Republic of Iraq Ministry of Higher Education And Scientific Research University of Diyala College of Medicine

Detection of *Candida* Species Phenotype and Genotype In Diabetes Mellitus Patient In BaqubaTeaching Hospital

A Thesis

Submitted to The Council the College of Medicine, University of Diyala in Partial Fulfillment of The Requirements for The Master Degree Of Science In Medical Microbiology

By

Maha Mohammed Rasheed Khamis

BSc College of Science - University of Diyala

(2016)

Supervised by

Supervisor

Co-Supervisor

Assistant professor

Assistant professor

Dr. Luma T. Ahmed

Dr. Ahmed M. Athab

2018 A.D. 1440A.H.

بسم الله الرحمن الرحيم

[أمَّنْ هُو قَانِتُ آنَاءَ اللَّيْلِ سَاجِدًا وقائمًا يَحْذُرُ الآخِرةَ وَيَرْجُو رَحْمَةً رَبِّهُ قُلْ هَلْ يَسْتَوِي الَّذِينَ يَعْلَمُونَ وَالَّذِينَ لا يَعْلَمُونَ إِنَّمَا يَتَذَكَّرُ أُولُولُ الألْبَابِ]

صدق الله العظيم

سورة الزمر الآية (9)

Supervisor Certification

We certify that this dissertation entitled (Detection of Candida species phenotype and genotype in diabetes mellitus patient in Baquba teaching hospital) was prepared by (Maha Mohammed Rasheed) under our supervision at the College of Medicine - University of Diyala as a partial fulfillment of the requirements for the Degree of Master of the Science in Medical Microbiology.

In view of the available recommendation, we forward this thesis for debate by the examining committee.

Signature

Supervisor

Assistant Professor **Dr. Luma T. Ahmed**College of Medicine

Department of Microbiology
University of Diyala

Signature

Co-Supervisor

Assistant professor **Dr. Ahmed M. Athab**College of Medicine

Department of pediatrics
University of Diyala

Signature

Assistant Professor

Dr. Areej A. Hussein
Head of Microbiology Department
College of Medicine
University of Diyala

Dedication

- To my beloved parents,

 For their love, endless support, Lsacrifices L

 Who encouragement me to go on every adventure,

 Thank you so much.
 - * To the light of my life, my beautiful, sisters, and my support, Sura, my eyes Alia, and Amna
 - Abdul alrahman ,Ali and too sweet of our life

 Youssef
 - Maha

Acknowledgments

First and forever, I would like to thank my Lord Allah the most merciful for his blessings and favors to complete this work.

I would like to express my heartfelt gratitude to my supervisors, Assistant Professor Dr. Luma Taha Ahmeed and Dr.Ahmed Medab for their supervision, scientific guidance, invaluable advice and encouragement.

My thanks are extended to the College of Medicine - University of Diyala - Department of Microbiology for providing me with the chance to get the master degree and to Assistant Professor Dr. Areej Atiyah Hussein for kindness and advice.

I would like to thanks Diyala teaching hospital and thanks for all patients and I wish them good health and happy life.

My thanks to my friends Hala luay for advice and support, Ali Riyadh Hameed for advice and support and assistance in the practical laboratory, and Mohammed mustafa for help and support and many thanks to Dr. Khalid for his help and advice..

Maha muhammed

Summary:

Candida albicans it resides mainly in the mucosal surfaces of the oral cavities. Oral candidiasis could be a common infection of the mouth caused by an overgrowth of Candida spp. species significantly Candida albicans. Various risk factors like nutrition, oral hygiene, smoking, dentures, secretion, hydrogen ion concentration disorder, and dry mouth make diabetic patient's additional vulnerable to oral candidiasis.

The aims of this study were detection, isolation and identification of *Candida* species, isolated from patients that have diabetes mellitus this patients had symptom of oral candidiasis in Diyala province by routine laboratory procedures and molecular techniques based on PCR and to identify genotypes distributions of *Candida albicans*.

One hundred oral swab samples of oral candidiasis from diabetic patients were collected. The age's groups their ranged between 20 to 90 years old. There were taken from Baquba Teaching Hospital, in Baquba city, center of Diyala province during the period (from first of December 2017 to the end of February 2018). Among the one hundred study samples collected there were (56%) samples of them were diagnosed as *Candida* spp.

In this study detected them by making a routine and confirmative diagnostic processes by, cultured on Sabouraud dextrose agar (SDA) and then had made sub cultured twice on (SDA). Then made microscopic examination of colonies and stain with Lacto phenol cotton blue, than use Chromogenic Agar *Candida* (CAC) for Phenotype Identification of *Candida* spp. , and we used germ tube also to identify *Candida albican*.

Then extracted the (DNA) by protocols of kit that mention from company, then makes certain that concentration and purity of extracted (DNA) in the limited rang, next used special primer pairs 25SrDNA followed by programmable thermal controller and Electrophoresis analysis with run the gel and being photographed, using a UV trans illuminatorm. All data were statistically analyzed depending on SPSS (Statistical Package for Social Science) version 18 (2009). Statistical results were considered significant when P-value being under or equal to the 0.05.

The results revealed that, 31 samples (55.35%) of isolates were *Candida albicans*; 12 samples (26.88%) of isolates *Candida globrata*; 6 samples (13.44%) of isolates *Candida parapsilosis*; 4 samples (8.96%) of isolates *Candida krusei* and 3 samples (6.72%) of isolates *Candida tropicalis*. The results of PCR shown that the detect of 25S rDNA gene were 26(83.8%) isolates belonged to the genotype A and 5 (16.1%) genotype C of the *C. albicans*. There were no results for genotype B. The higher infection rates of candidiasis were among female (29) samples (51.8%), while in the male they were (27) samples (48.2%) positive to candidiasis and they were non-significant (P>0.05) relationship between them .In this study found that the higher infection rates were among patients with Type II -31, samples (55.4%) of diabetes in compared with Type -I ,25 samples (44.6%) . There were non-significant (P>0.05) between *Candida* species and type of diabetes. In the case of ages the high infection rates were between ages (61-70) years old there were 18 samples (32.1%) high compared with other ages and there were non-significant (P>0.05) difference between them.

The results showed that *Candida* infection rates were high in weight (50-75) Kg 26 samples (46.4%) in compared to other weigh and it is non-significant (P>0.05). The rates of the infection were higher among patients who have

hypertension in compared with those that have none have hypertension (64% vs. 36%). The infection rates were higher among patients having no kidney problems in compared to patients with kidney problem (66.1% vs. 33.9%) while, Candida infection rates were higher in non-smoking patients compared to smoking patients (73.2% vs. 26.8%). In the case of social economic the rates of the infection were higher among those had good economy (41.1%) compared to those on medium or poor (41.1%, and 17.9%) respectively. The rates of the infection were higher among patients that non have family history in compared with patients who have family history (60.7% vs. 39.3%).

List of Contents

Item	Subjects	Page
No.		No.
	Summary	I
	List of Contents	IV
	List of Figures	VII
	List of Tables	IX
	List of Abbreviations	X
	Chapter One: Introduction	
1.1	Introduction	1
1.2	Aim of study	3
	Chapter Two: Literature Review	-
2.1	Diabetes mellitus	4
2.2	Classification of DM	5
2.3	Diagnosis of diabetes mellitus	6
2.4	Oral mucosal diseases and other oral infections:	7
2.5	History of Candida	7
2.6	Scientific classification	8
2.7	Genus Candida	9
2.8	Candida species	10
2.8.1	Candida albicans	10
2.8.2	Candida glabrata	12
2.8.3	Candida tropicalis	13
2.8.4	Candida Krusei	13
2.8.5	Candida parapsilosis	14
2.8.6	Candida dubliniensis	14
2.8.7	Candida stellatoidea	14
2.9	General characteristics of Candida Spp	14
2.10	Cell biology and enzymology	16
2.11	Candidiasis.	18
2.12	Candidiasis epidemiology	19
2.13	Pathogenesis of Candida infections	22

2.14	Type of candida diseases	22
2.15	Oral candidiasis	24
2.15 .1	Symptoms	25
2.15.2	Risk factor	26
2.16	Virulence Factors	27
2.16.1	Polymorphism	27
2.16.2	Adhesions and invasions	27
2.16.3	Biofilm formation	28
2.16.4	Connection sensing and thigmotropism	28
2.16.5	Hydrolases secretion	29
2.16.6	Metabolic adaptability	29
2.16.7	Respond to environmental stress	29
2.16.8	Hemolysins	30
2.17	Diagnoses	31
2.18	Treatment	31
	Chapter Three: Materials and Methods	
3.1	Patient and sample collection	32
3.2	Materials	33
3.2.1	Laboratory Apparatus and Equipment	33
3.2.2	Chemicals and Solution	34
3.2.3	Kits and Markers	35
3.2.4	Primer	35
3.2.5	Culture media	35
3.3	Methods	37
3.3.1	Sterilization	37
3.3.2	Preparation of solutions and stains	37
3.3.2.1	Solutions	37
I.	NaCl solution	37
II.	Ethanol	37
III.	Lysis buffer	37
3.3.2.2	Lactophenol Cotton Blue Stain(LPCB)	37
3.3.3	Preparation of culture media	38

3.3.3.1	Sabouraud Dextrose Agar (SDA)	38
3.3.3.2	Chromogenic Agar Candida (CAC)	38
3.3.3.3	Yeast extracts Peptone Dextrose broth (YPD)	39
3.3.4	Culturing of Samples	39
3.3.5	Isolates Identification	39
3.3.5.1	Morphology	39
3.3.5.2	Microscopical Examination	40
3.3.6	Phenotypic Identification	40
3.3.6.1	Germ Tube Test	40
3.3.6.2	Chromogenic Agar Candida (CAC)	41
3.3.7	Molecular Methods – based PCR	41
3.3.7.1	DNA Extraction	41
3.3.7.2	Concentration and purity of DNA	42
3.3.7.3	Materials used for thermal cycling	43
1	Primer selection and preparation	43
2	PCR Supplies Assembling	43
3	Programmable Thermal Controller.	44
4	Electrophoresis	45
3.3.8	Statistical Analysis	45
	Chapter Four: Results	
4.1	Samples collection	46
4.2	Sabouraud dextrose agar cultural characteristics	46
4.3	Phenotype Identification of <i>Candida</i> spp.	48
4.3.1	Germ tube test	48
4.3.2	Chromogenic Agar Candida (CAC)	49
4.4	Molecular identification depending on Polymerase chain reaction (PCR)	52
4.4.1	Concentration and Purity of DNA extracted from Candida	52
	spp. isolates	
4.4.2	Identification of Candida albicans genotypes	52
4.5	Analysis of questionnaire data	55
4.5.1	Gender	55

4.5.2	Type of diabetes	56
4.5.3	Gender and type of diabetes interaction	56
4.5.4	Body weight	58
4.5.5	Age	59
4.5.6	Hypertension	60
4.5.7	Kidney problem	61
4.5.8	Smoking	62
4.5.9	Social Economic	63
4.5.10	History family	64
Chapter Five : Discussion		
5	Discussion	64
5.1	sample collection and cultured on SDA	64
5.2	Phenotype identification of Candida spp	67
5.3	Molecular identification of Candida spp	69
5.4	Analysis of questionnaire data	71
Chapter Six: Conclusions and Recommendations		
6.1	Conclusions	77
6.2	Recommendations	78
	References	
	Appendix	

List of Figures

Item No.	Subjects	Page No.
2-1	Major morphologies of Candida spp.	16
2-2	Structure of the <i>C. albicans</i> cell wall	18
2-3	Hospital - acquired Candida infections	21
2-4	Clinical image of oral candidiasis	26
2-5	Virulent factors distribute to <i>C. albicans</i> pathogenicity mechanism	30
4-1	Colonies of Candida Spp. Cultured on SDA at 37°c for 48 Hrs	46

4-2	Candida albicans stained with Lactophenol cotton blue	47
4-3	Infections rate Candida spp. Among diabetes mellitus patient	48
4-4	show the ratio of type one and type two that appear positive	48
4-5	Germ tube formation by C. albicans (40X)	49
4-6	Colonies of <i>Candida</i> spp. cultured on chromogenic agar Candida at 37°C for 48 hrs appeared different colors.	50
4-7	Agarose gel electrophoresis (1.5%) for 1.5 hrs. at 5 volt/cm of Candida albicans genotypes. DNA products generated through The primer pairs CA-INT-L and CA-INT-R, for A gene (450). lane M: Molecular marker (100bp), line 1,2,3,4,5,6,7,8,9,10,11,12,13 represent PCR product of candida albican A: genotype A; stained with ethidium bromide and illustrated under UV light.	53
4-8	Agarose gel electrophoresis (1.5%) for 1.5 hrs. at 5 volt/cm of <i>Candida albicans</i> genotypes. DNA products generated through The primer pairs CA-INT-L and CA-INT-R, for A gene (450) and gene C (450 &840). lane M: Molecular marker (100bp), line 1,2,3,4,5,6,7,8,9,10,11,12,13 represent PCR product of Candida albicans; stained with ethidium bromide and illustrated under UV light	54

List of Tables

Item No.	Subjects	Page No.
3-1 A	Apparatus used in this study	33
3-1 B	Equipment used in this study	34
3-2	Chemicals and Solution used in this study	34
3-3	The Kits used in this study in this study	35
3-4	Primers	36

3-5	Culture media used in this study	36
3-6	The Mixture of PCR Working Solution.	44
3-7	Temperature Cycling Program for PCR. identification of <i>C. albicans</i> genotype through the primer pairs CA-INT-L and CA-INT-R	44
4-1	Candida spp. Were phenotypically isolated from diabetic patient.	51
4-2	Candida spp. were phenotypic identified depending on the morphological features	51
4-3	Candida genotype. DNA products generated through The primer pairs CA-INT-L and CA-INT-R	54
4-4	Candida spp. infection rate among patients according to gender	55
4-5	Candida infection rate among patients according to the Type of diabete	56
4-6	Candida infection rate among patients according to the gender and type of diabetes interaction	57
4-7	Candida infection rate among patients according to the body weight	58
4-8	Candida infection rate among patients according to Age	59
4-9	Candida infection rate among patients according to Hypertension	60
4-10	Candida infection rate among patients according to Kidney problem.	61
4-11	Candida infection rate among patients according to Smoking	62
4-12	Candida infection rate among patients according to Social Economic	62
4-14	Candida infection rate among patients according to History family.	64

List of abbreviations

Abbreviation	Meaning
AIDS	Acquired immune deficiency
bp	base pair
C. albicans	Candida albicans
C.non albicans	Candida non albicans
CAC	chromogenic agar Candida
Candida spp.	Candida species
CDC	Center for Disease Control
EDTA	Ethylenediaminetetraacetic acid)
FPG	fasting plasma glucose
G	Gravity
GIT	Gastrointestinal
GT	Germ tube
HIV	Human immunodeficiency virus
hrs	hours
ICU	Intensive Care Units
ITS	Internal transcribed spacer
LPCB	Lacto Phenol Cotton Blue
M	Molar (mol/L)
min	minutes
OC	Oral candidiasis
OD	Optical Density
OGTT	oral glucose tolerance test
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
рН	power of Hydrogen
Rnase	Ribo nuclease
rpm	rounds per minute

rRNA	Ribosomal RNA
SAP	Secreted Aspartyl Proteinases
SDA	Sabouraud Dextrose Agar
sec	second
Sig	significant
SPSS	Statistical Package for Social Sciences
UV	Ultra violet
WHO	World Health Organization
YPD	Yeast extract Peptone Dextrose
μ	Micro

Chapter One: Introduction

1.1. Introduction:

Candidiasis is a mycotic infection caused by members of the genus *Candida*. Chiefly, *Candida albinos* is responsible for about (70–80%) of all *Candida* infection. The *Candida* as an opportunistic yeast pathogen which increases predominantly in patients with predisposing condition, including immunodeficiency such as HIV infections, prolong used of broad-spectrum antibiotics, corticosteroids, diabetic patients and infections with other debilitating disease.(Navarro-Arias *et al.*, 2016; AL-Attachi *et al.*,2017).

Candida infections are ones of the most commonly occurring fungal infections in humans, (Kumar et al., 2005). Affecting mucous membrane, skin, nails and internal organs of the body, it additionally a typical opportunist infections in immune compromised patients (Hasan borarialju and ., 2015). Candida species belong to the natural micro biota of an individual's mucosal oral cavity, gastrointestinal tract and vagina (Shao et al., 2007).

Candida albicans is a common commensal of the human oral cavity and GI tract in the healthy individuals (Calderone claney and ., 2011). Although Candida albicans is considered the most agent of fungal infection and the foremost frequently isolated from oral fissure but in recent two decades there has been important increase of other non-Candida albicans species such as Candida glabrata, Candida tropicalis, Candida krusei, Candida parapsilosis and Candida dubliniensisas a result of different factors like immune-suppressants and the prolonged use of broad spectrum antibiotics and antifungal drugs (Martins et al., 2014; Patil et al., 2015; Jain et al., 2016). But the majority of fungal infections in humans are caused by the species C. albicans and C. glabrata. The prevalence

rates of *C. albicans* and *C. glabrata* infections are approximately 70% and 15%, respectively (Kolaczkowski *et al.*, 2010; Benedetti *et al.*, 2016).

Diabetes mellitus is a common and growing global health problem which causes several complications. Periodontal diseases are considered the sixth complication of this disease. A diabetic has an increased predisposition to the manifestations of oral diseases like candidiasis. Diabetes mellitus is the most common endocrine metabolic disorder (Lotfi-Kamran *et al.*, 2009). Nearly 85-90% of diabetic patients are diagnosed with type II diabetes (resulting from insulin resistance) in these patients, salivary dysfunctions like dry mouth, reduced salivary function, lichen, tooth decay, and periodontal diseases are common(Ship, 2003; Vijan, 2010).

Candida infections are chronic opportunistic infections related to diabetic patients. The presence of Candida spp. in oral cavities of diabetics varies between (50-80 %) (Willis et al., 2000; Khosravi et al., 2008; and Melton et al., 2010). Yeasts commonly inhabit tongue, palate and buccal mucosa, and it has recently been found in the sub gingival sites (Canabarro et al., 2013).

Oral candidiasis is a common profiteering infection of the oral cavity caused by an overgrowth of *Candida* species particularly *Candida albicans* (Guggenheimer *et al.*, 2003). This infection is usually accompanied by various symptoms including burning, painful sensation, change of taste, reduced saliva secretion and swallowing difficulty, but it can be also asymptomatic (Nikolic *et al.*, 2016).

Among the explanations creating diabetic patients additional susceptible to oral candidiasis (Ship, 2003; Vijan, 2010), are high levels of salivary glucose, impaired chemo taxis, low secretion of saliva and defect of phagocytosis because

of polymorph nuclear white blood cell deficiency (Mohammadi *et al* .2016). The attachment of *C. albicans* to the crystalline hydroxyapatite produces collagen lytic protein, that will increase crystal solubility and consumes chemical element of dentin albuminoid in diabetes mellitus patients (Mohammadi *et al* .,2016; Hassan , 2018).

It Diagnosis can be by different ways, the most common type of diagnosis utilized in the hospitals and labs include direct examination and stain with lacto phenol, culture on SDA, germ tube, chromogenic agar and API kit, and molecular method include conventional PCR and real time PCR, sequencing, gene expression (Garner *et al.*, 2010; Ahmad *et a l.*, 2012).

Solely 5 major categories of antifungal drugs are presently obtainable including the foremost usually used azloes, polyenes, fluoropyrimidines and the recently generated echinocandins (Basma *et al.*, 2009).

1.2. Aims of the Study:

- 1. Detection, isolation and identification of *Candida* spp. isolated from patients that who diabetes mellitus. In Diyala province by routine laboratory procedures and molecular techniques based on PCR.
- 2. Identification genotypes distributions of *Candida albicans*.