Republic of Iraq Ministry of Higher Education And Scientific Research University of Diyala College of Medicine

Mycological Causes of Diarrhea among Children in Diyala

A Thesis

Submitted to the Council of the College of Medicine, University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Medical Microbiology

By

Ali Riyadh Hameed Majeed

B.V.M.S. - College of Veterinary Medicine - University of Diyala (2014)

Supervised by

Assistant professor

Dr. Luma T. Ahmed

College of Medicine University of Diyala Assistant professor

Dr. Sabah M. Ali

College of Medicine University of Mustansiriyah

2018 A.C.

1439 A.H.

Supervisor Certification

I certify that this dissertation entitled (Mycological Causes of Diarrhea among Children in Diyala) was prepared by (Ali Riyadh Hameed) under my supervision at the College of Medicine - University of Diyala as a partial fulfillment of the requirements for the Degree of Master of the Science in Medical Microbiology.

In view of the available recommendation, I forward this thesis for debate by the examining committee.

Supervisor

Assistant Professor Dr. Luma T. Ahmed

College of Medicine Department of Microbiology University of Diyala Signature Co-Supervisor

Assistant professor Dr. Sabah M. Ali

College of Medicine Department of pediatrics University of Mustansiriyah

Signature

Assistant Professor Dr. Areej A. Hussein Head of Microbiology Department College of Medicine University of Diyala

Committee Certification

We, the examining committee, certify that we have read this thesis entitled (Mycological causes of Diarrhea among children in Diyala) was prepared by "Ali Riyadh Hameed" and as the examination committee examined the student in its content and in our opinion it adequate for award of the Degree of Master of the Science in Medical Microbiology.

> Signature: Name: Dr. Jassim M. Karhout Scientific Degree: Professor (Chairman) Date: / /2018

Signature : Name: Wisam A. Mehdi Alsaeed Scientific Degree: Professor (Member) Date: / /2018 Signature : Name: Mehdi SH. Jabr Scientific Degree: Professor (Member) Date: / /2018

Signature : Name: Luma T. Ahmed Scientific Degree: Assistant professor (Member/Supervisor) Date: / /2018

Signature: Name: Sabah M. Ali Scientific Degree: Assistant professor (Member/Co-Supervisor) Date: / /2018

Approved by the Council of the College of Medicine - University of Diyala.

Signature Professor Dr. Talib Jawad Kadhim Dean College of Medicine – University of Diyala Date: / / 2018

Dedication

То...

My dear mother, who surrounds me with her love and kindness, and never forgets me in her sincere prayer.

My father, brother and sister, the source of light in my life. They have shared the moments of laughter and sorrow. All who will benefit from this work even a word.

I lovingly dedicate this work

Ali

Acknowledgments

First and forever, I would like to thank our Lord Allah the most merciful for his blessings and favors to completing this work at this final shape.

My deepest gratitude is to my supervisor, Dr. Luma T. Ahmed and co-supervisor, Dr. Sabah M. Ali for supervision, support, scientific guidance and encouragement. Great appreciations are also due to the College of Medicine and Department of Microbiology, University of Diyala. I also thank the staff of laboratory and specialized doctors at AL-Batool Teaching Hospital.

Last not least, I owe true love and gratitude to my big and small family for their kindness, help, encouragement and support. I also would like to thank everyone help me directly or indirectly in performing this research.

Ali

Summary :

One hundred stool samples of children less than three years referred to AL-Batool Teaching Hospital, in Diyala province during the period (from 2^{nd} October 2016 to 3^{rd} December 2016). were collected sixty-four samples of them were diagnosed as *Candida* spp. infections by making a routine and confirmative diagnostic processes by direct microscopic examination of stool, cultured on Sabouraud dextrose agar (SDA) and microscopic examination of colonies.

The results revealed that, 24(37.5%) of isolates were *Candida albicans*; 14(21.9%) isolates of *Candida globrata*; 11(17.2%) isolates of *Candida parapsilosis*; 8(12.5%) isolates of *Candida krusei* and 7(10.9%) isolates of *Candida tropicalis*. The results of PCR study by detect the 25S rDNA showed that 20(83.3%) isolates belonged to the genotype A ; 2(8.3%) isolates belonged for each genotype B and genotype C of the *C*. *albicans*.

The results showed there are significantly (P<0.05) higher Candida infection rate among children with previous antibiotic use compared with those who had no previous antibiotic use , actually 38(73.1%) with more common Candida spp. recorded was C. krusei in a rate of (87.5%). While, is among children consuming from tap water the higher infection rate compared with those consuming another source, actually 60(68.9%) .The Candida spp. recorded was C. globrata in a rate of more common (100.0%). The higher infection rate is among children consuming nonsterilized water compared to the children consuming sterilized water, Candida spp. recorded was C. actually 38(73.1%) .More common globrata in a rate of (71.4%) and the higher infection rate between children bottle compared to the children use sterilized bottle, use non-sterilized actually 44(80.0%) with more common *Candida* spp. recorded was *C*. parapsilosis in a rate (81.8%).

Ι

Although, insignificant(P>0.05), the results showed that Candida infection rate higher in male children compared to female children (66.7% 60.5%). The *Candida* infection rate in (≥ 2) months patients high VS. compared with other age groups, actually (77.8%). The rate of the infection was higher among patients who reside in rural areas compared to those residing in urban areas (65.6% vs. 61.1%). The infection rate was higher among patients without previous diarrhea compared to patients with previous diarrhea (64.5% vs. 62.5%). Candida infection rate was higher in children with chronic diarrhea compared to acute diarrhea (80.0% vs. 63.2%). The rate of the infection was higher among those on raw feeding(age more 2 years) (75.0%) compared to those on mixed or bottle or breastfeeding (68.4%, 63.1%, and 50.0%) respectively. *Candida* infection rate was higher in children who lived in the area open sewage without drainage, actually (67.3%) while children lived in the area open sewage with drainage (52.6%) and close sewage (35.4%). The rate of the mothers age is under 20 years infection was among patients whose (89.4%) compared with other age groups. The rate of the infection among patients whose mothers have primary education level was (76.5%) compared to those with other education level of mothers.

List of Contents

Item No.	Subjects	Page No.
	Summary	Ι
	List of Contents	III
	List of Figures	VII
	List of Tables	IX
	List of Abbreviations	XI
	Chapter One: Introduction	
	Chapter Two: Literature Review	I
2.1	Gastrointestinal tract infection	4
2.2	Etiology of gastrointestinal tract infection	5
2.3	History of Candida	5
2.4	Taxonomy	6
2.5	Genus Candida	7
2.6	Candida species	8
2.6.1	Candida albicans	8
2.6.2	Candida glabrata	9
2.6.3	Candida tropicalis	10
2.6.4	Candida Krusei	10
2.6.5	Candida parapsilosis	11
2.6.6	Candida dubliniensis	11
2.6.7	Candida stellatoidea	11
2.7	General characteristics of <i>Candida</i> spp.	11
2.8	Cell biology and enzymology	13
2.9	Candidiasis	15
2.1	Candidiasis epidemiology	15
2.11	Type of diseases	18
2.12	Pathogenesis of Candida infections	19
2.12.1	Superficial infection	20
2.12.2	Mucocotaneous infection	20

2.12.3	Systemic infection	21
2.13	Candida spp. from gut commensal to pathogen	22
2.14	Candida-associated with diarrhea	25
2.15	Symptoms	25
2.16	Risk factors	25
2.17	Virulence Factors	26
2.17.1	Polymorphism	26
2.17.2	Adhesins and invasions	26
2.17.3	Biofilm formation	27
2.17.4	Connection sensing and thigmotropism	27
2.17.5	hydrolases secretion	28
2.17.6	Metabolic adaptability	28
2.17.7	Respond to environmental stress	28
2.17.8	Hemolysins	29
2.18	Antifungal therapy	29
2.18.1	Azoles	30
2.18.1.1	Spectrum of activity	31
2.18.1.2	Mechanism of action	31
2.18.2	Ketoconazole	31
2.18.2.1	Mechanism of action	31
2.18.3	Clotrimazole	32
2.18.3.1	Mechanism of action	32
2.18.4	Fluconazole	32
2.18.5	Miconazole	32
2.18.6	Polyenes	33
2.18.7	Nystatin	33
2.18.7.1	Mechanism of action	33
2.19	Mechanisms of resistance to antifungal agents	34
2.20	Candida spp. and bacteria interaction	34
2.21	Supplements for Candida treatment	36
2.21.1	Probiotics	36
2.21.2	Foods	36
2.21.3	Herbs	37

Chapter Three: Materials and Methods		
3.1	Materials	38
3.1.1	Apparatus and Equipment	38
3.1.2	Chemicals and Solution	39
3.1.3	Kits and Markers	39
3.1.4	Primers and Marker	40
3.1.5	Culture media	41
3.2	Methods	41
3.2.1	Sterilization	41
3.2.2	Preparation of solutions and stains	41
3.2.2.1	Solutions	41
I.	NaCl solution	41
II.	Ethanol	41
III.	Lysis buffer	41
3.2.2.2	Lactophenol Cotton Blue Stain(LPCB)	42
3.2.3	Preparation of culture media	42
3.2.3.1	Sabouraud Dextrose Agar (SDA)	42
3.2.3.2	Corn Meal Agar (CMA)	42
3.2.3.3	Chromogenic Agar Candida (CAC)	43
3.2.3.4	Yeast extracts Peptone Dextrose broth (YPD)	43
3.2.4	Study area and population	44
3.2.5	Collection of Samples	44
3.2.6	Direct Microscopical Examination	44
3.2.7	Culturing of Samples	44
3.2.8	Isolates Identification	45
3.2.8.1.1	Morphology	45
3.2.8.2	Microscopical Examination	45
3.2.9	Phenotypic Identification	45
3.2.9.1	Germ Tube Test	45
3.2.9.2	Chlamydospore Formation Test	46
3.2.9.3	Chromogenic Agar Candida (CAC)	46
3.2.10	Preservation of the Candida isolates	46
3.2.10.1	Short-term preservation	46

3.2.10.2	Long-term preservation	47
3.2.11	Questionnaire performance	47
3.2.12	Molecular Methods – based PCR	47
3.2.12.1	DNA Extraction	47
3.2.12.2	Concentration and purity of DNA	49
3.2.12.3	Materials used for thermal cycling	49
1	Primer selection and preparation	49
2	PCR working solution	49
3	Programmable thermal controller	50
4	Electrophoresis	51
3.2.13	Statistical Analysis	53
	Chapter Four: Results	-
4.1	Samples collection and Direct microscope examination	54
4.2	Sabouraud dextrose agar cultural characteristics	54
4.3	Phenotype Identification of Candida spp.	55
4.3.1	Germ tube test	56
4.3.2	Chlamydospore formation test	57
4.3.3	Chromogenic Agar Candida (CAC)	58
4.4	Molecular identification depending on Polymerase chain reaction (PCR)	61
4.4.1	Concentration and Purity of DNA extracted from <i>Candida</i> spp. isolates	61
4.4.2	Identification of <i>Candida</i> spp.	61
4.4.3	Identification of Candida albicans genotypes	64
4.5	Analysis of questionnaire data	65
4.5.1	Gender	65
4.5.2	Age	66
4.5.3	Resident	68
4.5.4	Previous diarrhea	69
4.5.5	Duration of diarrhea	70
4.5.6	Mode of feeding	71
4.5.7	Sewage	72
4.5.8	Source of water	73
4.5.9	Water sterilization	75

4.5.10	Bottle sterilization 76	
4.5.11	Previous antibiotic	77
4.5.12	2 Age of mothers	
4.5.13	Education of mothers	
	Chapter Five : Discussion	
	Discussion	82
	Chapter Six: Conclusions and Recommendations	
6.1	Conclusions	89
6.2	Recommendations	90
	References	91
	Appendix	117

List of Figures

Item No.	Subjects	Page No.
2-1	Major morphologies of <i>Candida</i> spp.	12
2-2	Structure of the C. albicans cell wall	15
2-3	Hospital - acquired Candida infections	17
2-4	The human mycobiota	23
2-5	The steps of C. albicans tissue invasion	24
2-6	Virulent factors distribute to <i>C.albicans</i> pathogenicity mechanism	29
2-7	The bacteria fungal interaction: the combination of physical associations and molecular interactions	36
4-1	Direct microscope stool examination, show <i>Candida</i> budding and <i>candida</i> non-budding (40X)	54
4-2	Figure 4-2 : Colonies of <i>Candida</i> spp. (Pure culture) on SDA at 37°C for 48 hrs.	55
4-3	<i>Candida albicans</i> stained with Lactophenol cotton blue (40X)	55
4-4	Infections rate <i>Candida</i> spp. among children diarrhea	56
4-5	Germ tube formation by C. albicans (40X)	57
4-6	Pseudohyphae, Blastospore and Chlamydospores of <i>C</i> . <i>albicans</i> cultured on CMA at 35 °C (40X)	58

4-7	Colonies of <i>Candida</i> spp. cultured on chromogenic agar <i>Candida</i> at 37°C for 48 hrs appeared different colors.	59		
4-8	<i>Candida</i> spp. isolated from children diarrhea under study	60		
4-9 A	Agarose gel electrophoresis(1.5%) for 1.5 hr at 5volt/cm of <i>Candida</i> spp. DNA products generated through universal primer ITS1 and ITS4, stained with Ethidium bromide	62		
4-9 B	Agarose gel electrophoresis(1.5%) for 1.5 hr at 5volt/cm of <i>Candida</i> spp. DNA products generated through universal primer ITS1 and ITS4, stained with Ethidium bromide	63		
4-10	Agarose gel electrophoresis(1.5%) for 1.5 hr at 5volt/cm of <i>Candida</i> genotypes DNA products generated through the primer pairs CA-INT-L and CA- INT-R stained with Diamond nucleic acid			
4-11	The distribution of candidiasis according to gender	66		
4-12	The distribution of candidiasis according to age	67		
4-13	The distribution of candidiasis according to residency	68		
4-14	The distribution of candidiasis according to previous diarrhea.			
4-15	The distribution of candidiasis according to duration of the diarrhea			
4-16	The distribution of candidiasis according to mode of the feeding.			
4-17	The distribution of candidiasis according to sewage state	73		
4-18	The distribution of candidiasis according to source of the water	74		
4-19	The distribution of candidiasis according to sterilization of the water			
4-20	The distribution of candidiasis according to bottle sterilization	77		
4-21	The distribution of candidiasis according to previous antibiotic use	78		
4-22	The distribution of candidiasis according to age of the mothers	79		

4-23	The	distribution of	candidiasis	according to th	le 81
1 23	educa	ation of mothers			01

List of Tables

Item No.	Subjects	Page No.
3-1 A	Apparatus utilized in this study	
3-1 B	Equipment utilized in this study	38
3-2	Chemicals and Solution utilized in this study	39
3-3	the Kits utilized in this study in this study	40
3-4	Primers used in the study	40
3-5	Culture media utilized in this study	41
3-6	The Mixture of PCR Working Solution.	50
3-7	Temperature cycling program for PCR, for identification of <i>Candida</i> spp. through The primer pairs ITS1 and ITS4	
3-8	Temperature Cycling Program for PCR. identification of <i>C. albicans</i> genotype through the primer pairs CA- INT-L and CA-INT-R	52
4-1	Candida spp. isolated from children stool	60
4-2	<i>Candida</i> spp. were phenotypic identified depending on the morphological features	61
4-3	<i>Candida</i> spp. ,DNA products generated through the primer pairs ITS1 and ITS4	63
4-4	<i>Candida</i> genotype. DNA products generated through The primer pairs CA-INT-L and CA-INT-R	65
4-5	<i>Candida</i> spp. infection rate among patients according to gender	66
4-6	<i>Candida</i> spp. infection rate among patients according to age	67
4-7	<i>Candida</i> spp. infection rate among patients according to residency	68
4-8	<i>Candida</i> spp. infection rate among patients according to previous diarrhea	69
4-9	<i>Candida</i> spp. infection rate among patients according to duration of the diarrhea	70

4-10	<i>Candida</i> spp. infection rate among patients according to mode of the feeding	72
4-11	<i>Candida</i> spp. infection rate among patients according to sewage state	73
4-12	<i>Candida</i> spp. infection rate among patients according to source of the water	
4-13	<i>Candida</i> spp. infection rate among patients according to water sterilization	
4-14	<i>Candida</i> spp. rate among patients according to bottle sterilization	77
4-15	<i>Candida</i> spp. rate among patients according to previous antibiotic use	68
4-16	<i>Candida</i> spp. infection rate among patients according to age of the mothers	80
4-17	<i>Candida</i> spp. rate among patients according to education of the mothers	81

List of abbreviations

Abbreviation	Meaning
AAD	Antibiotic associated diarrhea
AIDS	Acquired immune deficiency
BFIs	Bacterial fungal interactions
BSI	blood stream infections
bp	base pair
C. albicans	Candida albicans
C. non albicans	Candida non albicans
CAC	chromogenic agar Candida
<i>Candida</i> spp.	Candida species
CDC	Center for Disease Control
CMA	Corn Meal Agar
Df	degree of freedom
DM	demethelase
DNA	Deoxyribo nucleic acid
EDTA	Ethylenediaminetetraacetic acid)
GIT	Gastrointestinal
GT	Germ tube
HIV	Human immunodeficiency virus
hrs	hours
ICU	Intensive Care Units
ITS	Internal transcribed spacer
LPCB	Lacto Phenol Cotton Blue
min	minutes
М	Molar (mol/L)
OD	Optical Density
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
pH	power of Hydrogen
Rnase	Ribo nuclease
rpm	rounds per minute
rRNA	Ribosomal RNA
SAP	Secreted Aspartyl Proteinases
SDA	Sabouraud Dextrose Agar

sec	second
Sig	significant
SPSS	Statistical Package for Social Sciences
UV	Ultra violet
WHO	World Health Organization
YPD	Yeast extract Peptone Dextrose
μ	Micro

Chapter One

Introduction

1. Introduction

Candida species constitute a portion of the natural microbiota of the human mucosal, oral cavity, vagina, and gastrointestinal tract (Moran *et al.* 2012; Sardi *et al.*,2013).Several species, including *Candida albicans, C. dublinensis, C. glabrata, C. guilliermondii, C. Lusitaniae, C. parapsilosis* and *C. tropicalis,* can be found as part of the normal human commensal flora, especially in all sections of the gastrointestinal tract (Netea *et al.*,2008; Schulze and Sonnenborn,2009).

In normal healthy person, there is a balance between *Candida* species as a normal flora and the normal defense mechanism of the body (Ferrer, 2000), which will cause opportunistic infection in the presence of any of the predisposing factors like; diabetes mellitus, malnutrition (Conlon and Snydoman,2000), humidity, burn, HIV infection (Roitte *et al.*,1998), renal failure, endocrine disturbance (Guggenheimer *et al.*, 2000), cancer, indiscriminate usage of antibiotics (Daly *et al.*,1981), glucocorticoids and cytotoxic drugs (Roitte *et al.*,1998). However, in response to improving or disturbance in the sponsor security systems in the gut, like the intestinal microbiota, gut-associated immune system and the mucosal barrier, *Candida* spp. can convert from safe commensals into pathogens or disturbance in the host defense systems, and the mucosal preventive, *Candida* spp.can convert from harmless commensals into pathogens (Walker *et al.*,2009, Netea *et al.*,2008).

Candidiasis is primarily caused by *C. albicans*, while there has been a striking increase in the frequency of non-*albicans Candida* species in the last few years. The most important species which are considered pathogenic to human are *C.albicans, C. tropicalis, C. Kruse, C.glabrata, C.lusitaniae and C.viswanathii* (Chander,2002).Candidia Worldwide distributed in nature

- 1 -

Chapter One

(Morton and Harris,1975).Colonization of the gastrointestinal and genitourinary tract may occur during birth directly from the birth canal (Winner,1975), at some time during infancy or perhaps later in life, in which the source may be environmental like polluted fresh and marine water (Valdes-collazol *et al.*1987) soil, air (Meyer *et al.*,1984), plant (Ferrer,2000), contamination of bedding, air of the hospital, wash basins and could be of human mucous membrane or gastrointestinal tract (Morton and Harris,1975).

Candida albicans is the more typical *Candida* species isolated from human stool. On the other hand, several reports have advised that *Candida albicans* may cause diarrhea, while other reports suggested reason that antibiotic-associated diarrhea (AAD) in young children (Danna *et al*, 1991). In recent years, the incidence of *Candida* spp. infections have increased. It has also been shown that *C.albicans* also causes diarrhea. Candidiasis in neonates does a serious and relatively common cause of late-onset sepsis associated with mortality. The recent study indicates that non-*albicans* infections are on the rise, which often accounts for more than 50 % of candidiasis found in the infected population.(Saravolatz *et al.*,2003).

In the developing world as a whole, about one-third of infant and child deaths are due to diarrhea. Dehydration causes approximately 70% of diarrheal deaths, the loss of much salts and water from the body, which needs water to maintain blood volume and other fluids to function properly (Gupta and Mahaj,2005). Underlying reasons for the spread of diarrheal are found in poor hygiene and sanitation; limited access to safe drinking water as well as unsuitable education of health care providers and recipients (Thapar and Sanderson,2004; Curtis *et al.*,2000). Mainly each child will suffer from diarrhea at a certain point, the potency for great dehydration is always concerned with electrolyte abnormalities and hypovolemia in a child with diarrhea. People with diarrhea often have a fever and stomach ache (abdominal cramps). The infectious

Chapter One

agents creating diarrhea can be enteric bacterias, parasites, viruses and fungi.Yeast like fungi are usually found in the gastrointestinal system in small numbers since their attachment and habitation to the mucosal surface is prevented by the anaerobic microflora.The prolonged use of antibiotics can cause an imbalance in defensive microbial flora in the gastrointestinal tract, leading to antibiotic-associated diarrhea (Krause *et al.*,2003).

The yeasts have been reported in increased frequency and quantity in the stool of the patients, which can result from antibiotic treatment of diarrhea.(Krause *et al.*, 2001). Although not commonly suspected clinically, such pathogenic yeast-like fungi can raise the severity of diarrhea-causing severe dehydration, malnutrition, and mortality in already debilitated patients especially, immune affected individuals, children, and older patients.

Discontinuing the antibiotic use, if required, administration of specific antifungal remedy can lessen morbidity and mortality in such patients (Krause *et al.*, 2003). For the treatment of fungal infection, many antifungal have been used such as compounds of polyenes and azoles. However, the random usage of these antifungal in the last few years helps with the appearance of resistant strains to many antifungal, in addition to side effects (AL-Hadithy, 1998; Cowan, 1999).

Aims of the study :

1.To isolation and identification of *Candida* spp. isolated from children suffering from diarrhea in Diyala province by routine laboratory procedures and molecular techniques based PCR.

2.To identification genotypes distributions of *Candida albicans*.

3.Study the distribution of the *Candida* spp. among children and to explore the effect of some relevant factors.