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Abstract 

 During the recent years, creating automated systems has increased dramatically, 

especially the systems that are capable of keeping a track on people in public 

environments and identify abnormal behaviors, such as violent and suspicious 

incidents. The goal of violence detection is to determine whether an act of violence 

has taken a place. In this thesis, two proposed models for the detection of violence are 

proposed. First one is a pre-trained and modified deep neural network called CNN-

VGG16 in which transfer learning technique is applied to take advantage of the pre 

knowledge of VGG16 in detecting shapes and edges. The final layers of the default 

VGG16 structure are modified to detect the violence. The second model is a hybrid 

structure consists of VGG16 and SVM, in which the VGG16 acts as a feature 

extractor and the SVM is the classifier. The efficiency of two the approaches is 

evaluated using two datasets (Automatic Violence Detection Dataset(AvdDS) and 

Surveillance fight dataset(SfDS)). In this thesis, the effect of applying edge detection 

is observed where it is noted that the accuracy is decreased slightly after applying 

Canny edge detector. The results show that the first proposed model has achieved an 

accuracy on dataset one (~95%), Precision (~95%), Recall (~95%) and F1-score 

(~95%), but yielded an accuracy of (91% ) , Precision (~91%), Recall (~91%) and 

F1-score (~91%) after applying Canny filter. First model also attains an accuracy for 

dataset two about  (~99%), Precision (~99%), Recall (~99%) and F1-score (~99%) , 

but  (~92%), Precision (~93%), Recall (~92%) and F1-score (~92%)  using Canny 

filter. On the other hand, the results of the second model , for dataset one is (~99%), 

Precision (~99%), Recall (~99%) and F1-score (~99%) , but (~95%), Precision 

(~95%), Recall (~95%) and F1-score (~95%) after applying Canny filter. While 

second model obtains for dataset two, an accuracy about (100%), Precision (100%), 

Recall (100%) and F1-score (100%),  with and without appling the Canny filter. A 

violence detection is an important field because it represents the difference between 

death and life. However, deep learning and machine learning can be used successfully 



 

in building violence detection models. VGG16 network is an excellent feature 

extractor in the field of action recognition which was used in both proposed 

approaches. In spite of both proposed models scored excellent classification results, 

SVM classifier in the second model achieved higher accuracy than the top layers of 

the modified VGG16 network in the first proposed model. Applying Canny edge 

decreased the classification accuracy, because it is eliminate large number of features.  

In general, accuracy results obtained from dataset 2 were higher than the accuracy 

results of dataset 1, because of the indoor, homogeneous, and high resolution  nature 

of the videos in dataset 2 . 
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Chapter One 

Introduction 
1.1 Motivation 

 Most of the problems that society suffers from are related to 

abnormal human behaviors in one way or another. Although it might be 

challenging to outline anomality in human behavior, it is generally simple 

to spot when it occurs. [1]. 

 Violence is considered one of the most dangerous violations of the 

normal social habits and it may always be part of the human experience 

from the beginning of existence and its impact can be seen in various forms 

worldwide [2]. 

 Since video surveillance equipment are usually used in public areas 

like banks, colleges, and train stations to monitor and control the human 

activity, the demands raised for abnormal human behavior detection 

system that automatically detects violent and abnormal incidents [3].  

 Due to human exhaustion and inattention, it is possible that harmful 

events like fights and aggressive actions won't be detected by security staff. 

Therefore, developing an  intelligent video surveillance system that 

automatically identify abnormalities are crucial. Given the significance of 

security , research has been done in this area and several methods to 

identify anomalies in videos have been presented [4]. 

 There are several applications in the field of “computer vision” (CV) 

field have recently seen a massive update, like activity recognition , image 

classification and labelling, etc. The development and introduction of a 

new technique for machine learning known as deep learning is considered 

a breakthrough and been seen in many computer vision areas. Since 2010, 

many researchers from computer vision area have moved from 
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conventional handcrafted features descriptor to the learned-based features 

descriptor, often referred to as data-driven algorithms [5]. 

Human action recognition (HAR) is a crucial yet difficult aspect of 

analyzing human behavior. This issue involves the monitoring of 

differences in human movement and the recognition of activity by using 

machine learning algorithms [6]. A few difficulties arise in automatic 

detection of violence or in general aggressive behavior due to its subjective 

nature which imposes some obstacles in outlining what should be 

considered as violence. Besides that, some of human behaviors, might be 

misclassified which appear very similar to aggressive actions. [7] 

 This is where this thesis comes in which proposes two models to 

detect violent activity automatically. The results show that the first 

proposed model has achieved an accuracy on dataset one (~95%), Precision 

(~95%), Recall (~95%) and F1-score (~95%), but (91% ) , Precision 

(~91%), Recall (~91%) and F1-score (~91%) after applying Canny filter. 

First model also attains an accuracy for dataset two about  (~99%), 

Precision (~99%), Recall (~99%) and F1-score (~99%) , but  (~92%), 

Precision (~93%), Recall (~92%) and F1-score (~92%)  using Canny filter. 

On the other hand, the results of the second model , for dataset one is 

(~99%), Precision (~99%), Recall (~99%) and F1-score (~99%) , but 

(~95%), Precision (~95%), Recall (~95%) and F1-score (~95%) after 

applying Canny filter. While second model obtains for dataset two, an 

accuracy about (100%), Precision (100%), Recall (100%) and F1-score 

(100%),  with and without applying the Canny filter. 

1.2 Related Work”  
 Different researches in the major of violence detection are 

developed. The present survey includes previous work related to this 

thesis: 
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 A.S. Keçeli , et. al.  in 2017 [8] presented a model that is using optical 

flow and a technique based on transfer learning for detecting violence. 

Firstly, they develop a 2D templates using optical flow patterns, and the 

value of the magnitudes and the velocities . Those instance are presented 

as input to a CNN that has been previously trained, and deep features are 

retrieved. Finally, To predict violent actions, two forms of classifiers are 

developed using these attributes. Results demonstrate that the high-level 

characteristics are quite good at detecting violence. The proposed 

methodology was evaluated using three distinct datasets and the accuracy 

results were as follow HocDS 94.40% ,MovDS 96.50% and VifDS 

80.90%. 

 A. Hanson, et. al. in 2019 [9],  presented a reduced spatial encoder and 

a spatio-temporal encoder architecture for supervised violence detection. 

They made a contribution by creating and encodings that is a bidirectional 

temporal , which were then max-pooled elementwise to 

improve  representations which is based on the context. As a result, their 

Bidirectional ConvLSTM behaved more accurately than the ConvLSTM 

model for more complicated and mixed datasets like the VifDS dataset. 

Their accuracy results were 96.96% on HocDS and 100% on MovDS and 

on VifDS was  92.18%. 

 F. U. M. Ullah et.al. in 2021 [10], presented a reliable violence 

detection approach which can detect violent events in surveillance 

footages. The main parts of the proposed method were preprocessing, 

feature extraction, and learning the action sequence. Initially, a CNN was 

utilized during the phase extracting the feature to collect the data and 

attributes. Afterwards, the resulting feature map was constructed by 

concatenating remaining optical flow CNN features with high-level 

features from Darknet19 model. In the last stage, LSTM network acquired 
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and learnt the sequence characteristics for violence detection. upon final 

layer of LSTM, the outcome (violent or not) is determined. On the VifDS, 

HocDS, and SfDS datasets, the suggested technique yielded accuracy of 

98.21%, 98.8%, and 74%, respectively. 

 M. S. Kang, et. al. in 2021 [11], proposed a novel violence detection 

pipeline that can be combined with the conventional 2-dimensional 

Convolutional Neural Networks. On top of that, they presented temporal 

along with spatial attentions modules which are low complexity but 

persistently boost the efficiency of violence behavior recognition. They 

achieved an accuracy of 99.6%, 100%, ,98.0% , 92.0% , 97.8% and 

92%respectively on HocDS, MovDS, VifDS, SfDS , RlvDS and RwfDS 

datasets. 

 M. Haque, et. al. in 2022 [12], Using the Gated Recurrent Unit 

(GRU),they designed a novel Deep Convolutional Neural Network (DCNN) 

called “BrutNet”, The network is intended to function based on the patterns 

that are present in a video over several frames. For every frame in the timely-

distributed layer, convolutional layers were used to obtain the features and 

pattern of the image. In order to acquire a collection of 512 features for each 

frame, the model converts the data from 4D to 2D and encodes it. The GRU 

layer then extracts the temporal character of these frames as a 1-dimensional 

vector, and then processed by many fully-connected(dense) layers. As a 

result, a classification is carried out, with the results identifying the content 

as either violent or non-violent. On AvdDS, the model achieved an accuracy 

rating of 90% during the testing process. 

1.3 Problem Statement  
  Abnormal human behavior that comes in the shape of violence in 

public or private areas is a big problem, since it deals with human safety. 

Normally, this violence is observed and recorded by surveillance cameras 
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and analysis of these footages for the purpose of detecting these activities. 

This analysis and the decision for the specified footage if it is violent or 

nonviolent activities are the problem of this thesis.   

1.4 Aim of the Thesis 
This thesis aims to design two models for detecting violence behavior 

in  surveillance videos from different datasets. One model based on deep 

learning methodology; the other model depends on machine learning 

techniques. Also, this work aims to compare between the two proposed  

1.5 Outline of Thesis” 
 The other chapters included in this thesis are outlined as follow: 

Chapter Two: Theoretical Background 

 This chapter gives the background of violence detection models. 

Chapter Three: The Proposed Models  

 This chapter presents in detail the proposed models which are used to 

detect violence.  

Chapter Four: Results  

 This chapter explains the results that are obtained from implementing 

the proposed models. 

Chapter Five: Conclusions and Suggestions for Future work 

 This chapter presents the conclusions of this work. Furthermore, it 

provides suggestions for future work. 


