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ABSTRACT

Experimental Study for Lateral Cyclic Response of Piled-Raft 
Foundation in Multi-Layer Soil 

By 

Wafaa Ali Saleh 

 Supervised by: 

Prof. Dr. Jasim M. Abbas  

 

ABSTRACT 

In piled raft foundation, the load-sharing system between the raft and piles 

are occurring to transfer the load coming from the superstructure to the soil. 

This foundation is usually supporting bridge piers, offshore platforms, marine 

structures and others that are required to resist not only static loading, but also 

lateral cyclic loading that developed from different sources of loadings such as 

wind and seismic loads. Therefore, this complex system in layered soil with 

different load combination needs more laboratory and numerical studies to 

improve the knowledge regarding the performance of such a problem. 

This study offers an experimental study which is carried out to investigate 

the behaviour of laterally loaded pile raft models with three configurations (1×2, 

2×1, and 2×2) where slenderness ratio is 40. Furthermore, three layers soil are 

used with different percentage of saturation. In addition, many other parameters 

are selected; such as spacing between piles 3D, 5D, and 7D (D is a diameter of 

pile) and cross-sectional shape of the pile (i.e. square and circle). To simulate 

the loading to be as much close as possible to the real cases, different loading 

conditions are used such as number of cycles, level of the cyclic load ratio 

(CLR) and influence of axial load.
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The results of the study indicated that deflection and bending moment 

profiles behaviour increase with an increasing number of cycles for all spacing 

of piled raft foundation models. Correspondingly, in case of pure lateral cyclic 

load (without vertical loads) where spacing to diameter ratio is 3, the results 

illustrated that at the critical cyclic load level CLR=60%  for 100 cycles, the 

lateral deflection is about 42%, 31%, and 44%  more than at CLR= 40%  of 

piled raft models (1×2), (2×1) and (2×2) respectively.  

Furthermore, it found that the presence of vertical loads has reduced the 

lateral displacement and bending moment profiles in all cases. For circular pile 

shape group, the reduction in lateral displacement at 100 cycles was 

approximately 19%, 14% and 44% for models 1×2 ,  2×1  and  2×2  respectively,  

whereas for square shape, the percentage of the reduction were about 26%, 36%, 

and 34% respectively. The results also indicated that the increase in the lateral 

resistance in the group of square piles compared to a circular pile under pure 

lateral loading conditions within the group 1 × 2, 2 × 1 and 2 × 2 were about 

16%, 20% and 23% respectively.  

The results demonstrated that lateral deflection and bending moment 

values of this model in saturated clay soil were less than in partially saturated 

clay soil and closer to the dry soil of about (35% and 13%) respectively. 

 Finally, this study illustrated that maximum bending moment for trailing 

row was less than the leading row for circular piled raft models 1×2, 2×1, and 

2×2 by about 16%, 17%, and 7% respectively, whereas the results for square 

model were about   22%, 13%, and 9% respectively. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

     Day after day, the demand for ample infrastructure increases due to 

the growing population. To accommodate this increasing, it is required to 

construct high-rise buildings, express highways, and bridges, etc. Making these 

skyscrapers require stable and economical foundations to be built because very 

high self-weight, wind loads and seismic loads come through the structure and 

subsequently increasing load on the foundation. Many traditional foundations 

are available, for example shallow foundation, raft foundation, and pile, but 

using one of these foundations is not suitable and economical for such high-rise 

buildings that have a tremendous load to be carried by the substructure. In such 

condition, the pile-raft foundation can be considered the best solution for these 

structures (Kumar and Kumar, 2018).   

In general, raft is designed as rigid for resisting high moment and 

differential settlement, which is a result of the intensity of load and relative 

stiffness of raft and soil. In the case of conventional foundation design, it must 

be ensured that the building load will be supported by either the raft or the piles 

with sufficient safety to avoid failure of the load-bearing capacity and loss of 

overall stability. In piled raft foundation, the contributions of the raft, as well as 

piles, are taken into account to check the ultimate load-bearing capacity and the 

suitability for use of the overall system (Singh and Singh, 2011a). 
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Piled raft foundation consists of three load-bearing elements: piles, raft and 

subsoil. According to their stiffness, the raft distributes the total load transferred 

from the structure as contact pressure below the raft and load over each of the 

piles. In piled raft foundation, the contributions of the raft and piles are taken 

into consideration to verify the ultimate bearing capacity and the serviceability 

of the overall system (Singh and Singh, 2011b). The principal benefit of using 

piled raft foundation is a reduction in the total number of piles due to perhaps 

only 60-75% of the total structural load carried by the piles and a portion of the 

load is carried by the raft (Randolph, 1994) 

Piled raft foundations are among the most commonly used support structures 

for offshore projects(Ghalesari et al., 2015), which are often subjected to 

significant cyclic lateral loads caused by wave actions. Cyclic lateral loads that 

effected on pile structures can be caused by wind, waves, earth pressure, and 

water pressure. Furthermore, construction processes and mechanical 

compaction cyclically load the soil.

 The behaviour of a vertical pile that is subjected to repetitive lateral loads 

affected by several variables such as geometrical and structural properties of the 

pile, characteristics of the lateral load (e.g. rate of cyclic load ratio), the 

properties of soil in which the pile is embedded and the change in soil properties 

as the pile is loaded repetitively (Long and Vanneste, 1994).  

The rate of lateral loads in the site of onshore structures is approximately 

10-20% of the axial load whereas for offshore structures this rate can reach at 

about 30% (Rao et al., 1998). Therefore, the amount of horizontal displacement 

generated by lateral force over the allowable can cause damage to engineering 

structure (Bartlett and Youd, 1995). Therefore, it is important to consider a 

lateral force when designing structures that are subject to cyclic loading to meet 

safety requirements. 
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1.2 Statement of the Problem  

Designing deep foundations to withstand seismic loading is a reality. 

Seismic loading of structures and foundations reaches its most critical state as 

a cyclic lateral force. The response of soils and foundations to repetitive lateral 

forces is highly complex, relegating most design methods to be based upon 

overly conservative rules-of-thumb (Moss et al., 1998).Plate (1.1) show the 

failure of pile foundation due to lateral loads by action of several resources. 

Unsaturated soil is the most common material encountered in the field of 

geotechnical engineering. Yet, mechanics of partially saturated soil lags far 

behind that of saturated soil. A partially saturated soil is a complex multi-phase 

system consisting of air, water and solid material whose response is a function 

of the stress state, moisture condition and other internal variables present within 

the soil. The difficulties of the experimental and theoretical operations delayed 

the development of understanding the behaviour of partially saturated soils. 

Depending on the soil conditions and intensity of loading, piled raft foundations 

are the most prevalent kind of deep foundations used to support high rise 

building which are often designed to resist the dead load with adequate safety 

factor during their life. However, piled raft foundations are subjected to 

significant axial and lateral cyclic loads, these are generated by several sources. 

This is particularly true for the piled raft system of offshore structures, which 

are subjected to rocking motions caused by wave actions, as well as onshore 

structures, which in turn, makes the structure in danger. 

The studies examining the effect of cyclic loading on the piled raft 

foundation in multi-layered with partially saturated soil are limited and there is 

need for improvement and an increasing number of researchers begins the 

working on improving and understanding the mechanical behaviour of such 

complex system. The work that is presented in this thesis will help to understand 
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the effects of various parameters on the overall performance of the piled-raft 

foundation through experimental work using small models tested under two-

way cyclic lateral loading. 

 
Plate (1.1): Failure of pile foundation due to lateral loads 

 

1.3 Objectives of the Study 

Cyclic lateral loading is one aspect of the problem that offshore 

foundations and other applications have encountered and adds to the complexity 

of these structures (Brown et al., 1988). 

The main work focused on several points: 

1. Identifying of the response of piled rafts embedded in multi-layered soil and 

their variation of properties with changing the degree of saturation for clay layer 

under two-way cyclic loading. 

2. Investigation of the influence of the axial load, number of cycles as well as 

cyclic load ratio (CLR) on the lateral resistance of the pile-raft system under 
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pure lateral and combined loading conditions by evaluating the variation of the 

lateral displacement and the bending moment along the pile shaft.  

3. Assessing the effect of cross-sectional shape and spacing between the piles 

in the group on the response of piled raft models under pure lateral and 

combined cyclic loading conditions. 

4. Evaluating the best pattern under pure lateral and combined loading 

conditions which meets increased lateral resistance. 

 

1.4 Thesis Outline 

The skeleton of the present thesis is divided into five chapters: 

Chapter One: gives a brief description of the piled raft problem under cyclic 

loading and describes the objectives of the study.  

Chapter Two: presents a brief review of previous experimental researches as 

well as field investigations on pile raft foundations to investigate the vertical 

and cyclic lateral loading of such foundations.  

Chapter Three: is devoted to offering the experimental setup used for modeling 

the piled raft system under cyclic loading in the laboratory, the properties of the 

soils used in this work, and their classification, besides the testing techniques 

and program. 

Chapter Four: presents the results of the study. Load-displacement curves 

represent the behaviour of different configurations of piled raft models and their 

lateral resistance.  

Chapter Five: summarizes the most important conclusions of experimental 

research as well as recommendations for future work.


