Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Medicine

Detection and Genotyping of Respiratory Syncytial Virus and Human Metapneumovirus Among Children with Respiratory Tract Infection

A Thesis

Submitted to Council College of Medicine - University of Diyala in Partial Fulfillment of the Requirements for the Master Degree of Science in Medical Microbiology

By

Hala Luay Abduljabbar

B.Sc. Biology (2014) - College of Science - University of Diyala

Supervised by

Professor Dr. Areej Atiyah Hussein (Ph.D. in Medical Microbiolgy)

2019 A.D./January

Assistant Professor Dr. Qasim Shrhan Haraj (Ph.D. in Medical Microbiolgy)

1440 A.H./ Jumada I

بْسَمْ إِسْلَالْحِمْزَ إِلَيْحَمَرُ

يَرْفَع اللَّهُ الَّذِينَ آَمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِيرُ ٢

صدق الله العظيم

سومرة المجادلة ، الآية(١١)

Dedication

To the light of my life.... Father and Mother

For their endless love, support and encouragement.

To that who gave me support to overcome all difficulties in life...

My husband

To the Dears....My Brothers and Sister

To my soul My sweet daughter Haya

To everyone who helped and supported me in my study.

Hala

Acknowledgment

In the name of Allah, the most gracious, the most merciful, all praises be due to Allah, the sustainer of the entire world, the origin of science and wisdom, and may Allah's mercy and peace be upon our prophet, Mohammad, his relatives and companions.

My deepest thank and gratitude goes to my supervisor Dr. Areej Atiyah Hussain for her continuous support, patience, motivation, enthusiasm, and immense knowledge. Her guidance has helped me during the time of research and writing of this thesis.

I would like to thank Dr. Qasim Sharhan Haraj (supervisor) and MSc. Iman Mutasher Aufi for guidance, technical expertise and assistance throughout practical part in this thesis.

I would like thank the deanery of Medical College - University of Diyala; and all staff of Microbiology Department.

Very special thanks are extended to staff of Virology Unit at the National Central Public Health Laboratory and Medical Research Unit in Al-Nahrain University - College of Medicine for the generous assistance, support and cooperation.

My thanks go to all my friends who supported me during my study, especially Maha Mohammed, Duraid Hassan and all the people who have given me help and support.

Finally, I offer a personal expression of gratitude to my lovely family for their help and support.

Hala

SUMMARY

Respiratory viruses are the leading cause of serious respiratory tract infections in children, elderly and immunecompromised, throughout the world. However, information about the genotyping of respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) is limited in Iraq.

The aims of this study are to determine the rate of respiratory syncytial virus and human metapneumovirus infections in children with acute respiratory tract infection and the correlation between these viruses and different parameters such as age, gender, month of infection, residence, cough, fever, wheezing, history of asthma, nasal discharge and neurological manifestation and to identify human respiratory syncytial virus and genotyping among study population.

This cross sectional study was based on the processing of nasopharyngeal swab from 150 children with acute respiratory tract infections, males 81(54%) and females 69(46%) aged under five years old, who were admitted to Al-Imamin Al-Kadhimin Medical City and Pediatrics Protection Hospital in Baghdad during the period from December 2017 till April 2018. These swabs were collected from each participant and stored as frozen at -70 °C until use for RNA extraction and real time- polymerase chain reaction and nested polymerase chain reaction to detect of respiratory syncytial virus and human metapneumovirus in study population.

The results showed that out of all these samples, 54 samples were positive for RSV 54(36%) and 2 for hMPV 2(1.33%). The infection rate of RSV was more common in males (57.41%) than females and in children \leq one year (37.04%) also high frequency was noticed among patients live in urban area 72.22% and 50% respectively also in winter. According to different clinical feature, fever, cough, and wheezing were more common.

The sequence conducted for some RSV- positive samples, 11 respiratory syncytial virus isolates were in genotype B and 1 in genotype A. The sequence of RSV B the locally detected samples were closed to Argentina and Tailwind isolates while in genotype A detected samples were closed to isolates from different regions included Saudi Arabia, German and India isolates.

Titles		Page
		No.
Dedication		
Acknow	ledgments	
Summar	y	Ι
List of co	ontents	III
List of ta	bles	VII
List of fi	gures	IX
List of a	obreviations	XI
No.	Chapter One	
1.1	Introduction	1
1.2	Aims of the study	3
	Chapter Two	
2	Review of literatures	4
2.1	Respiratory syncytial virus	4
2.1.1	Historical background of respiratory syncytial virus	4
2.1.2	Epidemiology of respiratory syncytial virus	4
2.1.3	Classification of respiratory syncytial virus	6
2.1.4	Structure of respiratory syncytial virus	7
2.1.5	Transmission of respiratory syncytial virus	8
2.1.6	Replication cycle of respiratory syncytial virus	9
2.1.7	Pathogenicity of respiratory syncytial virus	11
2.1.8	Clinical manifestations of respiratory syncytial virus infection	12
2.1.9	Immune response to respiratory syncytial virus infection	12
2.1.9.1	Innate immune response to RSV	13
2.1.9.2	Adaptive immune responses to RSV	14

List of Contents

2.1.10	Diagnosis of respiratory syncytial virus	15
2.1.11	Prevention and control of respiratory syncytial virus	16
2.2	Human metapneumovirus	17
2.2.1	Historical background of human metapneumovirus	17
2.2.2	Epidemiology of human metapneumovirus	18
2.2.3	Classification of human metapneumovirus	18
2.2.4	Structure of human metapneumovirus	18
2.2.5	Human metapneumovirus genotypes	20
2.2.6	Transmission of human metapneumovirus	21
2.2.7	Replication cycle of human metapneumovirus	21
2.2.8	Pathogenicity of human metapneumovirus	23
2.2.9	Clinical manifestations of human metapneumovirus infection	24
2.2.10	Immune response to human metapneumovirus infection	25
2.2.10.1	Innate immune response	25
2.2.10.2	Adaptive immune response	26
2.2.11	Laboratory diagnosis of human metapneumovirus	27
2.2.12	Prevention and control of human metapneumovirus	28
	Chapter Three	
3	Patients, materials and methods	30
3.1	Patients	30
3.1.1	Study subjects and sample collection	30
3.1.2	Ethical approval	30
3.2	Materials	31
3.2.1	Laboratory apparatus	31
3.2.2	Tools	32
3.2.3	Chemical materials	32
3.2.4	Kits	33

3.2.4.1	QIAamp Viral RNA Mini Kit	33	
3.2.4.2	Ag path-IDTM one step RT-PCR kit	33	
3.2.4.3	One Step RT-PCR Kit	34	
3.2.5	Agarose gel electrophoresis requirements	35	
3.2.5.1	TBE Buffer (10X solution)	35	
3.2.5.2	Ethidium bromide	35	
3.2.5.3	Molecular size marker	35	
3.2.6	PCR requirements	36	
3.3	Methods	37	
3.3.1	RNA Extraction from nasopharyngeal swab	37	
3.3.2	Gene amplification by real time polymerase chain reaction of RSV	39	
3.3.3	Gene amplification by nested polymerase chain reaction	41	
3.3.3.1	Primers for RSV and hMPV	41	
3.3.3.2	Primers preparation	42	
3.3.3.3	PCR program	43	
3.3.3.4	Agrose gel electrophoresis	45	
3.3.3.5	Sequencing of PCR products and data analysis	45	
3.4	Statistical analysis	45	
	Chapter Four		
4	Results	46	
4.1	Demographic characteristics of the study population	46	
4.2	Clinical features of the study population	47	
4.3	Frequency of respiratory syncytial virus and human metapneumovirus	49	

4.4	Distribution of RSV and hMPV in study group	54
	according to demographic features using RT- PCR	
4.5	Distribution of RSV and hMPV in study group	55
	according to clinical features by use real time -PCR	
4.6	P- distance	56
4.7	Phylogenetic tree	57
	Chapter Five	
5	Discussion	58
5.1	Prevalence of RSV and hMPV infection	58
5.2	Association of demographic characteristics with RSV and hMPV infections	62
5.3	Association of clinical characteristics with RSV and hMPV infections	64
5.4	Genetic analysis of RSV infection	65
	Chapter Six	
6.1	Conclusions	68
6.2	Recommendations	69
	References	
	References	70-105
	Appendices	
	Appendix 1	
	Appendix 2	
	Appendix 3	
	Abstract in Arabic	
L	1	

List of Tables

Table No.	Titles	Page No.
3-1	Apparatus used in the present study	31
3-2	Different tools used in the present study	32
3-3	Various chemical and materials that used in this study	32
3-4	Kit Contents of Viral RNA extraction that used in this study	33
3-5	Component of Ag path-ID one step RT PCR kit	33
3-6	Component of One Step RT-PCR Kit that used in this study	35
3-7	Components of Go Taq® green master mix (2X)	36
3-8	Volumes of buffer AVL and carrier RNA-buffer AVE mix required for the QIAamp viral RNA mini procedure	37
3-9	Sequence of primers and probe that used in the real time PCR of the respiratory syncytial virus and human metapneumovirus	39
3-10	Components of reagents used in time PCR	39
3-11	Program of real time to the RSV and hMPV	40
3-12	Sequence of primer that used in this study to amplification of fragment of the RSV G gene	41
3-13	Sequence of the primer utilized in the present study to amplification of fragment of the RSV G gene	42
3-14	Component of nested reverse transcription- polymerase chain reaction	42
3-15	Protocol of a nested reverse transcription-polymerase chain reaction of genotype A and genotype B of RSV	43
3-16	Protocol of a semi-nested reverse transcription- polymerase chain reaction of genotype A and genotype B of RSV	43
3-17	Protocol the hemi-nested PCR that used to detect of genotype A and genotype B of RSV	44

3-18	Protocol of a nested reverse transcription-polymerase	44
	chain reaction used to detect hMPV	
4-1	Demographic characteristics among children with	46
	respiratory tract infections	
4-2	Clinical features among children with respiratory tract	47
	infections	
4-3	The respiratory syncytial virus and human	48
	metapneumovirus infections in children with respiratory	
	tract infection	
4-4	Distribution of RSV and hMPV in patients with RTI	54
	according to demographic features using real time PCR	
4-5	Distribution of RSV and hMPV in patients with RTI	55
	according to clinical features using RT- time PCR	

List of Figures

Figure No.	Titles	Page No.
2-1	Structure and genome organization of RSV	8
2-2	Respiratory syncytial virus replication cycle	11
2-3	Immune cell during RSV bronchiolitis	14
2-4	Structure and proteins encoded by human metapneumovirus	20
2-5	Schematic representation of the human metapneumovirus replication cycle	23
4-1	A, B, Real time-polymerase chain reaction of human respiratory syncytial virus	33
4-2	Gel electrophoresis of the first round PCR amplification for G gene (590bp). Lane M represents DNA ladder (100bp), lanes1, 2, 3, 4, 5, 6, 7, 8 represent PCR product of RSV group A, stained with ethidium bromide and illustrated under UV light	50
4-3	Gel electrophoresis of the first round PCR amplification for G gene (589bp). Lane M represents DNA ladder (100bp), lanes1, 2, 3, 4, 5, 6, 7, 8 represent PCR product of RSV group B, stained with ethidium bromide and illustrated under UV light	50
4-4	Gel electrophoresis of the second round PCR amplification for G gene (550bp). Lane M represents DNA ladder (100bp), lanes1, 2, 3,4,5,6,7,8 represent PCR product of RSV genotype A, stained with ethidium bromide and illustrated under UV light	51
4-5	Gel electrophoresis of the second round PCR amplification for G gene (500bp). Lane M represents DNA ladder (100bp), lanes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 represent PCR product of RSV genotype B, stained with ethidium bromide and illustrated under UV light	51
4-6	A and B, Real time-polymerase chain reaction of human metapneumovirus	52

4-7	Gel electrophoresis of the conventional PCR amplification for F gene (800bp). Lane M represents DNA ladder (100bp), lanes 1, 2, 3 represent PCR product of hMPV, stained with ethidium bromide and illustrated under UV light	53
4-8	Estimation of evolutionary divergence between RSV local isolate and 14 reference isolates from Gene Bank. The number of base differences per site between sequences are shown. Evolutionary analysis was conducted in MEGA 6.	56
4-9	Phylogenetic tree for protein G genes (RSV) constructed by the neighbor joining method for 11 local isolates from nasopharyngeal swabs and 14 reference isolate from Gene Bank. Phylogenetic distances were measured by the kimura two-parameter, model of the tree was statistically supported by bootstrapping with 1000 replicates. Bootstrap values below 50% are not shown. Current isolates are indicated with Black Square	57

Table of Abbreviations

Abbreviation	Meaning
ARI	Acute respiratory infection
ART	Acute respiratory tract
bp	base pair
CD4+	Cluster of differentiation 4
CD8+	Cluster of differentiation 8
CDC	Centers for disease control and prevention
СРЕ	Cytopathic effect
DFA	Direct immunoflourescent assay
DNA	Deoxy ribose nucleic acid
EIA	Enzyme immunosorbent assays
F	fusion glycoprotein
G	Attachment glycoprotein
GAGs	Glycol amino glycan
HCMV	Human cytomegalovirus
hMPV	Human metapneumovirus
HVR	Hyper variable regions
IFNAR	Type I Interferon receptor
Ig	Immunoglobulin
IL	interleukin
INF	Interferons
JAK1	Janus kinase
LLC-MK2	Rhesus monkey kidney cells
М	Matrix protein
ml	Mille letter
mRNA	Messenger RNA
N	Nucleoprotein

—(xı }

NF-ĸB	Nuclear factor-kappa B
NK	Natural killer cell
NPS	Nasopharyngeal swab
NS	Nonstructural protein
ORF	open reading frame
Р	phosphoprotein
PAMPs	Pathogen-associated molecular patterns
pН	Power of hydrogen
PRRs	Pattern recognition receptors
qPCR	quantative polymerase chain reaction
RIG-I	retinoic acid-inducible gene I
RNA	Ribonucleic acid
RNP	Ribonucleoprotein
RSV	Respiratory syncytial virus
RT-PCR	Reverse transcriptase polymerase chain reaction
SH	Small hydrophobic glycoprotein
SPSS	Statistical package for social sciences
ssRNA	Single strand ribonucleic acid
Th1	T helper 1
TLRs	Toll-like receptors
ТМК	Tertiary monkey kidney
TNF-α	Tumor necrosis factor alpha
TRM	Tissue-resident memory
TYK2	Tyrosine kinase 2
URT	Upper respiratory tract
UV	Ultra violet
VTM	Viral transport media
WHO	World health organization

Chapter One Introduction

1.1 Introduction.

Acute respiratory infection (ARI) is the major cause of morbidity and mortality. In young children, the elderly, and immunocompromised individuals throughout the world (Zhang *et al.*, 2009). Several types of viral families such as *Paramyxoviridae, Orthomyxoviridae, Picornaviridae, Adenoviridae*, and *Coronaviridae* are considered the major viral etiological agents of ARI in all age groups (Bertino *et al.*, 2002).

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) compose of a single strand, negative sense RNA, helical capsid, and they are enveloped (Nagakumar and Doull, 2012). Regarding to the genetic analysis of both viruses, they were separated into two genotypes each, RSV-A, RSV-B; hMPV(A and B), and the later can be subdivided into A1; A2, B1 and B2 (Wang *et al.*, 2014; Thongpan *et al.*, 2017). Transmission of these viruses through close contact with a person who has an active infection or direct contact with infectious secretions on environmental surfaces such as droplets, saliva, or large particle aerosols (Haas *et al.*, 2013). Although fomites may also be source of contamination (Tollefson *et al.*, 2010).

Human metapneumo virus is nearly associated with respiratory syncytial virus, when they were considered as essential airway viruses influencing children throughout the world (Zeng *et al.*, 2015). It has been suggested that the infection of RSV and hMPV in children may be very comparable (Adams *et al.*, 2015). There is also some confirmation that RSV caused more serious ailment than hMPV, according to number of factors were statistically associated with a higher rate of severity as opposed to mild infections. The most important of these were prematurity, the presence of bronchopulmonary dysplasia, chronic heart illness and serious neurological disabilities (Papenburg *et al.*, 2012; Shi *et al.*, 2015; De Wall *et al.*, 2018).

1

Although, it has not been studied to the same extent, it seems that some of these factors may also increase the risk of severe hMPV infection, with some exceptions (Schuster *et al.*, 2015; Pancham *et al.*, 2016). Respiratory syncytial virus and hMPV infection are blurred distinguishable, both they cause upper respiratory infection which begin with flu-like illness such as fever, headache, sneezing, and then progress down into the lower respiratory tract to cause bronchiolitis, pneumonia, and they implicated with allergy and asthma exacerbation (Rezaee *et al.*, 2017). Respiratory syncytial virus constitutes over 60% of respiratory tract infection, while hMPV about 12% (Kahn, 2006).

Reinfection with similar strains of RSV occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance in type I interferon signaling, antigen presentation and chemokine-induced inflammation. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality (Ascough *et al.*, 2018).

Molecular methods such as reverse transcriptase-polymerase chain reaction (RT-PCR) are the preferred diagnostic modality for detecting RSV and hMPV. Few vaccine candidates have been shown to be effective in preventing clinical disease, but none are yet commercially available (Panda *et al.*, 2014; Zahran *et al.*, 2017).

In Iraq, several studies have been conducted in various governorates to identify these viruses. All of these studies focused on infection rate such as study done by Al-Mola *et al* (2013) in Hilla city, Aziz (2015) in Sulaimani city, Al-Ameedy (2016) in Najaf city, Al-Charrakh *et al* (2016) in Wasit province, Al-Mossawi *et al* (2016) in Al-Amarah City and recently Atyah *et al* (2017) in Baghdad city.

1.2 Aims of study.

1. Determining the infection rate and genotyping of respiratory syncytial virus and human metapneumovirus in children with acute respiratory tract infection.

2. Investigating the correlation among respiratory syncytial virus, human metapneumovirus and patients descriptive data such as age, gender, residence, month of infection, cough, fever, wheezing, history of asthma, nasal discharge, and neurological manifestation.