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ABSTRACT 

  Advanced Persistent Threat (APT) is a complex type of attack that steals 

personal data by staying in the infected system for a long time. APT represents 

sophisticated attacks that are executed in multiple steps. Recently, detecting and 

classifying APT attacks using Machine Learning (ML) or Deep Learning (DL) 

algorithms has become a common approach for analyzing network traffic for 

signals and anomalous behaviors. APT attack detection approach that uses 

behavior analysis and evaluation approaches encounter many issues. Network 

traffic analysis to detect a common APT attack is one of the solutions for dealing 

with this situation. 
In this thesis, we propose two systems for classifying APT malware using 

advanced machine learning. The first, binary-class classification identifies two-

class APT malware and normal malware; the second, multi-class classification 

identifies 15 APT malware and normal malware. Moreover, each system has two 

classification subsystems: ML based on Random Forest Classifier (RFC), Light 

Gradient Boosting Machine (LightGBM), and DL using a hybrid Convolution 

Neural Network (CNN) with Long Short-Term Memory networks (LSTM).  

The main methods used are Exploratory Data Analysis (EDA) for 

detecting and removing outlier data, Extra Tree Classifier (ETC) for selecting 

essential features, and Synthetic Minority Oversampling Technique (SMOTE) 

for solving the unbalance data problem.  

A reliable APT Malware dataset with 11,107 samples spread over 16 

unique malware classes. Each proposed system is studied separately, and the 

performance results of the machine and deep learning algorithms are compared 

based on the accuracy value. At the same time, four case studies were conducted 
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to evaluate the performance of ML algorithms and the impact of using Feature 

Selection (FS) and SMOTE technology on their results.  

The machine learning results demonstrated the significant impact of 

feature selection and SMOTE technology on the performance of both proposed 

systems. The binary class classification system results show that machine 

learning has better performance than deep learning, with the random forest 

accuracy being around 0.999723 and LightGBM accuracy being 0.999480, while 

the CNN-LSTM hybrid has an accuracy of around 0.914798. The results of the 

multi-class classification system illustrated that machine learning has the best 

performance than deep learning; the LightGBM accuracy is about 0.999727, the 

random forest has an accuracy of about 0.999632, while hybrid CNN-LSTM 

achieved an accuracy of about 0.798206. 

Furthermore, the comparison of the results of the proposed systems with 

the results corresponding to the previous works proved that the two proposed 

systems have the highest classification accuracy, and this indicates the 

effectiveness of the proposed system for detecting and classifying the attack with 

a high determination and avoiding the significant risks that it causes. 
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Chapter one 
General Introduction 

1.1 Overview 

In recent years, Advanced Persistent Threats (APTs) have become a new 

security danger for companies and governments, which is a new type of network 

attack that can freely use multiple attack techniques. APT attackers use small 

companies as stepping-stones to gain access to large organizations by avoiding 

all detection [1]. The most dangerous malware is that developed by APTs, since 

it applies a high level of sophistication, and targets important victims [2]. 

APT attacks are a form of attack that uses advanced attack methods to 

carry out long-term persistent cyber-attacks on specific targets. APT attacks are 

becoming more frequent. Advanced attack methods, long duration, and a high 

degree of threat are three main characteristics of APT attacks [3]. APT attacks 

have two main objectives: one is to steal critical data and the second is to destroy 

system infrastructure [4]. 

Advanced Persistent Threat (APT) attack is a persistent, targeted attack on 

a aparticular organization and is performed through several steps. The primary 

goals of APT are data exfiltration and espionage. APT is therefore viewed as a 

newer and more sophisticated type of multi-step attack [5]. APTs are long-term 

network attacks on specific targets with attackers using advanced attack 

methods. APTs are more advanced than other forms of attacks. APT is advanced 

because it uses advanced attack tools and methods [6].  

Advanced persistent threat attacks threaten both public and private 

institutions worldwide and will continue to do so. These attacks offer a severe 

threat that is hard to see in their early stages because the attackers use various 

ategies to remain unnoticed as long as possible and to dodge effectively [7].   
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APT attacks have become the most massive threat to companies and 

governments as they are increasingly becoming the target of these attacks. APT 

attacks target the victim’s network to gain useful information or to compromise 

the network to destroy the victim’s systems or to steal the target’s data without 

getting caught [8]. 

In this thesis, a classification method of APT Malware is proposed which 

uses Machine and Deep learning algorithms. The proposed system divided into 

two branches and follow same procedure for training and testing the APT 

Malware dataset with 11,107 samples spread over 16 different unique malware 

classes: binary, multi class  classification systems  and each of them include two 

branches for classification  Machine learning branch based on Random Forest 

(RF) and Light Gradient Boosting Machine algorithms (LightGBM); Deep 

learning branch based on proposed combing hybrid Convolutional Neural 

Networks (CNN) algorithm and Long Term-Short Memory algorithm (LSTM) 

are used as a classifier to classify the attack APT malware or normal malware. 

The proposed binary–class system obtains an optimal accuracy value of 

0.999723 with random forest,0.99948 with LightGBM, and 0.914798 with 

hybrid CNN-LSTM. The proposed multi-class system obtains optimal accuracy 

values of 0.999727 with LightGBM, 0.999632 with random forest, and 0.798208 

with hybrid CNN-LSTM. 
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1.2 Related Work 
Several efforts have tried identifying and categorizing the APT problem 

with increased cyberattacks. This section reviews related work in APT detection 

and compares with them as shown below:  

 Ghaffir et al.(2018) [9]: The system is composed of three-layers 

detection, i.e., threat detection, alert correlation, and attack prediction which 

provided an accuracy of 84.4%. The system needs to be tested for real-time 

APT signature covering all seven phases of the APT life cycle. 

 Yan, et al. (2020) [10]: This study introduces a new feature that shows 

the relationship between a DNS request and the response message using deep 

learning to evaluate DNS request records. Based on the suspicious value, the 

system assesses DNS activity for threats. This study uses 4, 907, 147, 146 

DNS request records (376, 605, 606 after DNS Data Pre-processing) from a 

large university network to test the system's authenticity and correctness. 

Experiments reveal that our technique detects suspicious DNS behavior with 

97.6% accuracy, 2.3% false positives, and 96.8% recall. The suggested 

approach detects unusual DNS activities in APT. 

 Chen, W. et al. ,in (2020) [11]: In this paper, a new gene model 

combining malware behavior knowledge graph is proposed. Researchers use 

malware information to create the APT gene pool. The gene pool should 

contain APT genetics. Theoretically, genetic traits can help us identify IoT 

malware and APT. Genetic similarity algorithms can't be employed directly. 

Instead, a genetic similarity algorithm will identify APT malware.. The 

experiment is 85% accurate. The model can recognize APT gene 

organization properties. The program compares sample genes to the gene 

pool and outputs gene similarity to identify APT.  
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 Laurenza ,G. et al., in (2020) [2] : In the paper, the authors offer 

malware triage for early APT detection. The proposed solution necessitates 

a significant training time and must be retrained if new APT samples or 

classes are found. In this paper, they go from multi-class to one-class 

classification, which reduces run time and increases modularity while 

maintaining over 90% precision and accuracy. 

 Zimba ,A., et al. ,in (2020) [7]: This article proposes a new APT 

detection technique based on semi-supervised learning and complex network 

properties to overcome attack network dynamics. The goal of APT-AN is 

small-world networking. APT uses finite state machines. The method is 

supported by information from Los Alamos' 17,684-host enterprise network. 

The method analyzes huge datasets for C&C and victim APT attack features. 

APT hosts are ranked. In our framework, three-stage APT detection is 90.5% 

accurate. Results show model can identify APT hosts. 

 Zhang, et al. (2021)[12]. proposed an attribution classification method 

of APT malware in IoT using the ML approach. The method analyzes 

samples, pre-processes the acquired behavioral data, constructs a behavioral 

data set of malware samples, then uses the TF-IDF method to perform the 

feature representation forming a vector matrix and calculates the chi-square 

value of the high latitude feature vector to perform feature selection. 

SMOTE-RF model is used in the multi-class model to train and test sets for 

predicted output with accuracy of 80%. 

 C. Do Xuan and M. H. Dao(2021) [13].The proposal of a combined 

deep learning model to detect APT attacks based on network traffic is a new 

approach, and there is no research proposed and applied yet. In the 
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experimental section, combined deep learning models proved their superior 

abilities to ensure accuracy on all measurements from 93 to 98%. 

 F. J. Abdullayeva (2021)[14]: In this study, a deep neural network 

model built by adding layers was evaluated on a public database and 

compared to existing methods; the new method showed superior results in 

detecting APT attacks. This approach uses a machine learning dataset that 

includes APT1, Crypto, and other attacks. The architect's accuracy was 

98.32%.  

1.3 Problem Statement  

APT attacks are challenging to detect and allow hackers to hide within the 

network for months. While the hackers remain in the system, the company 

experiences data loss and outages regularly without knowing the cause of the 

problems; Traditional detection technologies cannot identify them efficiently.  

For the reasons mentioned above, therefore, the main problem that depends 

on this work is that detecting and classifying APT malware attack systems, which 

depend on deep and machine learning, still need an analytical study of the data 

and improved accuracy in identifying APT malware organizations.  

1.4 The aim of the Thesis 

The main aim of this work is to design and implement a system for detection 

and classification of the Advanced persistent threat (APT) malware accurately 

and rapidly based on machine learning and deep learning algorithms, which that 

help security analysts in government institutions, organizations, and large 

companies to discover and identify APTs early and accurately to avoid losses 

caused by APTs attackers as well as develop strategies to counter this type of 

attack. 
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1.5 Layout of Thesis 

Chapter One  (General Introduction) 

 The first chapter (General Introduction), the other chapters in 
this thesis are follows as:   

Chapter Two (Theoretical Background) 

This chapter provides a background and overview about 
malware, advanced persistent threat (APT), basic characteristics, and 
APT life cycle, theoretical background and techniques that are used in 
this thesis.  

Chapter Three (Proposed System Design) 

This chapter describes the proposed APT malware classification 
system with its design and implementation.  

Chapter Four (Experimental Test Results)  

This chapter explains the results and evaluation that have been 
getting from the proposed system.  

Chapter Five (Conclusions and Suggestions for Future Work) 

This chapter presents the conclusions of this work. Furthermore, 
it provides suggestions for future work.  

 


