Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Medicine

Prevalence of SEN Virus and Pegivirus (GBV-C) among Patients on Maintenance Hemodialysis in Al-Kindy Dialysis Center in Baghdad

A Thesis

Submitted to Council College of Medicine - University of Diyala as Partial Fulfillment of the Requirements for the master's degree of Sciences in Medical Microbiology

> By Hayder Ahmed Kadhim

B.Sc. Biology Al-Mustansiriyah University (2007)

Supervised by

Professor Dr. Ismail Ibrahim Latif Ph.D. In Medical Microbiology/ Immunology Asisstant Professor Dr. Arwa Mujahid Al-Shuwaikh Ph.D In Microbiology/ Molecular Virology

1443 AH

2021AM

بسم الكمالي حمن الرَّحيم فَتَعَالى الْكُمُالمَلِكُ الْحَقُّ وَلَا تَعْجَلُ بِالْقُرْآنِ مِنْ قُبِلِ أَنْ يُقْضَى إَلَيكَ فَحْيَهُ فَقُلْ مَبْ ذِرْبِي عَلَما صلقائلاالعظيمر

طهذالايته 114

Supervisor Certification

We, certify that this thesis entitled (Prevalence of SEN Virus and Pegivirus (GBV-C) among Patients on Maintenance Hemodialysis in Al-Kindy Dialysis Center in Baghdad) has been conducted under my supervision at the College of Medicine, University of Diyala, as partial fulfilment of the requirements for the Master Degree of Science in Medical Microbiology.

Professor

Dr. Ismail Ibrahim Latif Ph.D. In Medical Microbiology/ Immunology

Asisstant Professor Dr. Arwa Mujahid Al-Shuwaikh Ph.D In Microbiology/ Molecular Virology

Given the available recommendation, I forward this thesis for debate by the examining committee.

Luma

Signature Professor Dr. Luma Taha Ahmed Head of Microbiology Department

College of Medicine - University of Diyala

Committee Certification

We, as the examining committee, certify that we have read this thesis and examined the student (**Hayder Ahmed Kadhim**) in and its contents, found it adequate as a thesis for the Master Degree of Science in Medical Microbiology.

Karim Sadun

Professor Dr. Karim Sadun Ali Chairman

Consulting doctor Dr. Nabeel khalid mohammad Ali Member

Assistant Professor Dr. Ahmed Rushdi Abdulla Member

Professor

Dr. Ismail Ibrahim Latif (Supervisor)

Asisstant Professor Dr. Arwa Mujahid Al-Shuwaikh (Supervisor)

Approved by the Council of College of Medicine

The Dean

Professor Dr. Ismail Ibrahim Latif Date

Dedication

I dedicate the current study ...

To my dear and lovely mother for her encouragement and support. To my father who taught me the first letter.

To my lovely wife and lovely children

Yosef, Dawood, and Ibrahim

Acknowledgment

First, In the Name of Allah, the Most Gracious, The Most Merciful, the first who deserve all thanks and appreciation for granting me with well, strength and help to accomplish the current study.

I would like to express my sincere gratitude to my supervisors **Professor Dr. Ismail Ibrahim Latif,** and their continuous guidance, support, patience, motivation, enthusiasm helped me to complete my study.

I would like to express my sincere gratitude to my supervisor Assistant Professor Dr. Arwa M. Abdullah Her guidance helped me all the time for her continuous support of my master study and for her patience, motivation, enthusiasm.

I wish to express my sincere thanks to DR. Nawar satea' the chief of (Dialysis center in Al-Kindy training hospital). Great thanks go to the staff of Dialysis center and Lab staff of AL-Kindy hospital for their help and support.

Hayder

Abstract

ישי כיכי כדריות הדרי כדה כדרי כישידה כבי תחודה בי משחת שתחותיה כדרי שי כישי נוודוו נוודוודה כבוסכריווודודיה נהו ססס מתדודדבוכדה. כוסס כדוודה מוסס כדוו ישים בתברברבורבים שו מדורבתונה בבתו שו מברדו היו מכרבות היו ממרחבת בירווים

List of Contents

	VII
List of Tables	XIV
List of Figures	XVI
List of Abbreviations	XVIII
1. 1 Introduction	1
1.2 Aims of the study:	3
2. Review of Literature	4
2.1 Historical overview	4
2.1.1 None A -E Hepatitis viruses	4
2.2 SEN Virus (SENV) and Pegivirus (GBV-C)	5
2.2.1 Basic virology and molecular biology	5
2.2.1.A- SENV	5
2.2.1.B- Pegivirus (GBV-C)	5
2.3 Taxonomy and classification	6
2.3.1 SENV	6
2.3.2. Pegivirus (GBV-C)	7
2.4 Morphology and structure (particle, genome, viral proteins)	7
2.4.1 SENV	7
2.4.2. Pegivirus (GBV-C)	9

2.5 Replication cycle	
2.5.1. SENV	
2.5.2. Pegivirus (GBV-C)	11
2.6 Genetic heterogeneity (genotypes)	13
2.6.1 SENV	13
2.6.2. Pegivirus (GBV-C)	13
2.7 Pathogenesis and host immune response	14
2.7.1. SENV	14
2.7.2. Pegivirus (GBV-C)	15
2. Clinical manifestation	16
2. □1. SENV	
2. 2. Pegivirus (GBV-C)	16
2.9 Epidemiology	17
2.9.1. SENV	1 🗆
2.9.2. Pegivirus (GBV-C)	1□
2.1 Route of transmission	19
2.1□1. SENV	19
2.1 2. Pegivirus (GBV-C)	2
2.11 Co-infection and ris afactors	2□
2.12 Hemodialysis and viral infection	22
2.13 Laboratory diagnosis	
2.14 Prevention and treatment	24
3. Patients, Materials, and Methods.	26
3.1 Patients	26
3.1.1 Study design	26
3.1.2 Sample collection	26
3.1.3 Duestionnaire performance	26

3.2. Materials	
3.2.1 Laboratory Apparatus and Instruments	
3.2.2 □its, reagents, and buffers:	
3.3 Methods	29
3.3.1 NA RNA extraction:	29
3.3.2Viral Nucleic Acid Extraction □it	3 🗆
3.3.3 Viral Nucleic Acid Extraction Dit II Protocol	3□
3.3.4 Measuring the extracted NA RNA purity:	32
3.3.5 Preparation of primers:	32
3.4 SEN virus □NA amplification	33
3.4.1 Procedure	33
3.5 GBV-C virus □NA amplification	34
3.5.1 Procedure	34
3.5.1.1 converting RNA to $c \Box NA$	34
3.5.1.2 RT-PCR GBV-C	35
3.6 Duality control:	35
3.7 Agarose gel preparation	36
3.7.1 □NA loading □ electrophoresis:	36
3. Biochemical investigations:	36
3.9 Standard Se uencing:	37
3.1 Statistical analysis:	37
4.Results	39
4.1 General description of the studied population	39
4.1.1 Age of study individuals:	39
4.1.2 The sex of study individuals:	39
4.2 □etection of SENV virus infection by nested conventional PCR	4

4.2.1 \Box ccurrence of SENV \Box NA and HCV antibody status among	
hemodialysis patients:	4
4.2.2 SENV genotypes:	42
4.2.3 SENV and age:	43
4.2.4 SENV and sex:	43
4.3 □etection of GBV-C infection by nested conventional PCR	44
4.3.1 □ccurrence of GBV-CRNA among hemodialysis patients with re-	espect
to HCV status:	44
4.3.2 GBV-C and age:	45
4.3.3 GBV-C and sex:	46
4.4 Biochemical results:	47
4.4.1 Relationship between SENV infection and liver en Jyme levels (A	A LT
and AST).	47
4.4.2 Relationship between GBV-C infection and liver en Dyme levels	(ALT
and AST).	4
4.4.3 Relationship between liver en Jyme Levels and co-infection:	49
4.5 □emographic, clinical characteristics and ris□factors for SENV infe	ction:
	49
4.6 □emographic, clinical characteristics and ris□factors for GBV-C	
infection:	51
4.7 □emographic, clinical characteristics and ris□factors for SENV, GB	V-C
and HCV co-infection:	53
4. GBV-C Genotyping and phylogenetic analysis:	54
5. □iscussion	6□
5.1 The fre uency of SEN virus infection	6□
5.2 The Fre Luency of GBV-C Virus Infection	62
5.3 SENV and GBV-C detection according to Age and Sex:	63

5.4 Level of liver en [yme (ALT and AST) in hemodialysis patients:	64
5.5 Clinical characteristics and ris afactors associated with hemodialysis	
patients:	65
5.5.1 Clinical characteristics, ris and SENV infection:	65
5.5.2 Clinical characteristics, ris and GBV-C infection:	67
5.5.3 Clinical characteristics, ris and co-infection:	69
5.6 Se uence Alignment and phylogenetic Analysis of GBV-C	71
6. Conclusions and Recommendations	74
6.1 Conclusions	74
6.2 Recommendations	75
References	76
References	76
Appendix 1	99

List of Tables

Table	Title	Page No.
3-1	The general apparatuses and tools used in this study	27
3-2	Table (3-2): Primers used in nested conventionalPCR for detection of SEN Virus (Alpha □NA,□SA)	2□
3-3	Table (3-3): Primers used in nested conventionalPCR for detection of Pegivirus (GBV-C)	29
3-4	Table (3-4): □its and laboratory materials used in this study	29
3-5	□it contents of viral nucleic acid extraction used in this study.	3 🗆
3-6	Contents of mixture tube used for first round of SENV	33
3-7	Contents of mixture tube used for second round of SENV $\Box \Box H$.	33
3-8	PCR program for both first and second round reaction for SENV $\Box \Box H$	34
3-9	Contents of master mix used for first round of GBV-C.	34
3-10	PCR program for converting RNA to $c \Box NA$ and tube amplified the $c \Box NA$ for GBV-C	35
3-11	Contents of master mix used for second round of GBV-C.	35
3-12	PCR program for the second round of RT-nested PCR for GBV-C	35
4-1	\Box istribution of hemodialysis patients according to age (n \Box 1 \Box).	39
4-2	□istribution of patients according to sex and HCV status.	4
4-3	□ccurrence of SEN-V □NA among hemodialysis patients with respect to HCV status.	42
4-4	A comparison of SEN-V genotype fre \Box uencies in SEN-V positive cases (n \Box 17).	42

4-5	□istribution of hemodialysis patients with SENV	43
	and genotypes according to age $(n \Box 1 \Box D)$.	15
4-6	□istribution of hemodialysis patients with SENV	44
	according to sex (n \Box 1 \Box).	
4-7	The association between SENV genotypes with	
	sex in SENV positive hemodialysis patients	44
	(n□17).	
4-8	□ccurrence of GBV-C among hemodialysis	45
	patients with respect to HCV status	75
4-9	□istribution of hemodialysis patients with GBV-C	46
	according to age (n \Box 1 \Box).	10
4-10	□istribution of patients and Hemodialysis with	46
	GBV-C according to sex ($n \Box 1 \Box \Box$).	70
4-11	Level of liver function test parameters in	47
	hemodialysis patients with respect to HCV status	
4-12	Serum ALT and AST level $(\Box \mathbb{L})$ in relation to	1 🗆
	SENV \Box NA status in hemodialysis patients	4
1-13	$(\Pi \sqcup \Pi \sqcup J)$. Relationship between SEN-V genotypes infection	4 🖂
7-15	and liver en ∇ me levels (n \Box 17).	4
4-14	Serum ALT and AST level $(\Box \mathbb{L})$ in relation to	49
	GBV-C status in hemodialysis patients (n \Box 1 \Box).	12
4-15	liver en Tyme levels and co-infection	49
4-16	Comparison of clinical characteristics and ris	
	factors according to SENV status in hemodialysis	5
	patients (n \square \square).	
4-17	Comparison of clinical characteristics and ris	51
	hemodialysis nations $(n \Box 17)$	01
4-18	Comparison of clinical characteristics and ris \square	
	factors according to GBV-C status in hemodialysis	52
	patients (n \square 1 \square).	
4-19	The association between SENV \Box GBV-C \Box HCV	54
4.00	co-infection and ris factors	
4-20	Result of seluence of sample hemodialysis GBV-	55
	world	55
4-21	Represent type of polymorphism of GBV-C gene	56
	5 TR	30

List of Figures

Figure	Title	Page No.
2-1	structure of SENV	7
2-2	Based maps of the SENV- \Box and SENV-H viruses that have been proposed	
2-3	Three-dimensional cryo-electron reconstruction of immature (left) and mature (right) particles of an isolate of one of Flaviviridae virus, triangles outline one icosahedral unit, with the 2-, 3- and 5-fold axes of symmetry	9
2-4	Replication cycle of Circoviridae	11
2-5	Replication cycle of Flaviviridae	12
3-1	□iagram of the pro lect	27
3-2	Viral Nucleic Acid Extraction steps	31
4-1	The sex of study individuals	4
4-2	Gel electrophoresis of second round of PCR to $(SENV-\Box)$ genotype, use $3\Box$ agarose in TBE buffer, L1 was ladder $1\Box + 1\Box \Box$ bp, L2 positive sample in 195 bp. \Box hile L3, L4, L5, L6 and L7 were negative result.	41
4-3	Gel electrophoresis of second round of PCR to (SENV-H) genotype, use $3\Box$ agarose in TBE buffer, L1 was ladder $1\Box \dashv 1\Box \Box$ bp, L4, L13 and L14 were positive samples in 124 bp, while L2, L3, L5, L6, L7, L \Box , L9, L1 \Box , L11 and L12 were negative	41
4-4	Gel electrophoresis of second round of PCR to (GBV-C), use 3□ agarose in TBE buffer, L1 was	45

	ladder 1 - 1 - 1 - bp. L2, L4, L5and L6 were positive	
	samples in $2 \square$ bp, while L3, L7, L \square , L9, L \square and	
	L9, were negative samples.	
	Phylogenetic trees for 5'UTR for 10 local isolates	
4-5	of GBV-C constructed by the neighbor bining	57
	method.	
	Phylogenetic trees for 5'UTR of 1 local isolates of	
	GBV-C and 19 reference isolates constructed by the	
	neighbor loining method. Phylogenetic distances	
	were measured by the Dimura two-parameter	
4-6	model and the trees were statistically supported by	5
	bootstrapping with 1 m replicates. Local isolates	
	were flagged with pin colored triangle. The scale	
	bar under the tree indicates $\Box 5$ nucleotide	
	substitutions per site	
	Estimates of Evolutionary Divergence between ten	
	$(1\Box)$ local isolates of GBV-C and reference isolates.	
	The number of base differences per site from	
4-7	between sequences are shown. All positions	59
	containing gaps and missing data were eliminated.	
	Evolutionary analyses were conducted in	
	MEGA1□2.5	

List of Abbreviations

Abbreviation	Meaning
AASLD	American Association for the study of liver diseases
ALP	Al aline phosphate
ALT	Alanine aminotransferase
AST	Aspartate amino transferase
β	Beta
cDNA	Complementary DNA
CKD	Chronic Idney diseases
DNA	□eoxyribonucleic acid
dNTPs	□eoxynucleotide triphosphates
E1	Envelope protein- 1
E2	Envelope protein- 2
EDTA	Ethylenediaminetetraacetic acid
EIA	En Dyme Immunoassay
ELISA	En Jyme lin Ded immunosorbent assay
ESRD	End stage renal diseases
FDA	Food and drugs administration
GTs	Genotypes
HAV	Hepatitis A virus
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HCWs	Health care wor ers
HD	Hemodialysis
HIV	Human immune deficiency virus
ICTV	International committee on taxonomy of viruses
IFN I	Interferon type one
IgG	Immunoglobulin G

IL	Interleu
ISGs	Interferon stimulating genes
IV	Intravenous
КТ	□idney transplantation
NANB	Non-A non B hepatitis
NAT	Nucleic Acid Testing
NK	Natural Eiller cell
NNIs	Non-nucleotide inhibitors
NS	Nonstructural
NS2	Nonstructural region 2
NS3	Nonstructural region 3
NS4	Nonstructural region 4
NS5	Nonstructural region 5
ORF	□pen reading frame
PBMC	Peripheral blood mononuclear cell
PCR	Polymerase chain reaction
РН	Power of hydrogen
RdRp	RNA dependent RNA polymerase
RNA	Ribonucleic acid
RRT	Renal replacement therapy
RT-PCR	Real-time Polymerase chain reaction
SPSS	Statistically pac age for social science
TRAIL	Tumor necrosis factor related apoptosis inducing ligand
Treg	T- regulatory cell
USA	□nited States of America
WHO	□ orld health organi ation

Chapter One Introduction

1.1 Introduction

It is well nown that patients underlying dialysis treatment, and in particular hemodialysis (H \square), are more susceptible ris \square for viral infections. This is due to their underlying low cellular immunity, which increases their susceptibility to infection. In addition, the process of hemodialysis need blood, that causes to exposure to infectious materials through the extracorporeal circulation for a prolonged period. Moreover, H patients may re uire a blood transfusion, fre uent hospitali ations, and surgery, which increase opportunities for nosocomial infection exposure (Bernieh, $2 \square 5$). Approximately $1 \square$ of transfusion-associated hepatitis and $2 \square$ of community-ac \square uired hepatitis cases do not have a defined etiology, suggesting the existence of an additional causative agent (Al- \Box u \Box aili, 2 \Box \Box). Patients on long-term hemodialysis are especially susceptible to parenterally transmitted agents and therefore represent an important population for analysis of the clinical and epidemiological implications of newly identified agents (Forns et al., 1999). Perhaps one of the most common viral infections are caused by hepatotropic or other hepatitis-associated viruses, including hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis G virus (GBV-C) (\Box darendeli et al., 2 \Box 5), and SEN Virus (Abd El-Hady et al., 2 \Box 6).

In 1995-1996, GBV-C was described as putative agents that accounted for the unexplained non-A to non-E hepatitis. The virus \mathbb{S} genome is consisting of single-stranded RNA with positive polarity., and belongs to the flaviviruses family. It only has one open reading frame, which encodes the viral polyprotein. There is contrary information as to whether or not GBV-C replicates in the liver. The clinical significance of GBV-C infection in humans it is still to be establish and few data in patients on H \Box are available (\Box darendeli *et al.*, 2 \Box 5 \Box Bernieh, 2 \Box 5). A high rate of GBV-C infection has been extensively reported in several countries in the last stage of renal failure and in chronic H \Box patients, ranging from 6 to 44 percent. Analysis of the 5-untranslated region (\Box TR) suggests

1

that GBV-C variations may be split into five genotypes. Genotype 1 is common in the western and central African countries \Box genotype 2 is widespread in Europe, North and East Africa, Pa \Box istan and \Box apan \Box genotype 3 occurs across Asia \Box genotype 4 occurs in South East Asia \Box genotype 5 in South African countries is prevalent (\Box darendeli et al., 2 \Box 5).

SEN virus (SENV), was discovered in 1999, the name for the SENV was derived from the initials of the first identified patient (Abbasi et al., 2 16 Abd El-Hady et al., $2 \square 6$). SENV is a small, single-stranded, non-enveloped circular \Box NA virus (Abd El-Hady et al., 2 \Box 6) and belongs to the Ciconiidae family (Abbasi et al., $2\square 6$) It is probably accounting for many cases of non-A-E hepatitis. This virus is parenterally transmitted, and therefore, appropriate screening of blood and blood products could control its spread. In addition, this virus appears capable of co-infecting patients who have other types of viral disease raising the possibility that it may aggravate their clinical course and or their response to treatment. Phylogenetic analysis of SENV isolates had demonstrated the existence of eight highly divergent genotypes (A-H). Genotypes SENV- and SENV-H are more prevalent in patients with transfusion-associated non A-E hepatitis (Al- $\Box u$ aili, $2\Box \Box$). The high prevalence of SENV observed among patients with HIV, HBV, HCV infections indicate a shared route of transmission (Abbasi et al., $2\square 6$). The association of SENV infection with hepatocyte damage or serum levels of aminotransferase remains uncertain. The role of SENV infection in patients on maintenance hemodialysis is also far from clear (\Box ai et al., 2 \Box 5) therefore, the present study try to determine the prevalence of SENV (SENV- and SENV-H strains) and GBV-C among hemodialysis patients and some of their clinical significance in Al-Dindy center for dialysis Baghdad.

2

1.2 Aims of the study:

The aims of this study as is formulated to:

- 1. □etermine the prevalence of SEN-V infection in hemodialysis patients by nested PCR.
- 2. □etermine the prevalence of GBV-C infection in hemodialysis patients by reverse nested PCR.
- 3. Evaluate any possible association between SEN-V and GBV-C with HCV and their clinical importance in hemodialysis patients by biochemical test (ALT and AST).
- 4. The association of SENV and GBV-C with □emographic, clinical characteristics and some ris□factors.