Republic of Iraq Ministry of Higher Education And Scientific Research University of Diyala College of Medicine



# Detection and Genotyping of HCV among Hemodialysis Patients in Diyala Governorate

#### A Thesis

Submitted to The Council of College of Medicine-University of Diyala as a Partial Fulfillment of the Requirements for the Master's Degree of Science in Medical Microbiology

## By Shahad Khudhair Khalaf

BVMS (2011) - College of Veterinary Medicine - University of Diyala

## Supervised by

## Professor Dr. Areej Atiyah Hussein

Ph.D. in Medical Microbiology

April 2021 A.D.

Ramadhan 1442 A.H.



﴿وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ ٢ عَلَيْهِ تَوَكَّلْتُ وَإِلَيْهِ أَنِيبُ﴾

صَبْنَ وَاللَّهُ الْعُظَمِينِ،

سورة هـود اية (88)

# Dedication

I dedicate this work to ....

My dear mother My dear father My sisters, whom I love My life partner

The two roses that filled my life as fragrances My children Moomin and Mubeen

Shahad

# Acknowledgments

In the name of Allah, the most gracious, the most merciful. Firstly, thanks to Allah for all his blessing.

Special thank goes to the Dean of College of Medicine (Ismail Ibrahim Lateef) and to all staff of the Department of Microbiology for providing me with available facilities and valuable information throughout the study period.

I would like to express my deep appreciation and sincere gratitude to my supervisor (**Professor Dr. Areej Atiya Hussain**) for creating an opportunity to undertake this work support and encouragement during this work and preparation of my thesis.

I am indebted to the director of the Dialysis Center in Baqubah Teaching Hospital (**Dr. Nabeel Khalid Mohammed Ali**) and the technical nurse (**Jehan Ghaleb Jasaam**) and my cousin (Lubaid Ibrahim Salih) for their assistance during sample collection.

Shahad

#### **Summary**

Infection with the Hepatitis C virus is a major public medical condition that mainly affects the liver, causing liver cirrhosis, hepatocellular carcinoma, and liver failure if it is untreated or treated late. It is a major cause of morbidity and mortality in patients with kidney transplantation and hemodialysis patients due to continuous exposure to risk factors such as sharing the dialysis system, medical instruments, or blood transfusion that is necessary for these patients.

This study aims to determine the infection rate and genotyping of the HCV among patients with routine hemodialysis at the Dialysis Centers in Baqubah Teaching Hospital, and Khanaqin General Hospital. It also aims to study the correlation between infection rate and genotypes of the HCV with various parameters such as age, gender, residence, marital status, education level, history of blood transfusion, family history, smoking habit, drinking alcohol habit, tattooing, cupping, and duration of dialysis.

A cross-sectional study was based on the collecting and processing of blood samples from 306 hemodialysis patients, (177) males, and (129) females aged from (10-85years old), during the period  $16^{\text{th}}$  September 2020 till  $16^{\text{th}}$  December 2020. Plasma separated from blood and stored at (-20 °C) to be used in determining the HCV antibodies by an enzyme immunoassay test, then viral RNA was extracted from hepatitis C positive samples and used for genotyping by reverse transcriptase-polymerase chain reaction technique.

The results showed that the infection rate of hepatitis C virus in hemodialysis patients in Diyala Governorate was 7.8% (24\306), with no differences between males and females (12 cases) for each gender. The age between 61-70 years old was more susceptible to infection (37.5%). Patients with primary education levels more frequently than others 9(37.50%). Blood transfusion was the most common risk factor of infection 19 (79.20%) in the study population. Other risk factors were less frequent such as cupping and tattoos. No positive cases were noticed within family

history, and drinking alcohol. The duration of dialysis ranging from 1-4 years was more frequent than other durations 21(87.5%).

The results of this study showed that genotype 4 was the most frequently detected (8 out of 24), followed by genotype 1a and 1b (7 out of 24) for each subtype, while genotype 2 was less frequent (2 out of 24) and genotype 3, 5, 6 were absent.

The study concluded that the HCV infection rate in hemodialysis patients in the Diyala governorate was low to moderate. Genotype 4 was the most frequent one in this population then genotypes 1a and 1b while genotypes 3, 5, and 6 were not noticed in this study. Blood transfusion was the most risk factor of infection in this population.

## **Table of Contents**

| Contents  |                                   | Page |
|-----------|-----------------------------------|------|
|           |                                   | No.  |
| Dedicati  | Dedication                        |      |
| Acknow    | ledgments                         |      |
| Summar    | У                                 | Ι    |
| Table of  | Contents                          | III  |
| List of F | igures                            | VII  |
| List of T | ables                             | VIII |
| List of A | bbreviations                      | IX   |
|           | Chapter One: Introduction         |      |
| 1.1       | Introduction                      | 1    |
| 1.2       | Aims of the study                 | 3    |
|           | Chapter Two: Review of Literature |      |
| 2         | Review of Literature              | 4    |
| 2.1       | Hepatitis C virus                 | 4    |
| 2.1.1     | Historical background             | 4    |
| 2.1.2     | Epidemiology                      | 5    |
| 2.1.3     | Classification                    | 7    |
| 2.1.4     | Structure of                      | 7    |
| 2.1.5     | Genotyping                        | 9    |
| 1         | 1                                 | 1    |

| 2.1.6  | Transmission                                    | 10 |
|--------|-------------------------------------------------|----|
| 2.1.0  |                                                 | 10 |
| 2.1.7  | Risk Factors                                    | 11 |
| 2.1.8  | Replication Cycle                               | 12 |
| 2.1.9  | Pathogenesis                                    | 14 |
| 2.1.10 | Clinical Signs                                  | 15 |
| 2.1.11 | Immune Response                                 | 16 |
| 2.1.12 | The Immune System Escape                        | 18 |
| 2.1.13 | Diagnosis                                       | 19 |
| 2.1.14 | Treatment                                       | 20 |
| 2.1.15 | Prevention and Control                          | 21 |
| 2.2    | Renal System                                    | 23 |
| 2.2.1  | Structure of the Renal System                   | 23 |
| 2.2.2  | Function of the Renal System                    | 24 |
| 2.2.3  | Chronic Kidney Diseases                         | 25 |
| 2.2.4  | Hemodialysis                                    | 26 |
| 2.2.5  | Hepatitis C Virus and Hemodialysis              | 27 |
|        | Chapter Three: Patients, Materials, and Methods |    |
| 3      | Patients, Materials, and Methods                | 28 |
| 3.1    | Patients                                        | 28 |
| 3.1.1  | Study Design                                    | 28 |

| 3.1.2     | Sample Collection                                                 | 28 |
|-----------|-------------------------------------------------------------------|----|
| 3.2       | Materials                                                         | 29 |
| 3.2.1     | Laboratory Apparatus and Instruments                              | 29 |
| 3.2.2     | Kits                                                              | 30 |
| 3.2.2.1   | Enzyme Immunoassay for Hepatitis C Virus Kit                      | 30 |
| 3.2.2.2   | Viral RNA Extraction Kit                                          | 31 |
| 3.2.2.3   | Hepatitis C Virus Quantification Kit                              | 32 |
| 3.2.2.4   | Hepatitis C Virus Genotyping Kit                                  | 33 |
| 3.3       | Methods                                                           | 34 |
| 3.3.1     | Enzyme Immunoassay for Hepatitis C Virus                          | 34 |
| 3.3.2     | Principle of the Enzyme Immunoassay for<br>Hepatitis C Virus Test | 34 |
| 3.3.1.2   | Steps of Enzyme Immunoassay for Hepatitis C<br>Virus Test         | 35 |
| 3.3.2     | Viral RNA Extraction                                              | 36 |
| 3.3.2.1   | Principle of Viral RNA Extraction Test                            | 36 |
| 3.3.2.2   | Steps of Viral RNA Extraction Test                                | 36 |
| 3.3.3     | Hepatitis C Virus Quantification Test                             | 40 |
| 3.3.3.1   | Principle of the Test                                             | 40 |
| 3.3.3.2   | Steps of the Hepatitis C Virus Quantification Test                | 41 |
| 3.3.3.2.1 | Preparation of Reverse Transcriptase Polymerase                   | 42 |

|           | Chain Reaction                                                                                                |    |
|-----------|---------------------------------------------------------------------------------------------------------------|----|
| 3.3.3.2.2 | Programming of Reverse Transcriptase<br>Polymerase Chain Reaction                                             | 42 |
| 3.3.6     | Hepatitis C Virus Genotyping Test                                                                             | 43 |
| 3.3.6.1   | Principle of the Test                                                                                         | 43 |
| 3.3.6.2   | Steps of the Hepatitis C Virus Genotyping Test                                                                | 43 |
| 3.3.6.2.1 | Preparation of Reverse Transcriptase Polymerase<br>Chain Reaction                                             | 43 |
| 3.3.6.2.2 | Programming of Reverse Transcriptase<br>Polymerase Chain Reaction                                             | 44 |
| 3.4       | Statistical Analysis                                                                                          | 44 |
|           | Chapter Four: Results                                                                                         |    |
| 4         | Results                                                                                                       | 45 |
| 4.1       | Infection Rate of Hepatitis C Virus among<br>Hemodialysis Patients                                            | 45 |
| 4.2       | Distribution of Positive and Negative Hepatitis C<br>Virus among Hemodialysis Patients According to<br>Gender | 46 |
| 4.3       | Distribution of Positive and Negative Hepatitis C<br>Virus among Hemodialysis Patients According to<br>Age    | 47 |
| 4.4       | Distribution of Educational Levels among Study<br>Population                                                  | 48 |

| 4.5  | Distribution of Study Population According to<br>Risk Factors                                          | 49 |
|------|--------------------------------------------------------------------------------------------------------|----|
| 4.6  | Distribution of Study Population According to<br>Duration of Dialysis                                  | 50 |
| 4.7  | Distribution of Hepatitis C Virus Genotypes in<br>Study Population                                     | 51 |
| 4.8  | Relationship between Hepatitis C Virus Genotypes<br>with Age and Gender                                | 52 |
| 4.9  | Distribution of Hepatitis C Virus Genotypes<br>According to Taking of Treatment in Study<br>Population | 53 |
| 4.10 | Distribution of Hepatitis C Virus Genotypes<br>According to Risk Factors in Study Population           | 54 |
|      | Chapter Five: Discussion                                                                               |    |
| 5    | Discussion                                                                                             | 56 |
| 5.1  | Infection Rate of Hepatitis C Virus in Study<br>Population                                             | 56 |
| 5.2  | Distribution of Hemodialysis Patients with<br>Hepatitis C Virus According to Gender                    | 59 |
| 5.3  | Distribution of Hemodialysis Patients with<br>Hepatitis C Virus According to Age                       | 61 |
| 5.4  | Distribution of hemodialysis Patients with<br>Hepatitis C Virus According to Education Level           | 62 |

| 5.5  | Distribution of Hemodialysis Patients with      | 63     |
|------|-------------------------------------------------|--------|
|      | Hepatitis C Virus According to Risk Factors     |        |
| 5.6  | Distribution of Hemodialysis Patients with      | 65     |
|      | Hepatitis C Virus According to Duration of      |        |
|      | Dialysis                                        |        |
| 5.7  | Distribution of Hepatitis C Virus Genotypes in  | 66     |
|      | Study Population                                |        |
| 5.8  | Distribution of HCV Genotypes in Study          | 68     |
|      | Population According to Age and Gender          |        |
|      |                                                 |        |
| 5.0  |                                                 | 70     |
| 5.9  | Distribution of HCV Genotypes in Group of Study | 70     |
|      | According to Taking of Treatment                |        |
| 5.10 | Distribution of Hepatitis C Virus Genotypes in  | 72     |
|      | Group of Study According to Risk Factors        |        |
|      | Chapter Six: Conclusion and Recommendations.    |        |
| 6.1  | Conclusion                                      | 75     |
| 6.2  | Recommendations.                                | 76     |
|      | References                                      |        |
|      |                                                 | 77-118 |
|      |                                                 | //-110 |
|      | Appendices                                      |        |
|      | Summary in Arabic                               |        |
|      | Title in Arabic                                 |        |
|      |                                                 |        |

## List of Figures

| Figure | Title                                                                  | Page |
|--------|------------------------------------------------------------------------|------|
|        |                                                                        | No.  |
| 2-1    | Global prevalence of Hepatitis C Virus infections                      | 5    |
| 2-2    | Structure of Hepatitis C Virus                                         | 7    |
| 2-3    | Structural and Nonstructural Protein in Genome<br>of Hepatitis C Virus | 9    |
| 2-4    | Replication Cycle of Hepatitis C Virus                                 | 13   |
| 2-5    | Stage of Hepatitis C Virus Infection in The Liver                      | 15   |
| 2-6    | Summary of Immune Response in Hepatitis C<br>Virus                     | 17   |
| 3-1    | Experimental Workflow                                                  | 28   |
| 4-1    | Rate of Hepatitis C Virus Infection According to<br>Enzyme Immunoassay | 45   |

### List of Tables

| Table | Title                                            | Page |
|-------|--------------------------------------------------|------|
|       |                                                  | No.  |
| 3-1   | General Apparatus and Instruments Used in The    | 29   |
|       | Present Study                                    |      |
| 3-2   | Components of Enzyme Immunoassay for             | 30   |
|       | Detection of IgG Antibodies to Hepatitis C Virus |      |
|       | Kit                                              |      |
| 3-3   | Components of Hepatitis C Virus RNA              | 31   |
|       | extraction kit                                   |      |
| 3-4   | Components of Hepatitis C Virus Quantification   | 32   |
|       | Kit                                              |      |
| 3-5   | Components of Hepatitis C Virus Genotyping       | 33   |
|       | Kit                                              |      |
| 3-6   | The thermal cycle settings of RT-PCR for HCV     | 42   |
|       | quantification                                   |      |
| 3-7   | The thermal cycle settings of master mix 4 of    | 44   |
|       | RT-PCR for genotyping                            |      |
| 4-1   | Distribution of Hepatitis C Virus According to   | 46   |
|       | Gender in Study Population                       |      |
| 4-2   | Distribution of Hepatitis C Virus According to   | 47   |
|       | Age in Study Population                          |      |
| 4-3   | Distribution of Hepatitis C Virus According to   | 48   |
|       | the Educational Levels in Study Population       |      |
|       |                                                  |      |

| 4-4 | Distribution of Hepatitis C Virus According to<br>Risk Factors                                         | 49 |
|-----|--------------------------------------------------------------------------------------------------------|----|
| 4-5 | Distribution of Hepatitis C Virus According to<br>Duration of Dialysis                                 | 50 |
| 4-6 | Distribution of Hepatitis C Virus Genotypes<br>among Hemodialysis Patients                             | 51 |
| 4-7 | Relationship between Hepatitis C Virus<br>Genotypes with Age and Gender                                | 52 |
| 4-8 | Distribution of Hepatitis C Virus Genotypes<br>According to Taking of Treatment in Study<br>Population | 53 |
| 4-9 | Distribution of Hepatitis C Virus Genotypes<br>According to the Risk Factors in Study<br>Population    | 55 |

### **List of Abbreviations**

| Abbreviation | Meaning                                              |
|--------------|------------------------------------------------------|
| AASLD        | American Association for the study of liver diseases |
| ALP          | Alkaline phosphate                                   |
| ALT          | Alanine aminotransferase                             |
| AST          | Aspartate amino transferase                          |
| β            | Beta                                                 |
| CD           | Cluster of differentiation                           |
| cDNA         | Complementary DNA                                    |
| CKD          | Chronic kidney diseases                              |
| CLDN-R       | Claudin1 receptor                                    |
| CT           | Threshold cycle                                      |
| CTL          | Cytotoxic T-lymphocyte                               |
| DAAs         | Direct acting antiviral                              |
| DNA          | Deoxyribonucleic acid                                |
| dNTPs        | Deoxynucleotide triphosphates                        |
| E1           | Envelope protein- 1                                  |
| E2           | Envelope protein- 2                                  |
| EASL         | European Association for the study of liver          |
| EDTA         | Ethylenediaminetetraacetic acid                      |

| EGFR  | Epidermal growth factor receptor               |
|-------|------------------------------------------------|
| EIA   | Enzyme Immunoassay                             |
| ELISA | Enzyme linked immunosorbent assay              |
| ER    | Endoplasmic reticulum                          |
| ESRD  | End stage renal diseases                       |
| FDA   | Food and drugs administration                  |
| GTs   | Genotypes                                      |
| HAV   | Hepatitis A virus                              |
| HBV   | Hepatitis B virus                              |
| HCV   | Hepatitis C virus                              |
| HCWs  | Health care workers                            |
| HD    | Hemodialysis                                   |
| HVR1  | Hypervariable region 1                         |
| ICTV  | International committee on taxonomy of viruses |
| IFN   | Interferon                                     |
| IgG   | Immunoglobulin G                               |
| IL    | Interleukin                                    |
| ISGs  | Interferon stimulating genes                   |
| IV    | Intravenous                                    |
| KT    | Kidney transplantation                         |

| LDL      | Low-density lipoprotein             |
|----------|-------------------------------------|
| LDLR     | Low-density lipoprotein receptor    |
| LVP      | Lipoviral particles                 |
| MISC SET | Minimal instruction set computer    |
| MSM      | Men sex with men                    |
| NANB     | Non-A non B hepatitis               |
| NAT      | Nucleic Acid Testing                |
| NK       | Natural killer cell                 |
| NNIs     | Non-nucleotide inhibitors           |
| NS       | Nonstructural                       |
| OCLN-R   | Occluding receptor                  |
| ORF      | Open reading frame                  |
| PBMC     | Peripheral blood mononuclear cell   |
| PCR      | Polymerase chain reaction           |
| pН       | Power of hydrogen                   |
| RdRp     | RNA dependent RNA polymerase        |
| RNA      | Ribonucleic acid                    |
| RRT      | Renal replacement therapy           |
| RT-PCR   | Real-time Polymerase chain reaction |
| SR-BI    | Scavenger receptor class B type 1   |

| TGFβ-R | Transforming growth factor receptor                     |
|--------|---------------------------------------------------------|
| Th     | T helper                                                |
| TNF    | Tumor necrosis factor                                   |
| TRAIL  | Tumor necrosis factor related apoptosis inducing ligand |
| Treg   | T- regulatory cell                                      |
| USA    | United States of America                                |
| VLDL   | Very low-density lipoprotein                            |
| WHO    | World health organization                               |

#### **1.1 Introduction**

Hepatitis C virus (HCV) infection is a global community health challenge (Elghitany, 2019). Globally, more than 71 million patients with HCV infection worldwide, and 399,000 patients die each year due to HCV related cirrhosis or liver cancer (WHO, 2020). The pediatric population aged 0-18 years and the global estimate for viremia prevalence was 0.13% corresponding to 3.26 million in 2018 (Schmelzer *et al.*, 2020). There is no effective immunization against HCV; therefore prevention of this infection depends upon decreasing the risk of contact with the virus in healthcare settings and high-risk communities (WHO, 2019).

Hepatitis C virus is a small single-stranded with positive polarity RNA virus belonging to the family Flaviviridae and genus hepacivirus (Catanese *et al.*, 2013). It is classified into eight genotypes and several subtypes (Borgia *et al.*, 2018).

Hepatitis C virus is mainly transmitted by exposure to infected devices and tools, infected blood or blood products, hemodialysis, intravenous (IV) drug abuse, and organ transplantation (Ashkani-Esfahani *et al.*, 2017). Nearly 35% of subjects clear the virus spontaneously or after a self-limited asymptomatic acute hepatitis, whereas the remaining 65% progress to chronicity (Coppola *et al.*, 2019). Around 40% to 70% of cases of HCV infection are accompanied by extrahepatic manifestations such as autoimmune, metabolic, renal, cardiovascular, central nervous system, and lymphoproliferative disorders. Hepatitis C infection increases the morbidity and mortality rates in both dialysis patients and kidney transplanted (KT) recipients (Kim and Song, 2018).

Hemodialysis is the common method used to remove waste and toxic substances from the body. It is used to treat patients with different types of renal failure with the use of modern and effective dialysis machines for therapy (Mehmood *et al.*, 2019). It has been shown that infection risk increases with the duration of hemodialysis (Martin *et al.*, 2020). The prevalence of HCV among patients with hemodialysis

patients is considerably higher than in the general population, ranging from 10-50%, depending on the geographical region (Park *et al.*, 2018). Patients undergoing prolonged dialysis treatment display impaired adaptive immune responses and are vulnerable to HCV infection (Fabrizi *et al.*, 2007).

Patients on hemodialysis should be tested when they first start hemodialysis or when they transfer from another hemodialysis facility (Covic *et al.*, 2009). Initial testing either with enzyme immunoassay (EIA) or nucleic acid testing (NAT) is suggested, depending on the low or high prevalence of the virus in the country and the particular hemodialysis unit (Liu and Kao, 2011). On the other hand, several hemodialysis patients will test negative for anti-HCV antibodies while having detectable HCV viremia, so there is no doubt that detection of HCV-RNA by reverse transcriptase-polymerase chain reaction is the most sensitive and specific assay for HCV detection (Covic *et al.*, 2009).

Several studies conducted in different Iraqi towns about HCV frequency in hemodialysis patients and reported different rates such as the study of Ibrahim *et al.*, (2018) reported 4.3% in Duhok city. Muhrath (2018) found 5.66% in Diwaniyah city. Jasim and Athbi (2015) reporter 6.6% in Holy Karbala governorate. Sinjari and Bakr (2018) recorded 9.2% in the Kurdistan region. Al-Taan and Khalid (2020) reported 20% in Mosul District, and Abdilazeem and Nasir (2019) found 46.36% in Al-Kindy Teaching Hospital in Baghdad. To our knowledge, there are no studies about this issue conducted in the Diyala governorate.

#### 1.2 Aims of the Study

The study aims to:

1. Determine the infection rate of the Hepatitis C Virus among hemodialysis patients in Diyala Governorate.

2. Molecular identification of Hepatitis C Virus genotypes of the study population.

3. Study the correlation between Hepatitis C Virus infection rate and genotypes with different parameters such as age, gender, residence, marital status, education level, history of blood transfusion, family history, smoking, drinking alcohol, tattooing, cupping, and duration of dialysis.