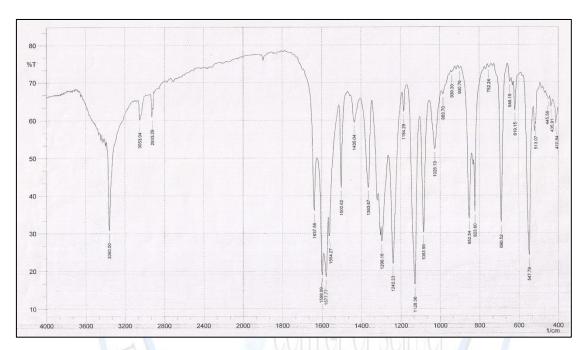
Safaa A. Ahmed Omar J. Mohamed

Scheme 5: Synthesis of compound (3).

Discussions

1. Characterization by FT-IR.

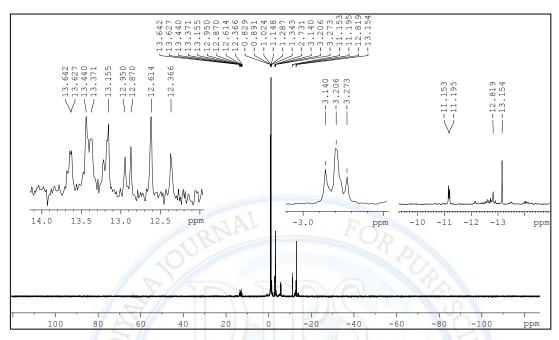
On comparing the FT-IR features of **B** with the FT-IR patterns of compound **1**, it was observed that a sharp stretching vibration at around 3435 cm⁻¹ in **B**, due to NH₂, shifted to 3360 cm⁻¹ in **1** (Scheme 6). This might be due to replacement of one of the NH₂ proton with reactant **A**, as shown in scheme **3**. In similar fashion, on comparing the FT-IR features of **C** with the FT-IR patterns of compound **2**, it was observed that a sharp stretching vibration at around 3365 cm⁻¹ in **C**, due to NH₂, shifted to 3303 cm⁻¹ in **2**. This might also be due to replacement of one of the NH₂ protons with reactant **A**, as shown in scheme 4. In similar fashion, on comparing the FT-IR features of **D** with the FT-IR patterns of compound **3**, it was observed that a sharp stretching vibration at around 3468 cm⁻¹ in **D**, due to NH₂, shifted to 3369 cm⁻¹ in **3**. This might also be due to replacement of one of the NH₂ protons with reactant **A**, as shown in scheme 5.


2. Characterization by NMR.

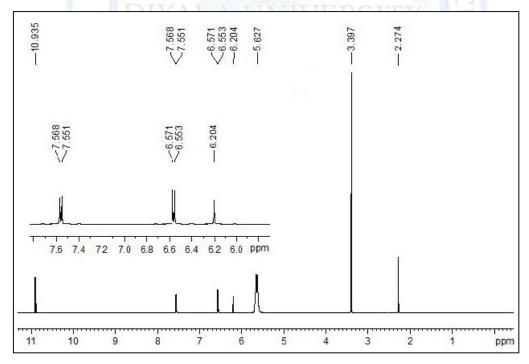
Synthesis of **1** was further characterized by ³¹PNMR. Appearance of two signals 5.52, and -3.26 ppm represent the presence of two sets of P-Cl₂ in **1**. In synthesis of **2** appearance of two signals 12.87, and -3.20 ppm represent the presence of two sets of P-Cl₂ in **2** (Scheme 7). Synthesis of **3** appearance of two signals 13.62, and -3.50 ppm represent the presence of two sets of P-Cl₂ in **3**.

Safaa A. Ahmed Omar J. Mohamed

For compound **1** ¹HNMR spectrum showed a singlet at 4.51 ppm representing the NH group, in compound **2** a singlet at 4.43 ppm representing the NH group and compound **3** a singlet at 5.62 ppm representing the NH group (Scheme 8).



Scheme 6: FT-IR of compound (1).


Vol: 12 No:4 , October 2016 ISSN: 2222-8373

Safaa A. Ahmed Omar J. Mohamed

Scheme 7: ³¹PNMR of compound (2).

Scheme 8: ¹HNMR of compound (3).

Vol: 12 No:4 , October 2016 ISSN: 2222-8373

Safaa A. Ahmed Omar J. Mohamed

Table 1: FT-IR data (cm⁻¹) for the prepared compounds

Seq.	Comp.	v(N-H)	ν(C-H) _{Ar.}	v(C=C)	ν(C-N)	ν(P=N)	ν(P-N)
1	PcaaP	3360	3053	1500	1297	1184	823
2	PcasP	3303	3064	1497	1296	1183	835
3	PcabsP	3369	3091	1494	1319	1201	835

Table 2: ³¹PNMR and ¹HNMR (δ ppm) spectral values (selected) of the synthesized compounds

	4 / / / / / / / / / / / / / / / / / / /			
Seq.	Comp.	³¹ P (d)	$^{31}\mathbf{P}\left(\mathbf{t}\right)$	¹ H (NH)
1	PcaaP	5.52	-3.19	4.51
	TOTAL	5.58	-3.26	
	DIIA	A UN	-3.33	
2	PcasP	12.87	-3.14	4.43
15	2	12.95	-3.20	159
	E.	- 7	-3.27	
3	PcabsP	13.34	-3.43	5.62
	VVF	13.62	-3.50	
		DILL CC	-3.56	

References

- 1. M. Gleria, R. De Jaeger. *Phosphazenes*: A worldwide insight, Nova Publishers, 2004.
- 2. H. Rose. Ann. Chem. 11, 131 (1834).
- 3. J. Liebig. Ann. Chem. 11, 139 (1834).
- 4. J.H. Gladstone, J.D. Holmes. J. Chem. Soc. 17, 225 (1864).
- 5. H.R. Allcock. Chem. Rev. 72, 315 (1972).

Safaa A. Ahmed Omar J. Mohamed

- 6. C.W. Allen. Chem. Rev. 91, 119 (1991).
- 7. H.R. Allcock. *Polyhedron*. 6, 119 (1987).
- 8. R. Schenck, G. Römer. *Berichte der deutschen chemischen Gesellschaft* (A and B Series), 57, 1343-1355 (1924).
- 9. P C.W. Allen. The Chemistry of Inorganic Homo- and Heterocycles, Academic Press, London, P.501, (1987).
- C. T. Laurencin; H. G. Koh; T. X. Neenan; H. R. Allcock, R. Langer. *J. Biomed. Mater. Res.* 21, 1231-1246 (1987).
- 11. (a) A. K. Andrianov, Y. Y. Svirkin, M. P. LeGolvan. *Biomacromolecules*, 5, 1999-2006 (2004); (b) H.-X. WANG, C.-Y. GAO, Chemical Journal of Chinese Universities, 10, 044 (2007).
- 12. N. Asmafiliz, Z. Kılıç, A. Öztürk, T. Hökelek, L. Y. Koç, L. Açık, O. Z. L. Kısa, A. Albay, Z. Ustündağ, A. O. Solak. *Inorganic Chemistry*, 48, 10102-10116 (2009).
- 13. H. R. Allcock; S.R. Pucher; R.J. Fitzpatrick; K. Rashid. *Biomaterials*, 13, 857-862 (1992).
- G. Giavaresi; M. Tschon; V. Borsari; J.H. Daly; J.J. Liggat; M. Fini; V. Bonazzi; A. Nicolini; A. Carpi; M. Morra; C. Cassinelli; R. Giardino. *Biomedicine and pharmacotherapy*. 58, 411-417 (2004).
- 15. R. K. Voznicova, J. Taraba, J. Přihoda, M. Alberti. Polyhedron, 27, 2077-2082 (2008).
- 16. Y.J. Jun; J.I. Kim, M.J. Jun; Y.S. Sohn. J. Inorg. Biochem. 99, 1593-1601 (2005).
- 17. K. Brandt; R. Kryszynski; T.J. Bartczak; I.P. Czomperlik. *Inorg. Chim. Acta.* 322, 138-144 (2001).
- 18. Albright and Wilson Ltd. Brit. Pat. 1016642 (1966).
- 19. F. Aslan, Z. Demirpence, R. Tatsiz, H. Turkmen, A. I. Ozturk, M. Arslan. *Zeitschrift für anorganische und allgemeine Chemie*, 634, 1140-1144 (2008).
- 20. R.N. Das; R.A. Shaw; B.C. Smith; M. Woods. *J. Chem. Soc, Dalton Trans.* 709 (1973).
- 21. D. J. Lingley; R.A. Shaw; M. Woods; S.S. Krishnamurthy. *Phosphorus Sulfur*. 4, 379 (1978).